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We present two new algorithms, ADT and MDT, for solving order-n Toeplitz
systems of linear equations Tz = & in time O{n log?n) and space O(n). The fastest
algorithms previously known, such as Trench'’s algorithm, require time 3(r?) and
require that all principal submatrices of T be nonsingular. Our algorithm ADT
requires only that T be nonsingular. Both our algorithms for Toeplitz systems are
derived from algorithms for computing entries in the Padé table for a given power
series. We prove that entries in the Pade table can be computed by the Extended
Euclidean Algorithm. We describe an algorithm EMGCD (Extended Middle
Greatest Common Divisor) which is faster than the algorithm HGCD of Aho,
Hoperoft and Ullman, although both require time O(n log?n), and we generalize
EMGCD to produce PRSDC (Polynomial Remainder Sequence Divide and Con-
quer) which produces any iterate in the PRS, not just the middle term, in time O(n
log?#). Applying PRSDC to the polynomials {j(x) = x2"*! and Uj(x) = a, +
X + - - - +ag,x>" gives algorithm AD (Anti-Diagopal), which computes any
(m,p) entry along the antidiagonal m + p = 2n of the Pade table for U, in time
O(n logn). Our other algorithm, MD (Main-Diagonal), computes any diagonal
entry (n,n) in the Pad¢ table for a normal power series, also in time O(n log2n).
MD is related to Schonhage's fast continued fraction algorithm. A Toeplitz matrix
T is naturally associated with U}, and the (a,r) Pade approximation to U, gives
the first column of T~!. We show how & formula due to Trench can be used to
compute the solution z of Tz = b in time (n log n) from the first row and column
of T, Thus, the Pade table algorithms AD and MD give O(n log?n) Toeplitz
algorithms ADT and MDT. Trench's formula breaks down in certain degenerate
cases, bul in such cases a companion formula, the discrete analog of the Christoffel
~Darboux formula, is valid and may be used to compute z in time O(# log®a) via
the fast computation (by algorithm AD) of at most four Padé approximants. We
also apply our results to obtain new complexity bounds for the solution of banded
Toeplitz systems and for BCH decoding via Berlekamp®s algorithm.

1. INTRODUCTION

We present two new algorithms for solving (n + 1) X (n + 1) Toeplitz
systems of linear equations Tz = b, Trench’s algorithm [31] and other
similar algorithms [2, 3, 7, 21, 27, 28, 33] all require time Q(n?), but our
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algorithms take only time O(n log?n) on a random-access machine [1}.
One algorithm, ADT, is based on the fast Extended Euclidean Algorithm
(EEA), and requires only that T be nomsingular. The other algorithm,
MDT, was derived from fast continued fraction algorithms (Schénhage
[259]) and does not use the Euclidean algorithmn. Like Trench’s algorithm, it
requires that certain minors of T be nonzero. We note here that a Hankel
matrix is just a Toeplitz matrix with its columns reversed. Thus our
Toeplitz algorithms apply to the solution of Hankel systems with merely a
change of notation.

Solving systems of Toeplitz equations is closely related to finding a type
of rational function approximation to power series, known as Padé ap-
proximants. For a power series A(x) = g, + a,x + a@,x? + ..., the (m,p)
Padé approximant to A4 is the rational function R, (x) = U(x)/¥(x),
where U/ and V are polynomials with deg(l/) < m and deg(V') < p. The
set of Padé approximants to A(x) collected in a two-dimensional array
indexed by (m,p) is called the Padé table [13]. The entries of the Padé
table can be computed by the Extended Euclidean Algorithm. McEliece
and Shearer {23] made this discovery by generalizing the work of Sugiyama
et al. [30], who showed that Euclid’s algorithm could be used to solve the
key equation of Goppa codes. Our result was discovered prior to publica-
tion of [23]. Warner [32] has shown that all entries of the Hermite Rational
Interpolation Table can be computed by Kronecker’s Division Algorithm
[19]. The Padé table is a special case of the Rational Interpolation Table,
and Warner’s result applied to the Padé table is essentially the same as
McEliece and Shearer’s. In fact, we have discovered that Kronecker's
algorithm is essentially the Extended Euclidean Algorithm applied to
computing elements of the Rational Interpolation Table. It seems that the
original suggestion of Padé table entries being computable by Euclid’s
algorithm is due to Kronecker [15]. However, he applied the technique to
the more general problem of rational Hermite interpolation and the
division algorithm was named after him.

Our computational results are stronger than those mentioned above. We
have improved and extended the HGCD algorithm of [1] and the fast
GCD algorithm of Moenck [25] in two significant ways. First, we have
developed an improved HGCD algorithm called EMGCD (for Extended
Middle GCD). The cost of EMGCD is less than the cost of HGCD;
however, both algorithms have O(n log?n) asymptotic cost. The second
improvement comes from generalizing EMGCD. We have produced an
algorithm PRSDC (Polynomial Remainder Sequence Divide and Conquer)
which computes any iterate in the PRS sequence and not just the middle
term [15]. The cost of algorithm PRSDC is also O(n log?n). The algorithm
EEGCD of Yun [34] for the computation of the GCD of two polynomials
along with the comultiplier polynomials is a special case of PRSDC,
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Algorithm PRSDC has many useful applications. One example is the
computation of the greatest common divisor of two polynomials P and Q.
Our main application results in a fast computational algorithm for entries
of the Rational Interpolation Table and, in particular, the Padé Table. We
state such a result for the Padé table of the power series A(x). Let
m+p=2n and set U =x*"""' and U, =ay + a;x + - - - +a,,x*". By
applying algorithm PRSDC to Uj, and U, we can compute any Padé table
entry (m,p) along the antidiagonal m + p = 2a in time O(n log?n). This
special case of algorithm PRSDC will be referred to as algorithm AD
(Anti-Diagonal).

Our other algorithm, called MD (Main-Diagonal), computes any main-
diagonal entry (n,n) in the Padé table for a normal power series, also in
time O(n log’n). MD was derived from a fast continued fraction algo-
rithm similar to that of Schonhage [29], but we give a more direct
derivation below. Theorem 4, on which algorithm MD is based, may be
regarded as a generalization of some of the well-known identities of
Frobenius [9].

We also present new complexity results for banded Toeplitz systems. Let
T,. be an (n+ 1) X (n + 1} banded Toeplitz matrix whose semiband-
widths are & and ¢, and let w = & + ¢. By applying algorithm PRSDC we
can solve T; .z = h in time O(n log n) + O(w log?w), which is an improve-
ment over the O(n log n) + O(w?) result due to Jain [16]. Morf and
Kailath [17] give an O(n log w) + O(w?) algorithm. Dickinson [6] showed
an O(nw) + O(w?) algorithm. If our full Toeplitz algorithm is used to
modify the Toeplitz inversion step of the Morf and Kailath algorithm, we
easily obtain an O(n log w) + O(w log?w) improvement. However, both
algorithms require nonsingularity of two auxiliary matrices, while their
algorithm imposes additional normality assumptions, With polynomial
multiplication and division algorithms achieving O(n log w) (for degree n
by degree w operations), we can modify our PRSDC and ADT algorithm
to solve Toeplitz systems in O(n log w) + O(w log?w) without any
restrictions. We defer the details and proof of this algorithm to a forthcom-
ing more specialized paper by Gustavson and Yun.

The rest of this paper is divided into eight sections as follows:

2. Padé Approximants

3. The Extended Euclidean Algorithm

4. The Antidiagonal Computation via the Extended Euclidean Algo-
rithm

5. The Main Diagonal Algorithm

6. Fast Solution of Toeplitz Equations

7. Special Cases of Toeplitz Equations
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8. Applications to Shift Register Synthesis and BCH Decoding
9. Summary and Conclusions

The section on Padé approximants presents two basic theorems which
describe the Padé table associated with a power series A(x). Theorem 1 is
due to Frobenius, and we give a new proof which shows that the solution
of a Toeplitz system already appears in this context. Theorem 2 is due to
Gragg [13]; it describes the full structure of the Padé table. However, the
reader who is mainly interested in the Toeplitz problem may omit this
section.

This section on the Extended Euclidean Algorithm covers its algebraic
and computational properties. We also present our new algorithm EMGCD
and include a short description of EMGCD’s enhancements relative to
those of HGCD. Many useful quantities for the Toeplitz and Padé prob-
lems are, in fact, computed as by-products of this process. The major
objective of this section is to establish the fast (i.e., O(n log® n)) computa-
tion of these quantities. We also briefly describe the algorithm PRSDC and
sketch a proof of its computational cost, O(n log®n).

Section 4 shows how the Euclidean algorithm can be used to compute
entries of the Padé table. We prove two fundamental lemmas which
describe exactly how the iterates of the Extended Euclidean Algorithm
compute Padé approximants. These two lemmas imply our Theorem 3,
which states that all entries along an antidiagonal of the Padé table are
computed uniquely by the Extended Euclidean Algorithm. The computa-
tion necessary for the Toeplitz problem, namely, the (n,n) Padé approxi-
mant, can be carried out quickly and directly with the EMGCD algorithm
stepping through the antidiagonal, hence the name algorithm AD. Thus,
the reader merely interested in the Toeplitz computation need only under-
stand the introductory paragraph of this section and the statement of
Theorem 3.

In Section 5 we state and prove Theorem 4, which is the basis for the
main-diagonal algorithm MD. Algorithm MD is, then, extended to a more
general recursive algorithm MD2. We describe algorithms MD and MD2
and sketch a proof of their correctness. Unless the reader is interested in
the details or the underlying techniques of algorithm AD or algonthm
MD, it is only important for him to be convinced of the fact that the (n, n)
Padé approximant can, somehow, be computed rapidly, as its computation
is a key step of our Toeplitz algorithms.

The main section, Section 6, deals with Fast Toeplitz Computation and
it is divided into five subsections:

(a) Application of EEA to the Solution of Toeplitz Systems of Equa-
tion
(b) Solving Tz = b, Given x and y, in the Normal Case
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(c) The Exceptional Case, xo = 0
(d) Solving Tz = b, Given x and y, without Restrictions
(e) Examples of the Computational Process

In (a) we show that the Toeplitz computation is embedded in the extended
Euclidean computation when the latter is applied to the computation of
the (n,n) Padé approximant of the polynomial P(x) = ag; + a,x
+ -+ +a,,x*". The Toeplitz matrix associated with this polynomial is

a ap

Tp lIln

Conversely, for the problem of Toeplitz equations, the given matrix T can
clearly be represented by the polynomial P(x). We show that the (n,n)
Padé approximant contains the solution to the system Tx = e, i.e., the
first column of T, Similarly, the (n, n) Padé approximant associated with
T (the transpose of T') gives the first row of 7~ !, We also prove Theorem
5, which states that det(T") 7 0 if and only if the numerator polynomial of
the (n,n) Padé approximant has full degree n. This theorem is important
in that it readily determines the solvability of Tz = & as our algorithm
computes the (n, n) Padé approximant of P, i.e., U/V. Without damaging
the understanding of our solution process, preofs of Lemma 3 and Theo-
rem 5 can be skipped with the knowledge that det(T') = O if and only if
deg(U) < n. Section (b) describes a new O(n log n) method for solving
Tz = b if one knows x and y, the first column and row of 7. This is done
by making use of a formula originally due to Trench [31]. However, his
computations used this formula in a £(»*) manner. In this regard, it seems
that our O(n log #) method can be used to improve computation with the
Trench formula, hence improving Trench’s algorithm for solving Toeplitz
systems. A similar O(n log n) method was employed by Chin and Steiglitz
[5] for computations with Szegd polynomials. We present Gohberg and
Semencul’s [12] formulation of Trench’s formula, since we found theirs to
be most suitable and directly relevant to our algebraic point of view. In (c)
we discuss the degenerate case x; = Ty' = 0, where the Trench formula
breaks down. However, a companion formulation exists which we show is
always valid when x; = 0 and det(T") # 0. This formula, again attributed
to Gohberg and Semencul, is the discrete analog of the Christoffel—
Darboux formula [18]. The companion formula also allows one to compute
z in time O(n log n). We end (b) with the O(n log?n) algorithm AD that
computes an appropriate x and y to be used with one of these two
formulas whenever det(T) # 0. A summary of (a), (b), and (c) is given by
Theorem 8, which states that the Extended Euclidean Algorithm is always
a basis for solving a Toeplitz system Tz = b. It is only essential to
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understand this theorem and our Trench-type formulations to continue
with our Toeplitz equation solver. In (d) we show that the Trench formula
and the discrete analog of the Christoffel-Darboux formula can be viewed
as one formula. Then we show that the combined formula can be interpre-
ted as polynomial multiplication. Finally we present the O(n log n)
algorithm SOLVE which computes z in four polynomial multiplications of
size n. Polynomial multiplication, like n-point FFT and convolution, can
clearly be done in O(n log n). This subsection ends with our algorithms
ADT and MDT, each consisting of two steps—(1) call AD or MD,
respectively, for finding x and y; and (2) call SOLVE to find the solution z.
It is obvious that these are O(n logZn) algorithms. These algorithms for
solving Toeplitz equations are demonstrated by three examples m (e). The
first example shows the computational steps of algorithm ADT. The
second example illustrates how ADT handles the exceptional case x, = 0.
Algorithm MDT is partially carried out in the last example, by illustrating
algorithm MD.

Section 7, which deals with special cases for Toeplitz equations, is
divided into four subsections:

(a) Iterative Refinement for Toeplitz Systems

(b) Banded Toeplitz Systems

(c) Complexity of the Banded Toeplitz Computation
(d) Theorems for the Banded Case

In subsection (a) we consider iterative refinement for Toeplitz systems. By
exploiting the special nature of Toeplitz systems, we indicate that one can
actually obtain quadratic convergence of the iterative refinement process.
This is an additional efficiency not attainable with the iterative refinement
processes applied to general matrices, which usually converge only linearly.
We note that the famous Hilbert matrix [8, pp. 80-86] of order n H;; =
1/(i +j — 1), where 1 £ i,j < n, is known to be extremely ill-conditioned:
Hilbert matrices are also Hankel matrices. Thus one might expect numeri-
cal difficulties with Toeplitz systems and wish to use iterative refinement.
Subsections (b), (c), and (d) detail the banded Toeplitz problem. All results
of the full matrix case carry over directly to the banded case. However, our
algebraic approach allows us generality by taking full advantage of such
sparsities. We demonstrate this power by considering several special-
purpose approaches and show that they can be covered and improved by
our method.

A short section on the Berlekamp algorithm [4] is included. We define
the key equation of BCH decoding and show how the Extended Euclidean
Algorithm can be used to solve it. We note that the recent books by
McEliece [24] and MacWilliams and Sloane [22] describe the solution to
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the key equation in terms of Euclid’s algorithm. The key equation that the
Berlekamp algorithm solves is a Toeplitz system; the complexity of
Berlekamp’s algorithm is O(n?) [14]. We show that the solution to the key
equation can be found by applying our algorithm AD or algorithm MD,
and hence the complexity of solving the key equation is reduced to O(n
log®n).

We conclude the paper with a short summary, and mention some
problems for future research.

2. PADE APPROXIMANTS

Let A(x) =ag + a;x + a,x* + ... be a power series with a, % 0. A
rational function of the form U(x)/V(x) is an (m, n) Padé approximant to
A(x) if

deg(U') < m, (1)
deg(V) < n, (2)
A(x)V(x) — U(x) = O(x™*+"*1), (3)

This definition is due to Frobenius [9]; see also Padé [26] and Gragg [13].
Equation (3) can be written as a linear system of m + n + | equations in

m + n + 2 unknowns (v, i = 0,...,n, corresponding to ¥(x) = 27_go,x’
and u;, i = 0,...,m, corresponding to U(x) = Z/ u,x")
[ dy ) [ 1 )
dl an *
(05 ]
a. By = | Unm (4)
0
..uﬂ
L ﬂ-!'I‘I+P] am J L n J

where a, =0 if v < 0. System (4) can be rearranged to give the block
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triangular system

T - ] .
[ L™ - A n—1 ﬂ ﬂ o, eiin
L F—— L a,, 0 0 L L
Gm—n m—2 Qm—1 — 1 U | = 7| 9m Yo
2y
0 dg
{] ﬂ - 14 L HD r L Hu A
(3)

The complexity of (5) is associated with solving the first n equations which
are an n X n Toeplitz system. We shall denote this matrix by 4__, formally
Apn = (@p4iy)i jm1s # 2 1. The matrix 4, is of fundamental importance
in the study of Padé approximants. Using (5) we can give a simple proof of
a theorem due to Frobenius [9].

THEOREM 1. There always exist solutions to (1), (2), and (3), or equiva-
lently, to the system of equations (5). Furthermore, the ratio U/V is unigue.

Proof. If det(A4,,,) s 0 then with v, = 1 we may solve (5) to find a
unique solution. Suppose det(A4,,,.) = 0. By setting v, = 0 if necessary we
see that (5) always has solutions. Any solution of (5) with F(x) = O(x*)
has U(x) = O(x*) because of the triangular nature of equations governing
U; thus we can assume that common factors are removed from If and ¥,
and that F(0) = 1. With this assumption U and V are unique (see Gragg
[13, Theorem 1] for details). [J

Another theorem, due to Padé [26] and extended by Gragg [13], is:

THEOREM 2. Let P/Q be a Padé solution of (1), (2), and (3), deg(P) = m
and deg(Q) = n, and let the power series A(x)Q(x) — P(x) begin exactly
with the power x™*"*1* Then the following statements are true.

() I =0
(b) The (u,v) Padé approximant equals P [/ Q if and only if

m<spsm+! and n<v<n+l. (6)

For (p, v) satisfying (6):
() U/V is a (p,v) Padé approximant for A(x) if and only if

U(x) = x™°D(x)P(x), V(x) = x*°D(x)Q(x)
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with A, = max{0,(g — m) + (v — n) — I} and D # 0 of degree at most

= Li/2] — max{|p —m —1i/2]], e = n = 1/2]]} i<
ke min{g — m,» — n} ifl = +co.

(d) o — rank(A4,,) = K,

(e) det(A, ) #0,m<p<m+ |,
det(A,,, )0 n=v=sn+|
det(d,,)=0m<p<m+landn<o<n+l

A proof of this theorem can be found in [13]. In fact, we strongly urge
mterested readers to refer to this excellent survey paper for a standard in
both the structure and the nomenclature of Padé tables. This paper also
contains an example (pp. 11-15), which clearly demonstrates the features
of Padé tables to the extent of establishing a peometric conception. Our
approaches and algorithms, AD and MD specifically, indeed refer to
diagonals of Padé tables and rely on these concepts.

3. THE EXTENDED EUCLIDEAN ALGORITHM

In this section, we present the algebraic and computational properties of
the well-known Extended Euclidean Algorithm. The version of the algo-
rithm, called EMGCD (acronym for Extended Middle GCD), is a key
routine that besides computing GCDs of polynomials yields important
quantities necessary for computing inverses. By characterizing the Padé
and Toeplitz problems as inverses of GCD computations we reduce their
complexities to the GCD problem, namely, O(n log? n). Thus we digress to
present EMGCD as a unifying algebraic concept and approach for in-
verse-type problems, numerical or otherwise.

Given M and P, let

Uﬂ,z M, UI - P,
W, =1, W, =0,

and define

Vier=Uy — QU

V;‘H = P:-'-—-l - QIP}: (3)
W‘H = I"""ri—-l - Q:W:n

¥

where Q. results when the division algorithm is applied to U,_,and U. The
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division algorithm, given 4 and B, finds O and R such that A = BQ + R
with deg( R) < deg(B). The following relations hold for all i > 0:

Wil + ViU =1, ®

GCD(V,, W) = 1. (10)

The series in (8) terminates at i = & when U, =0; ie., when U,
divides U, _,. U, equals GCD(M, P) and W, and V, are unique polynomi-
als, called “co-multipliers,” satisfying W, M + V, P = GCD(M, P), with
deg(W,) < deg(P) and deg(V,) < deg(M).

It turns out that the quotient polynomial in (8) can be found by using
only the higher-order terms of the dividend and divisor polynomials Uj;_,
and U,. This observation and the divide-and-conquer procedure lead to a
fast algorithm for performing the extended Euclidean computation, which
we call EMGCD.

(U, W, V)« EMGCD(U,, U})

. if deg(U,) < 1/2 deg(U,) then [{LT, W, P_’)f—(g“ ; ?)]
else  begin |
2 l&t Ul'; Bux'" + CO"
where m = [ n/2], deg(C,) < m,
and n = deg(Uj)

3. let U, = B, x™ + C;, where deg(C;) < m
4, (U,» W,, V) <~ EMGCIX B,, B;)
D Co
s, (E)*-u, X + (W, V,)( 1)
6. if deg(E) < 7 then [(E, i, F){_[(g), W, F“’.)}
else begin
7. @ «— quotient of D by E
8. Fe D — QF
] k«2m — deg( E)
10. let E = Gox* + H,, where deg(H,) < k
11. let F= G, x* + H,, where deg(H,) < k

12. (U, W,, V) « EMGCD(G,, G,)
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15 A A (c’axu(rﬁ,ﬁ)( °).

end
end

Qur algorithm is an extension and improvement of the HGCD algorithm
described in [1]. The HGCD algorithm computes the matrix

W, v,
(7, 7)
Wier Vi

consisting of successive terms of the comultiplier polynomials. The index j
equals /(n/2), a function we shall define shortly. It follows from Eq. (9)

that
U, L
() =#(e5)
Uis v

Algorithm EMGCD computes the matrix of polynomials

(ﬁ} W, ra)
Ui W Vi)

i . EJ

Our extension of the HGCD algorithm is in the computation of U, U,,.
Qur improvement to the HGCD algorithm results from the fact that
EMGCD’s computation cost is less than HGCD’s computation cost de-
spite the fact that U, and U, are also computed. However, both algo-
rithms run in time O(n log?n). Algorithm HGCD and other related
algorithms in [1] are incorrect in that they sometimes do not return the
proper two iterates in the PRS (Polynomial Remainder Sequence). This is
especially true in the nonnormal case which occurs when some of the
quotient polynomials have degree greater than one.

Moenck [25] gave a fast GCD algorithm predating [1] and was able to
avoid defining the / function. However, his implicit concept of [ is akin to
ours and, like ours, differs from [1]. We define / for any remainder
sequence as follows: for any nonnegative number r < deg(Lf,), /(r) 15 the
unique integer such that deg(Uy,,) = r and deg(Uy,,.,) < r.! The proof
technique of EMGCD is similar to that of HGCD; specifically, it is given
by modifications of Lemmas 8.6 and 8.7 and Theorem 8.17 of [1]. Our
modifications to their statements and our proofs for EMGCD will be given
in a forthcoming paper by Gustavson and Yun.

'Our definition differs from that used in [1] with = r and < r replacing = r and = r.
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The complexity of EMGCD is O(n log® n), and the proof of this result is
similar to proofs given in [1, 25]. The space S(n) needed by EMGCD
satisfies the recurrence relation S(n) < S([n/2]) + O(n), so S(n) =
O(n), i.e., EMGCD only requires linear space.

The EMGCD algorithm can be modified to returm

Mz(bz- W, r»:;-)
/ U Wit Vi

with deg(U}) = r and deg(l}..,) < r, where n/2 < r < n= deg(l}). This
modification does not increase the time required by algorithm EMGCD
because the work to be done decreases as r increases from n/2 to n. We
have produced a fast routine, called PRSDCI1 (Polynomial Remainder
Sequence Divide and Conquer 1), which returns the matrix M,, where
j=1(r). Now, if 0 < r < n/2 we can apply PRSDCI several times with
r=n/2 until the input polynomials U, U,,, satisfy the conditions for
PRSDCI. At most [log n] calls to PRSDCI will be needed and since each
successive call has its problem size halved, the total complexity of all these
computations is bounded by O(n log2n). We have also produced algo-
rithm PRSDC, which returns M, for j = {() and 0 £ r < n by executing
PRSDC]1 several times if necessary. We note that PRSDCI reduces to
EMGCD when r = n/2. Using PRSDC we can compute any term U, V,, W,
in the extended Euclidean computation with cost bounded by O(n log®n)
given U and U,.

4. THE ANTIDIAGONAL COMPUTATION YiaA THE EXTENDED
EUCLIDEAN ALGORITHM

Many algorithms, including MD, that compute entries of the Padeé table
start in the upper left corner of the table and proceed to compute along the
main diagonal; ie., start at the northwest cormner and proceed in the
southeast direction. In contrast, our algorithm AD starts at the element
(m + n,0) along the west border and proceeds in a northeast direction
along the antidiagonal defined by the straight line x +y = m + n. This
unnatural starting place and direction is probably the reason why the
connection between the Euclidean computation and Padé approximation
has gone virtually unnoticed until recently. Lemmas 1 and 2 and Theorem
3 below will show the intimate connection between Padé approximations
along antidiagonal directions and extended Euclidean computations. It
turns out that our algorithms ADT and MDT for solving Toeplitz equa-
tions proceed by computing the (n, n) Padé approximant.

Let M = x™*"*! and P = Z"*a_x°, which is the truncation of a power
series A (ie., P = A mod M). Now apply the extended Euclidean compu-
tation to M and P.
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LeEMMA 1. Each step of the extended Euclidean computation gives rise lo a
unique entry (in lowest terms) of the Padé table.

Proof. Let p = deg(U)) =m +n+ 1 — 2. deg(Q,) and v = deg(V))
= Ji_ldeg(Q,) so that u+ v=m+n+ 1 —deg(Q,). It follows from
Eq. (9) that PV, — U, = O(x**°*™"), 1 2 0. Thus AV, - U =
O(x**°*1*1) since A = P mod M and so U/V; is a (g, v) Padé approxi-
mant. Let (i, ) be identified with the (m, n) of Eq. (5) and apply Theorem
1 to this pair (g, v). The unique solution guaranteed in Theorem 1 is

obtained from U, and V; by removing their GCD. [J

LEMMA 2. The term U,/ V, of the extended Euclidean computation gives
rise to deg(Q,) equal entries of the Padé table along the (m + n)th antidiago-
nal.

Proof. The proof of Lemma 2 reduces to showing how the term U,/ V,
fits the general form of a Padé entry as described in Theorem 2. First we
show that GCD(U,, ¥;) = x*. Suppose that GCD(U,, V}) = G(x). Then
G(x) divides W, M. Also, G(x) is relatively prime to W;, for GCD(V;, W)
= 1. So G(x) divides M or G(x) = x* for some A > 0. Now we have two
cases to consider. Suppose A > 0. Then PV, — U, = WM and W(0) # 0.
Hence AV, — U, is a power series whose first nonzero term starts with
x"+*m+1  Now the unique reduced form of U/V, is U =
x ML /(xTAVN0), V7 = x"MW/(xTV)(0), where deg(U) = p and
deg(V) = v. Since deg(L)) = p — A, deg(V)=v—Ap+v=m+n+
1 — deg(Q,), and the / as defined in Theorem 2, is equal to deg(Q;) — 1 +
A. Hence a Padé block of size / + 1 by 7 + 1 exists with upper left corner
at (g — A, v — A) (see Fig. A). Furthermore, the (p + v + deg(Q;) — )th
antidiagonal intersects this block at deg((Q;) lattice points.

Now consider the case A = 0. The entry U/V, is in lowest terms and the
! of Theorem 2 is greater than or equal to deg(@,) — 1, as we know from
(9) that PV, — U, = O(x™*"*') and W(0) might equal 0. It follows that
PV, — U, has an / = deg(Q;) — |. Thus the (i, v)th Padé approximant
resides in the upper left-hand corner of a block of size / + 1 by / + 1 and
the (m + n)th antidiagonal intersects this block at deg(Q,) entries (see Fig.
B, where a equals deg((,)). By Theorem 2 all entries in any Padé block are
equal (to the upper left-hand corner entry). Hence in both cases U/ v
gives rise to deg(Q;) equal entries of a Padé block. [J

F-h r+f

. (p.r+id)d

e+

(u+f.r}

FIGURE A
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r (p.r+a} ref

(p+a,r) .

e+

Figure B

Now I¥_.deg(Q,) + m + n + 1 so the terms U;/¥,, i = L,...,k, from
the extended Euclidean computation produce all entries of the Padé Table
along the (m + n)th antidiagonal. This remark together with Lemmas 1
and 2 establishes the following:

THEOREM 3. AIl entries along the (m + n)th antidiagonal of the Padé
table for A(x) are computed uniquely by the Extended Euclidean Algorithm.
By using algorithm PRSDC we can compule any entry in time O((n +
m)log*(m + n)).

We suggest that the reader work out Gragg's example [13] Alx)=1+x
+ x? + 2x* + 3x* +...in the Euclidean context, by computing all the
Padé approximants along the sixth antidiagonal; ie., (6,0), (5, 1),
..-,(1,5),(0,6) Padé table entries. This is done by applying the Extended
Euclidean Algorithm to Up=x" and Uy =1+ x+ x4 223+ 3x +
4x® + 5x% Note that this computation is partly carried out in Section 6d.
However, by doing the entire computation, the reader will sec all the
structure and generality of this section.

5. Tue Mamw DraGgONAL ALGORITHM

It is convenient to define some notation. The {m, n)} Padé approximant
to a power series A is denoted by 9, ,(4). (By convention, P_Lo0=0
and 9, _,(0) = co, where the polynomial co is the inverse of the zero
polynomial.) ord(4) is the index of the first nonzero coefficient of 4, i.e,
ord(A) = min{i: a; # 0}. (By convention ord(0) = o.) If A is a poly-
nomial (or a power series with only a finite number of nonzero terms),
deg(A) = max{i:a; # 0} denotes the degree of 4. (By convention deg(0)
= —00.)

A power series A is normal if all its Padé approximants are distinct, i.e.,
F, (A =9, (A) if and only if i =m and j = n. Several necessary and
sufficient conditions for normality are given in Gragg [13]. (Some follow
easily from Theorem 2.}

For computational purposes we are interested in finite segments of
power series or Padé tables. If A(x) = ag + a;x + ..., then A(x)mod x”
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denotes the polynomial @, + a,x + + - - +a,_,x"" 1. We say that a power
series or polynomial A is (M, N)-normal if its Padé approximants 9, ,(4)
are distinct for 0 </ < M and 0 < j £ N. (This differs from Gragg’s
definition.)

We now present an algorithm MD which computes entries along the
main diagonal of the Padé table for a normal power series 4. The
algorithm is based on the following theorem.

THEOREM 4. Let C(x) and D(x) be power series with ord(C) = ord( D)
={). Let k,m,n,s be integers, m20, n>0, k25, s=0or 1. Let
U,V, (i=1,...,4) be polynomials such that ord(U}) = ord(V}) = 0 (i =
1,2,3),

u/vy=9%, .-(C/D),
UZ.‘" Vz = @mn(cfﬂ)t
E = (UID —_ Vlf.’.')fx"”",
F = (U,D — V,C)/x™++],
U/ Vy = @k,k-a(Ea’rFL
U4 = U-:_Ua - xUl Vj,
Finally, if C/D is (k + m + | — 5, max(k, 1) + n)-normal, then U,/ V, =
@k+m+1-:.k+n(CKD] and Ord(”d) = Ol'd{]?} = 0.

Proof. Since U\/V, =9, ,_(C/D)and U,/V, =%, (C/D), Eand F
are power series in x. By the normality condition, ord( E) = ord( F) = 0.
We also have

U‘:ﬂ - ch = {UzD - VzC]UJ - I(Ulﬂ - F]C} V3
= xm+n+1{};‘u} — EV_—;) —_ D(xlk+m+n+2—_r}’
but deg(l}) < maxtk + m,k+m+ 1 —-s)=k+ m+1—5 and
deg(V,) < max(k + n,k + n — 5s) =k + n. Finally, U, and ¥, are not
both zero, for UV, — VU, = (LLV, — U W)U, # 0 by the normality con-
dition. Thus the result follows. ]

Algorithms MD and MD2

The “main diagonal” algorithm MD returns the (n,n) Padé approxi-
mant to an (n,n)-normal power series (or polynomial of degree 2n) A4,
when given the parameters n and A. It simply invokes another recursive
algorithm MD2 and returns the desired outputs:

(U, V) <MD(n,4): (U, V,U,V)eMD2(n,0,4,1).
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The recursive algorithm MD2(N, S, C, D) returns (U, ¥, Uy, #3) such
that Uy/Vy = By, o w(C/D) and U/ ¥, = Py, 5 y(C/D), where N 2
0,S=0or 1, C and D are power series with ord{C) = ord(D) = 0, and
C/D is (N + 5, N)-normal:

Uy, Vi, Uy, V) « MD2(N, S, C, D)

l. if N+ S < 0 then (U, ¥, Uy, V) « (0, 1,cq. d,y) else

2. [k(—!_NfEJ,H!—N—k,m{—-R‘I"S-l

3. (VLU ) e

MD2(m, 1 — 8, D mod x¥*$*!, C mod xV*5+1)

4, (E,F) e ((U\D — V,C)/x™*" mod xV*,

([JED — P;C}!xm+n+1 mod xh’-l-l}
5. (Vi Uy, Vs, Up) «— MD2(,0, F, E)
6. (Up Ve Uy Vo) « (LU — xUW;) mod x™*9,
(VU — xVV,) mod xV*E,
(LT, — xU ;) mod xV+5+1,
(V,T;, — xV,7;) mod x¥*+1))

Correciness of Algorithm MD2

The proof of correctness of algerithm MD?2 is by induction on [ = 2%
+ §. Clearly the algerithm is comrect if 7=0, for then N=8=0, 0=
P_, o(C/ D), and ¢o/dy = Fp o(C/ D). Hence, suppose that J > 0 and that
the algorithm is correct if 2N + § < I. The inductive hypothesis is appli-
cable to the recursive calls of MD2, so

Ui/ Vy = B aoa(C/D),

bh/V,=9, .(C/D),

Us/ Vs =B, o (E/F),

Esfﬁ = P (E/F),
where k, m, and n are as at step 2 of the algorithm. Thus, by Theorem 4
with s = 1, U/Vy = PprianlC/D) = Fyis w(C/D). Also, by

Theorem 4 with s =0, Uy/Vy= PhumerssnlC/D) = Fpys.n(C/D).
Thus, the result follows by induction on 1.

Complexity of Algorithms MD and MD2

Let T{N) be the time required by algorithm MD2(¥, . ..). From the
recursive definition of MD2 it is clear that T(N) £ T([N/2])



FAST SOLUTION OF TOEPLITZ SYSTEMS 275

+ T(| N/2]) + O(N log N), where the term O(N log N) accouats for the
computation in steps 4 and ¢ (assuming the FFT is used for polynomial
multiplication). Thus T(N) = O(N log? N). Clearly the time required by
algorithm MD(n, A) is T(n) = O(n log® n), the same as that required by
the antidiagonal algorithm.

The space S(N) required by MD2(¥, ...) satisfies the recurrence rela-
tion S(N) £ S([ N/2]) + O(N), so S(N) = O(N). Thus, MD(n, 4) re-
quires space O(n), which is the same as that required by the antidiagonal
algorithm.

Algorithms MD2 and MD were originally derived by a recursive compu-
tation of the continued fraction for a normal power series, using a method
similar to that of Schénhage [29]). Theorem 4 followed from the relation-
ship between truncated continued fractions and Padé approximants. We
prefer to present a direct proof of Theorem 4, avoiding the use of
continued fractions, because the direct proof is simpler and generalizes
more easily to power series over a noncommutative field. This generali-
zation has applications to the solution of block Toeplitz systems.

The normality assumption of Theorem 4 may be weakened, but to
remove it entirely requires substantial complications in the algorithm and
proof. Since we describe the antidiagonal algorithm in full generality
(without any normality assumption), we prefer to restrict our description of
the main-diagonal algorithm to the (n, n)-normal case.

6. FasT SoLution oF TorepLitz EQUATIONS

(a) Application of EEA to the Solution of Toeplitz Sysiems of Equations

Recall the extended GCD computation defined earlier; i.e., Uj = x*"*'
and U, = gy + a,x + - - - +a,,x*". Let (u,v,w) denote the polynomials
(U, V,, W;), where j = I(n + 1) + 1. Thus deg(¥;_,) = n + 1 and deg(l))
< n+ 1 and (u, v, w) is a solution to the system

ag Uy

an ﬂlIl vl:l u,,
' I 0 (11)
d,, a, || v, 0
. = Wy
'aln - wn—l
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Equation (11) is a statement of Eq. (9) in its component form. The
middle n + 1 equations in (11) are

a, ay ﬂl:l un
0

= , (12)
30 a,|| v, 0

which corresponds precisely to the Toeplitz matrix, T, of interest. In fact, it
is already clear that the vector, v, corresponding to the polynomial V,
solves the Toeplitz system of equations Tv = u,e,.

The polynomials U, and ¥; also compute the (n, n) Padé approximant, as
the first 27 + 1 equations in (11) are the same equations as (4) with m = n.
The following lemma and theorem state when the matrix T is nonsingular.
We first give some nomenclature to aid the understanding of their proofs.
Recall that a Padé table for a power series is an infinite two-dimensional
array of rational functions, which we called R, .. A Padé block is a square
subarray of the Padé table consisting of (/ + 1)* entries of equivalent
rational functions (see Fig. A and B of Section 4). The perimeter of a Padé
block has four borders, which we label north, east, south, and west. Also
recall doubly indexed matrices of the form A, = (a4, V- "2 1,
corresponding to any infinite power series. These matrices, having funda-
mental importance to the study of the Padé tables, are clearly square
Toeplitz matrices.

LemMa 3. det T 5= 0 if and only if the (n, n) Padé approximant lies either
on the north or east border of its Padé block.

Proof. First, note that T'= A, .. Let (i,f) be any entry of a Pade
block. Theorem 2, part (e), says that det(4,;) + 0 if and only if (i,/)
belongs to either the north or west border of its Padé block. If the (n,n)
element of the Padé table does not lie on either the north or east border
then the (n,n + 1) element will also lie in the Padé block but not on the
north or west border; hence det(T) = 0. If the (n, n) ¢lement resides on
the east border, then the (n,n + 1) element resides on the west border of
an adjacent block; hence det(T') 5= 0. If the (n, n) element resides only on
the north border, then the (n,n + 1) clement also resides on the north
border; hence det T' 7 0. [J

We now use Lemma 3 to prove the following Theorem 3.
Tueorem 5. det(T') = 0 if and only if u, = lc(U)) = 0.

Proof By Lemma 3 it suffices to show that u, = 0 if and only if the
(n,n) element of the Padé table lies either on the north or east border of its
Padé block. The EMGCD algorithm computes (U;_y, W;_,, ¥;_,) and
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U, W, V}), where j = I(n + 1) + 1. Hence deg(l_, 2 n + 1 and deg(U})
<'n + 1. It follows from Lemma 2 that (U, ¥;) computes deg(Q;) equal
entries of a Padé block with n — deg(Q;) < deg(l;)} < n. We use the same
notation and distinguish the same two cases as those in Lemma 2. Thus
p+v=2n+1—deg(Q;), p = deg(l)), and v = deg(V}). Suppose = n
—i, 0 <7 <deg(Q,;) Then v =n + i — deg(Q;) + 1, and u, = 0 if and
only if i = 0.

Case 1. A =0. We know / = deg(Q;) — 1. Also, (p,v) defines the
northwest corner of the / + 1 by / + 1 Padé block (see Fig. B of Section 4).
Hence (n,n) = (p + i,v — i + deg(Q;) — 1) and the (n, n) element lies on
the north border if and only if i # 0.

Case 2. A > 0. We know / = deg(Q;) — 1 + A and that (¢, v) define
the northwest element of the / + 1 by [/ + 1 Padé block (see Fig. A of
Section 4). It follows that (n,n) = (' + A +i,v" + ! — i), and the (n,n)
elernent lies on the east border if and only if i = 0. [J

Theorem 5 states a necessary and sufficient condition on the singularity
of T. Thus, by using algorithm EMGCD, we can, in O(n log?n) opera-
tions, either find the first column of 7! or state that T is singular.

(b) Solving Tz = b, Given x and y, in the Normal Case

We now describe a new {n log n) method for solving 7z = b if one
knows x and y, the first column and row of T'. This is done by making
use of a formula originally due to Trench [31]. However, both Trench’s
algorithm and Zohar’s analysis [35] used the formula in a2 @(n*) manner.
We present Gohberg and Semencul’s [10, 12] formulation of Trench’s
formula (also noted by Kailath ef al. [18]), since we found theirs to be most
suitable and directly relevant to our algebraic point of view.

THeoreM 6 (Gohberg and Semencul). If the Toeplitz matrix T is such
that each of the systems of equations Tx = ey, Ty" = e, is solvable where
¥" = (Pys--:¥o), and the condition xy = y, 7 O is fulfilled, then the matrix T
is invertible, and its inverse S is formed according to the formula

g 0 - O0][¥ N D
X o -l - - .
S_.xu . oll° Y1
X, Xy Xg)| 0 0 ¥
0 01{0 x, Xy
Ya - : il . . .

o ISP | DR | S E)
Y1 Fn ﬂ_‘ 0 (1]
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The importance of Theorem 6 is that the inverse S is expressed as a
linear combination of products of Toeplitz matrices. Hence to solve
Tz = b we can form z = §b by formula (13) and do each of four matrix
vector multiplications by the FFT. This follows since the matrices in Eq.
(13) are all Toeplitz. the cost of computing S& using the FFT by Eq. (13)
given x and y is O(n log n).

Now if we consider the transpose of T or U; = apgx?" + - - - +a,, we
can find the first row of T"', also in O(n log?n). Hence, by applying
algoritbm EMGCD twice and by using Eq. (13), we have a means of
solving Tz = b in O(n log?n). We observe that (13) is not valid when
xo 7 0. However, Trench’s algorithm requires a normality condition that
all principal minors of T be nonzero. This condition implies x; = 0, since
xp is the ratio of two principal minors. Our next objective will be to show
that we can remove such a normality condition for our Toeplitz algorithm
ADT.

(¢) The Exceptional Case, x4 =0

When x, = Tpy' = 0 the convolutional formula (13) no longer applies.
The simple example

0 0 e
T= c D 0 ¥
d ¢ 0
where
0 ¢! 0
T''=|0 —d 2 ¢
a”! 0 0

shows that 77! cannot be expressed in terms of its first row and column.
Hence to solve Tz = b when x, = 0 we must proceed differently. Now
Gohberg and Semencul state another theorem, which gives a convolutional
-type formula for the inverse of an n X n Toeplitz matrix in terms of the
first row and column of the inverse of a bordered (n + 1) X (n + 1)
Toeplitz matrix. Kailath er al. [18] show formula (I4) to be the discrete
analog of the Christoffel- Darboux formula.

TueoreM 7 (Gohberg and Semencul). If solutions X = (Xg,...,%,4)
and ¥* = (F,p1s+ -2 Vo) Of the system TR = ey and Ty" = e, | exist, where

a, a4 d4d_,
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and the condition Xy = y, + 0 is fulfilled, then the matrix T is invertible, and
its inverse is

o

‘EU 0 0 .JFD- .}‘;I .ﬁl
soLlls - - ]lo _
Xn . . . 0 . . . 7
f" " f: iﬂ ﬂ - ﬂ _]Fn

.H'I-I-l ﬂ u ':Eﬂ-l-l. x"n il

_ P . - . 0 . - . ) (14)
- - - {0 . . . fﬂ
| J'-"l * Y .]:':-g+1 0 ) 0 ‘En+l

We shall use the matrix T:B (ie., set a,, +1 = =f)as a rcpmsentatwe of
matrix 7. Since u, 7 0 we know that %, = Tp' = dct(T)jdct@“B) is non-
zero, We now shuw that we always can choose f so that det(7;) # 0 and
so Theorem 7 above applies.

Let
=(T <)=(Z o) 9
B r'oa, PR N AN I
Whﬁl’ﬂ r: = (ﬂia?_n:** 'jaﬂ-+|}l cr = (u'.l a{]! . 'rdn—[): f{ﬂ) = a.u - rrs:l and
s = T~ 'c. This block factorization is permissible since det(7") % 0 and it
follows that det(7;) = f det(T'). Let r* = r{ + r] where r{ = Bef and r; =
(0,85,,...,a,,,)- Substitute r and s into the expression for f and get
f(By=a, — ;T 'c — B(efT 'c). We now prove
LemMa 4. If y, = xo and det(T) 7= 0 then e T 'c # 0.
Proof. y'=elT!is the first row of T~ '. The matrix 7' is persym-
metric; hence Ty* = e,. Now suppose e{T'c = 0, We shall show det(T")

= 0. The relations Ty = ¢,, ¥, = 0, and {7 '¢ = 0 can be combined to
give the equations

Gn-1 4p
a, a K {'_I
Ganay 7 Gy || N

and y # 0. This equation says that a nonzero combination of the last
columns of T is equal to the zero vector; and hence det(T) = 0. [

Lemma 4 establishes that f(8) is indeed a linear function in 8 and hence
vanishes for exactly one value 8. This fact allows us to establish an O(n
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log2n) algorithm to solve Tz = & when Xg = Too! = 0, as follows. Suppose
xp = 0. Then with U = x*"*%, U; = gx*"*? + .-« +a_,B=La_, =,
use algorithm EMGCD to find U,_, and U so that deg(U;_;) =2 n + 2,
deg(U ) < n + 2. Suppose deg(U;) = n + 1. We know, by Theorem 5, that
det(T) # 0, and we can apply Theorem 7. If deg(l;) < n + 1 then, by
Lemma 4, 8= 8, =1 is the only value for which det{T} = (). Hence,
change the value of 8 in U, to equal —1 and again use algonti:m EMGCD
to compute new U,_; and U, so that deg(U_,) = n + 2, deg(U)) <n + 2.
Now, by Lemma 4, deg(l)) =n + 1; i.e, we must have det(7y) # 0.
Therefore we can apply Theorem 7. We can now state using Theorem 6
and formula (13) or Theorem 7 and formula (14) the following

THeROREM 8. Let the upper right and lower left elements of a Toeplit:z
matrix T be nonzero. Then the extended Euclidean algorithm can be used as
the basis for selving the associated Toeplitz system Tz = b.

We summarize the last three sections with the O(n log? n) algorithm AD
to compute vectors x and y with x, =y, ¥ 0. It follows that either
Theorem 6 or Theorem 7 can be applied, and so Tz = b can be obtained
from x and y by (13) or (14) in time O(n log n). Note that when Theorem 6
holds we append 0 to x and y (see the next subsection for an explanation).
Algorithm AD has input parameters » and a = (a4, 4,,...,4,,), Which
fully describes the Toeplitz matrix T. One output parameter is the Boolean
variable s and s = 1 if and only if det(T") # 0. The other output parame-
ters are the vectors x = (Xg,..., Xy Xpy1)' 804 ¥ = (¥g,.. o Vpo¥ne 1) and
these have meaning only if s = 1.

AD(n,a:x,y,5)
1. [;5-:—:1"“, Ue—ag+at+--- +a2“r2",s«t—l
2, ( & " Vi )PEMG‘CD(LE.U[)
D}H w}ﬂ I{F+]

3. If (deg(U}4,) < n) then {5 < 0 comment “T is singular”}
4. else {If ¥,..(0) 7 O then

5. (x 1Y) a1, 0)

6. U (—f2#+1 Ul(—“vﬂi" +a1u_lf+"" +ﬂu!z",

7 (t{, i pj) EMGCD(Uj, U,)

. ~— ’
Ui Wor Vi o

8. y *—ﬂC(Lfm)' lP}H: ”})

9, else  [Uy« 1243,

Ul{_ l + dur + .. +azﬂrzﬂ+i + ;2!1""2
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10. ( Y " Y )FEMGCD(U Uy)
Uor Wit Vi o

11. If (deg(U;4,) = n + 1) then

12. {x‘_lc({,"E+l)F]Fff+l

13. U « 12743,

Ul *—I + glﬂt + - +ﬂuf2"+l + f1"+2

u W
14. (f-{;-.-: W, I{F‘H)«—EI'Iu-[G{'.ID({,:F,:,, U,
15. Y« lc(t'ﬂ'+i}_llj+l}
16. else (U, e 12"%3,
Uy 1 +agt +-+ +a, 12"+ — ¢2n+2
17, ( % WY ]{—EMGCD{D{,, U,)
L’}H w_:r-u-l i':fﬂ
18. xele(U, )" Wiy,
19. Uy« t37+3,
Uy+——-1+ Ayt + v +ﬂ-u£1n+1 4 pin+2
20. ( b WY )x—EMGCD(Un, U,)
Ir"':r‘+l W}ﬂ i’:rﬂ
21. y=lc(Uy )" Wi} )

Statements 4 to 8 compute x and y in the normal case. Statements 9
through 21 handle the exceptional case. The cases 8, =1 and —1 are
covered by statements 9 through 15 and statements 16 through 21, respec-
tively.

(d) Solving Tz = b, Given x and y, without Restrictions

We develop in this section a polynomial Z(r) = Z_,z,' whose coeffi-
cients z = (zy, ..., z, ), representing the vector z, are the solution to Tz = .
We show that the cost of finding Z(¢) can be accomplished by an
algorithm, which we call SOLVE, in four multiplications and one addition
of polynomials of degree n. The inputs to algorithm SOLVE are the
coefficients of the polynomials X(1) = 27 )x,¢', ¥(¢) = Zr*lys, and B(r)
= Z.ob,t". The coefficients of ¥(¢) and X() represent the first row and
column of T~'or 7~ 'and the coefficients of B(¢) represent the right-hand-
side vector b.

Theorems 6 and 8 gave two formulas, (13) and (14), that expressed
8§ = T"! in terms of the first row and column of the matrices T~ ' and
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71, respectively. Suppose we set X, = §,,, = 0 in (14); then formula
(14) is the same as formula (13). This means that formula (14) is a general
expression for S if we agree to extend x and y in (13) by appending
Xp31 = Vui1 = 0 to them.

The use of formula (14) as 7' to compute the solution vector z = T~ 'b
involves four multiplications of Toeplitz matrices and vectors. We em-
phasize the importance of the matrices being Toeplitz for the following
reasons. First, these multiplications can be, and often are, viewed as vector
convolutions. Additionally, we can consider both types of operations as
polynomial multiplications and, thereby, present the solution process from
a consistent algebraic point of view. The close relationship of vector
convolution and polynomial multiplication is probably most evident. How-
ever, it is the Toeplitz structure of these matrices that allows the problem
to be viewed in several ways and to be susceptible to solution methods
from all of these disciplines.

Now we show that formula (14) can be viewed as polynomial multipli-
cation and addition. We need to introduce the concept of the reverse
polynomial. Let P(t) = 27.,p,¢', whose formal degree is n. The reverse
polynomial, P*(¢), associated with P(), is defined to be the polynomial
3 oP._it' Consider the computation

€y Yo i 0 (b
— u i )
: ¥
c, 0 + 0 y 1|5,

Let O(f) = (Y()B'(¢)) modt"*' where Q(¢) = 5/ ,q;t'. An elementary
computation shows that the coefficients of Q'(¢) correspond precisely to
the desired c¢,’s. Similar computations can be done for the other three
matrix—vector multiplications. We now present algorithm SOLVE, which
will establish our claim that Z(¢) can be obtained in four polynomial
multiplications and one addition.

SOLVE(x,y,b.:2)

LX()exg+x 8+ 4x, "
Y(t)—yo +yt + * 4Puayt™H!
B(t)eby+ byt +--- +b,1"

2. P(1) (X (OHB())ymod "!
Q(t) «— (Y(£)B*(¢)) mod ¢"*!

3. Z(1) « (1/ XX X()Q) — Y(1)P'(1))mod ¢**!
ze(Zp2)y...22,) Of Z(¥)

We complete this section with some remarks on the complexity of
algorithmm SOLVE, The five reverse operations and one polynomial addi-
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tion in steps 2 and 3 have a complexity O(n). The four polynomial
multiplications in steps 2 and 3 can be done¢ in O(n log n) if the FFT or
convolution method is used, or in @(n?) if the ordinary inner product
method is used.

We can now state our algorithms, ADT and MDT, for solving Toeplitz
systems of equations. Basically, these are two-step algorithms: 1. Find the
first column, x, and row, y, of T~ by calling algorithms AD and MD,
respectively. 2. Apply our SOLVE algorithm for finding z in terms of x, y,
and b.

Algorithm ADT(n,a,b:5,z2) Algorithrn MDT(n,a,b: z)

1.call AD(n,a:x,y,5) la(U, ¥y« MD(n,a);
x « (V/1U), 0)

1b(U,¥V)eMD(n,a");
y <« (V/I(U), 0

2. if s then call SOLVE(x,y,b:2) 2. call SOLVE(x,y,b:2)

The computational cost for algorithm ADT or MDT is clearly dominated
by that of step 1, i.e., O(n log?n). The second step costs only O(n log n),
which gives the necessary advantage for the enhancement by iterative
refinement (described in Section 7a) without increasing the complexity.

(e} Examples of the Computational Process

The examples of this section were computed using floating-point arith-
metic. However, for clarity we have converted the floating-point numbers
to their exact rational values. Also, ¢ will be used as the imdeterminate of
all polynomials because x will denote the first column of T~.

Let

2 01 1 1 5
13 2 1 1 _ |3

T=14 3 2 1 and b= .1
5 4 3 2 14

T is an (n+ 1} X (n + 1) Toeplitz matrix with n = 3. Thus the input
polynomials to EMGCD are U, = ¢7 and U= 51+ 45+ 3+ 27 4+ 12
+ ¢ + 1. The output of EMGCD is the matrix M, where j = /(4) = 2. The
elements of M, are the polynomials

Uy=(4—1— 12+ 305+ 2% + ) /25,
U, = 25(1 — ¢t — £%),

v, = (4 — 5¢)/25,

V, = 25(1 — 2t + 12),

W, =1,

W, = 25(6 — 5t).
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Now u, = Ie(U},|) = 25, so, by Theorem 5, det(7") = 0. Also, x = u]'v =
(l —2,1,0). To find y, we form the transpose polynomial Uf = ¢5 +15 4
t*+ 26 + 3¢* + 4¢ + 5 and apply EMGCD to U}, and U, = Uy. For this
U}, and U, we shall trace the execution flow of EMGCD.
Since deg(U) = 6 > 7/2 = n/2 we execute the first else clause: At lines

2 and 3 we split U}, and U} as follows:

m =4,

Bu = IJ,

Bi=r+1+1,

Cﬂ. = ﬂ,

C, =203+ 32 + 4t + 5.

We now suspend execution of EMGCD to recursivcly compute
(U, W, V) = EMGCD (U, Uy) where U, = By and U, =

Since deg(U)) = 2 > 3/2 = n/2 we execute the first else clause and split
the new Uj, and U;:

m=2,
By =1,
B =1,
Cy=0,
C,=1t+1

Again we suspend execution of EMGCD to compute (U, ¥, ¥,) =
EMGCD(U,, U;), where U, = B, and U, = B,.
Now deg(l}) = 0 < 1/2 = n/2 so EMGCD returns at line 1

= = = 1 0
(o #,, V‘)m(: 0 1)’

which is the result of line 4 of the last suspended execution of EMGCD. At
line 5 we compute

(2) =0+ (5 &) -(,.7. )

Since, at line 6, deg(E£) = 2 > 3/2, the else clause is executed:

@=1t-1,
F=1
k=2,
Gy=1,
G, =0,
Hy=1+1
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We suspend execution at line 2 to compute (7, Wz, V) =
EMGCD(G,, G)). The result
Gg 1 0O
G, 0 1

is returned as the condition at line 1 is satisfied. The two computations at
line 13 yield

(r2+f+i 0 1)
1 1 1 —¢)

which is the result of line 4 of the first call to EMGCD. At line 5 we

compute
D +r+1y, 0 1 Co
= * +
E 1 1 1-1Jlc

O+ P+ 428 +32 441+ 5
B =P - — 145

and at line 6 the condition is false. Thus we compute for lines 7 to 11 the
results

Q= -7
F=0+8%+41+5,
k = a,

Gu= _1,

G, =0,
Hy=—1*— £~ 145,
H, = F,

and at line 12 we suspend execution to compute EMGCD (G, G,). The

result
Gg I 0
G, 0 1

is returned as the condition of line 1 is true. On return at line 13 we

e -
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and

T 1 00 1}\/0 1 I I —1
mo=(o 0 A0 D)= )
( ) o 1/\1 21 11—+ 2 1+2-0
which is the final resuit. The value j = /{(4) = 2. We can compute j by
inserting the statement j «—j + 1 after line 8. The variable j is a global

variable and should be initialized to zero before calling EMGCD. Thus
EMGCD computes

U=5—t—1*—p-1y¢*

Uy=5+4r+ 82+ 1,

¥

h=1-1,
V,=1+1*— 1,
w,=1,

W, = (2,

Now y = u"'o = (1,0, 1, —1) and we are ready to call SOLVE. First we
must append 0 to x and y as they are to be considered polynomials of
formal degree n + 1. At Step 1 of SOLVE we compute

X()=1-2t+ 2+ 02 + 045,
Y =1+0+272—-7+0,
B(f) =5+ Tt + 102 + 1412,

At Step 2 we form the polynormials
BT = 14 + 102 + 71 + 5¢°,
X mod t* = 12 — 273
and compute
P(1) = 141> — 187,
o) = 14 + 107 + 212 + £,
At Step 3 we form the polynomials

Yi(¢ymod t* = —t + 13,
Pi(1) = —18 + 144,
Qf(¢) = 1 + 21z + 1012 + 14¢°,
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and compute the products
X(D)O(t)mod i* =1 + 19 — 3142 + 1513,
Y*()P(t)mod r¥ = 18 — 3212 + 1473,

Now Z() =1+ ¢+ £+ Pand z = (1, 1, 1, 1) is the solution to Tz = b.

The second example illustrates the exceptional case. We will apply the
algorithm following Theorem 8.

Let
o 0 2 2
T=11 0 0 and b=11].

4 1 0 5
Then at line 1, n=2 and Uy = ¢, U, =2+ £* + 41, At line 2, apply
EMGCD to U; and U, and it returns j = /(3) = 2 and the matrix M,
whose elements are

U, = 1/16(2 - 8¢ + 1),

U, = 3273,

v, = 1/16(1 — 41),
P, = 1642,

W,=1,

W, = —16(1 + 41).

Since Ie(lh) = 1/16 = 0 we know by Theorem 5 that det(T) s 0. Hence
the condition at line 3 is false and we execute the else clause at line 4.
However, F;(0) = 0; hence x, = (. The condition at line 4 is false and we
execute the else clause at line 9. Thus we consider

T=

B OO

2 1
0 2
0 0
1 0
by setting Up =+ and U, =1+ 27+ t* + 47° + (5. We again apply
EMGCD at line 10. It returns j = /{(4) = 3 and the matrix M

Uy =(1—2t+ 72+ 30 + ¢4) /225,

U, = 225(2 — 4¢ + 142 + 59¢3),

Vy = (1 —4¢ + 15¢%) /225,

V, = 225(2 — 8¢ + 30¢* — %),

W, = — (56 + 151)/225,

W, = 225(— 111 — 26¢ + 1*).
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Since leo{l},) = 13275 = 0 we know det(7') = 0. This means the condition
at line 11 is true and we execute the then clause. Also, as must be the case,
V,0) = 450 £ 0 so x, #* 0. Now, at line 12, x = u, ly =
1/59(2, —8,30, — 1) is the first column of 7~ '. To find the first row of
T—'weset, atline 13, U, = tTand U, = 1 + 4t + % + 2¢° + 15, At line 14
we again apply EMGCD. It returns j = /(4) = 3 and M}

Uy = (2 + 4% + 1) /4,

U, =2+ T + 14r% + 5917,

v, =1%/4,

V,=2—1+ 1612 — 4%,

W, = —(2+1)/4,

W, = —31 — 8¢ + 412,

Now at line 15 we compute y = u, 'v = 1/59(2, —1, 16, —4) and we exit
from the algorithm. We now apply algorithm SOLVE. At Step 1 we form
the polynomials

X(6) = (2 — 8¢ + 30:* — ) /59,
Y1) = (2 — ¢ + 161 = 41%) /58,
B() =2+ 14582
At Step 2 we form the polynomials
B (y=5+1+27
X{()mod * = (~1 + 30r — 8r%) /59

and compute the polynomials

P(t) =(~5+ 1491 — 121%) /59,
Q(0) = (10 — 3¢ + 83¢%)/59.
At Step 3 we form the polynomials
Y'(1) mod £ = (—4 + 161 — 13)/59,
P(e) = (— 12 + 1497 — 512 /59,
Q70 = (83 — 3¢ + 1065 /59
and compute the products
X(£) 0'(¢) mod > = (166 — 6701 + 25341%) /3481,
Y(£)P™(¢) mod 13 = (48 — 7881 + 24161%) /3481.
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Now 1/x, times the difference of these two polynomials gives Z(1) = 1 +
{ + 1? and z = (1, 1, 1) is the solution to Tz = b.

The final example illustrates Algorithm MD, Let n = 2, A(#) = 60 + 30¢
+ 20¢% + 1547 + 124% At line 1 of MD we suspend execution to compute
MD2(2, 0, 4, 1). Thus, when execution of MD2 commences we have
N=2 8=0C=060+30¢+ 20¢* + 15* + 12¢*, D = 1. The condition
N + § <0 at line 1 of MD2 is not satisfied, so we execute line 2: k « 1;
ne1; me 0. At line 3 we set (V,, U,, V;,, U;) « MD2(0, 1, 1, 60 + 30¢
+ 20#%). This sets ¥, « I; U, «60; V, « 302 — 1); U, « 3600 (we omit
details of the recursion). At line 4 we set £« — 5(6 + 47 + 3r%) and
Fe —30(10 + 107 + 9¢%). Then, at line 5, we set (V,, Uy, V5, U5)
MD2(1, 0, F, E). This sets ¥V, « 90000; U, « 3000[3 0, V; «
2‘?0'00'0[)[]0{ 1+ 20; U, c—Q(N}DODD( 3 + 167) {we: again omit details of
thf: recursion: it is easily verified that V,/ Uy = &, (F/E) and ¥,/ U, =

% ](FfE}} Finally we set U4¢—16200000(2 — ); V< 20000{6 — 6¢ —

t%); U, e — 3240000000030 — 21t + 1%); V, e — 162000000(10 — 12¢ +
3¢%). Thus, MD returns the (2, 2} Padé approximant U/V = U,/ V, =
20030 — 217 + 3 /(10 — 12t + 313,

The reader who works through these or similar examples will quickly

appreciate two points;

(a) 1t is best not to apply EMGCD and MD2 recursively when N is
small, but to use a more straightforward algerithm for small . The
optimal value of N above which recursion should be used depends on the
implementation of the alporithm.

(b} If rational arithmetic is used, the coefficients can grow rather
rapidly, and our assumption that each arithmetic operation takes unit time
is dubious. If floating-point arithmetic is used, scaling is desirable to avoid
underflow and overfiow.

7. SPECIAL Cases oF ToepLITz EQuUaTIONS
(2) fterative Refinement for Toeplitz Systems

If our algorithms are implemented using floating-point arithmetic,
rounding errors will usually cause the computed solution # of Tz = b to be
inaccurate, and it may be worthwhile to use the technique of iterative
refinement [8] to improve the accuracy of the solution.

To perform one step of iterative refinement we first compute the residual
r = Ti — b accurately. This may be done in time O(n log n) using the
FFT, since T is Toeplitz. We then solve Tc = r in time O(n log n) using
algorithm SOLVE, and set z «- 7 — c. The process may be repeated if
necessary until the desired accuracy is obtained for z. For details of
stopping criteria and conditions under which the process converges, see [8].
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Since each iteration takes time O(n log n) we can afford to perform
Oflog n) iterations without increasing the overall complexity O(n log? n) of
our Toeplitz Algorithms ADT or MDT by more than a constant. factor.

We now show that the iterative refinement process can be speeded up
from linear to quadratic convergence when the underlying matrix T is
Toeplitz. The key lies in using the Trench-Christoffel— Darboux formula
as a representation of the inverse § of T. The idea is to improve the
systems Tx = e, and Ty’ = e by computing x and y more accurately, by
refinement. This simultaneously improves the accuracy of § as § is a
function of x and y. Suppose x and y are initially correct to d digits. Then
one step of iterative refinement computes x and y to 2d digits. Now use x
and y in the formulas for S, (13) and (14}, and improve again. This gives
new x and y correct to 4d digits - - - ; hence we get quadratic convergence.

To make these ideas more precise we state algorithm Toeplitz REFINE.
Toeplitz REFINE takes vectors £ and y as inputs and gives improved
vectors x and y as outputs.

Algorithm Toeplitz REFINE(%,5: x,)
1. Compute n=e—Tx

rl = en - T}Tr
2. Ax =
Soloe i; o, via algorithm SOLVE
yr=r
3. Compute x=x+ Ax
y=y+4ay

Finally we mention another approach: Use the formula for § in an
implicit equation and then apply Newton’s methods as a means of correct-
ing x and y. Because of quadratic convergence we can accelerate the
refinement process. This approach will be applicable to our Toeplitz
solution process if each iteration step in Newton's methed is bounded by
O(n log n).

(b) Banded Toeplitz Systems

Let Ty, be an (n + 1) X (» + 1) banded Toeplitz matrix with row and
column bandwidths equal to b and ¢; i.e.,

a, ad,-1 ) * 2,—s 0o - - 0
By a,
. 0
Tb:_ Ly Qy_p
1] .
a, L
0 ﬂ 'ﬂn-h:' ) ) an+| a, y
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Definew =5 + ¢, Uy = M = x"***! and U; = P = Z}_so;x’ where a, =
Ayepsjrd = 0,...,w. Apply the Extended Euclidean Algorithm to U, and
U, to compute U, V;, W, i = 1,....k, and recall that this computation
produces all Padé approximants along the (& + »)th antidiagonal for the
power series A(x) = P(x) + M(x)B, where B(x) is arbitrary, In particu-
lar, note that the (b,n) Padé approximant U/ ¥V satisfies I/ = VP + WM
where I/ = Ef—-u“r"j and ¥ = Z7_,v,x’. As in Theorem 5 we have that
det(T,.) = 0 if and only if deg(¥/) = b and so x = uy 'v = T} 'e,.

(¢) Complexity of the Banded Toeplitz Computation

We shall demonstrate that the {(b,n) Padé approximant to P can be
computed in time O(n log n) + O(w log?w). We break up the computa-
tion into three parts. First we compute

(e)-(0 o))

Second, we apply the Extended Euclidean Algorithm to ¥, = U, and
U, = U;, with degrees of {j’n and U, £ w, and we compute E:}(= et iﬁ
and W;, where deg(U}) > & and deg(L}, ) < b. Third, we compute Vier =
W, — Q\V,. The first computation computes @, and U/, via the division
algorithm and if fast Fourier methods are used this computation can be
done in time O(n log n). (See [20].) Note that deg(Q,)=n —¢ + 1 and
deg(l}) < w — 1. The third computation consists mainly of multiplying Q,
by I*_}, where deg(l'_j} < ¢ — 1. This computation is bounded by O(x log n)
if we see FFT to do the polynomial multiplication. Hence Up1/ Vg the
(b, n) Padé approximant to P, can be computed in O(xn log ) plus the cost
of the second computation. It is evident that the second problem is
equivalent to computing U, ¥, W,, an arbitrary term in the extended
Euclidean computation. We now indicate how the second problem can be
solved in O(w log?w). Using PRSDC described in Section 4, we can
compute any term {, ¥, W, in the extended Euclidean computation in
work bounded by O(w log?w) given U, and ff,. In particular, we can
compute f.'; Vi ﬁj, the solution to the second problem.

The main diagonal algorithm MD can be modified in a similar manner
to solve banded problems in time O(n log n) + O(w log*w), provided
certain minors of T are nonzero. We omit the details.

Our bound O(n log n) + O(w log®w) improves Jain’s bound O(x log
n) + O(w?) given in [16], and is better than the bound O(nw?) obtained
by Gaussian elimination unless w? = O(log n).
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(d) Theorems for the Banded Case

It turns out that Theorems 5, 6, and 7 and Lemmas 3 and 4 are true in
the banded case. We state the results but omit proofs.

LemmMa 3B. det(T,.) + 0 if and only if the (b, n) Padé approximant lies
on the north or east border of its Padé block.

Theorem 5B.  det(7,,) = 0 if and only if u, = le(U)) = 0.

Theorems 6, 7 and Lemma 4 make no assumptions on the elements of T:
hence they hold for banded matrices.

THEOREM 8B. The Extended Euclidean Algorithm can be used as the
basis for solving any Toeplitz system Tz = b,

Theorem 8B is 2 more general result than Theorem 8. Essentially, it says
we can remove the restrictions a, 7 0 and a,, % 0, which means the
polynomial U, can be arbitrary.

8. APPLICATIONS TO SHIFT REGISTER SYNTHESIS
AND BCH DecopING

Let S(x) =s,x + -+ +5,,x2" be a given syndrome polynomial. The
key equation 1o finding the error location polynomial of BCH decoding is

(1 + S(x))o(x) = w(x)mod x***1,

where o(x) =1 + Z{_,0,x" and w(x) =1+ Zf_ w,x" and e = deg(a) =
deg(w) is small. Berlekamp's algorithm [4] is an O(n*) method [14] for
computing o(x) and w(x). Another application of algorithm PRSDC
solves this problem. Let Ufy(x) = x2"*! and Uy(x) = 1 + S(x). Then the
iterate (Uf, ¥, W;) of the Extended Euclidean Algorithm which computes
the (n, n) Padé approximant to U] is the solution to the key equation. The
main-diagonal algorithm MD could also be used if a normality condition
is satisfied. By either method the complexity of the problem is reduced to
O(n log®n).

9. SuMMARY AND CONCLUSION

We have presented two new fast techniques (algorithms AD and MD)
for computation of Padé approximants and the solution of Toeplitz sys-
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tems of equations in time O(n log®n) and space O(n). Algorithm MD is a
realization of fast computation based on the continued fraction approach.

The other direction of this paper is that the Extended Euclidean Algo-
rithm can be used to compute Padé approximants and solve Toeplitz
systems of equations. The advantage of this approach over most previous
ones for selving Toeplitz systems is that their degeneracies are automati-
cally handled. We presented a new fast algorithm called EMGCD to
compute the middle iterate of the Extended Euclidean Algorithm. Algo-
rithm PRSDC, a generalization to EMGCD, computes any iterate of the
Extended Euclidean Algorithm. Both of these algorithms require time O(n
log”n) and space O(n). Finally, combining these results, we presented
algorithm AD for computing Padé approximants and for solving Toeplitz
systems of equations. A major conclusion to be drawn from this work, is
that the Extended Euclidean Algorithm, continued fractions, the Padé
tables, and Toeplitz systems are intimately related. Furthermore, the Ex-
tended Euclidean Algorithm appears to be the natural computational tool
for computing Padé table entries and solving Toeplitz systems of equa-
tLons.

In this paper we have not considered the question of numerical stability
of the various algorithms presented. We are currently investigating this
question and shall report on it later. We merely mention here that various
forms of “pivoting"” are possible and desirable,

The algorithms for solution of Toeplitz systems of equations can be
generalized to deal with block Toeplitz systems. To do this, we need to
consider power series and polynomials with matrix rather than scalar
coefficients, hence in a non-commutative coefficient domain. This will be
described in a separate paper.
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