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The theme of this collection of papers is the derivation of rigorous
bounds en the cost of certain computations. Cost may be measured in
several different ways. For example, in [37, 39, U5, 50] we identify
coat with the pumber of arithmetic operations performed on integers or
real numbers, in [32, 34] we consider the number of Boolean operations,
and in [12, 14, 16] we count function and derivative evaluations. In [3,
15, 18, 22] it is more appropriate to consider the time required to
evaluate an expression on a parallel machine, and in [55, 60] we
introeduce an area-time product whiech is motivated by practical cost
measures for VL3I circuits [106].

Moat of the papers are concerned with upper bounds, which are
established by exhibiting an algorithm and analysing its performance. In
[16, 55] nontrivial lower bounds are established. Proofs of lower bounds
are generally more difficult than those for upper bounds, since it is
necessary to consider all possible algorithms for the problem at hand,
rather than just one carefully selected algorithm. The aim when
establishing upper and lower bounds is, of course, to bring them as close
together as possible, but this is diffiecult unless the “"trivial® lower
bound is almost attainable, as in [3].

The collection is divided inte the fellowing =ix sections, each
containing several papers.

1. Parallel evaluation of arithmetic expressions.

2. Circuite for arithmetic coperations.

3. Continucus medels for discrete zslgorithms.

4. AMlgorithms for manipulating formal power series.

5. The complexity of algorithms for scolving nonlinear equations.
6. Aaymptotically fast algorithms for high-precision computations.

In Sections 1 and 2, the problems considered are discrete and
may be solved exactly in a finite number of steps. The two sectiona are
closely related, for the problem of performing arithmetic operations in
hardware iz essentially equivalent to the problem of evaluating ecertain
Boolean expressions on a parallel machine.

The problems considered in Section 3 (computation of greatest common
divisors, information retrieval) are also discrete, but continuous models
are used to make the analysis tractable. In Section 4 the underlying
problem (computing with formal power series) is in principle infinite,
but is made finite by restricting attention to initial segments of power
series. For example, we may ask how to compute the first n terms in the
reversion of a formal power series, for given n.

In Sections 5 and 6 we consider the computation of approximate
solutions to problems whose exact soclutions are given by limiting
precesses and can not, in general, be computed exaetly in a finite number
of steps. Traub [131] coined the term Yanalytic computational
complexity" fo distinguish this area frem “discrete" or "algebraic®
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computational complexity [67, 76, 139]. Section 5 deals with algorithms
for the solution of one or a system of nonlinear equations, and Section &
with algorithma for the high-precision computation of elementary and
special functions. These two sections are closely related, as the
algorithms studied in Sectien 5 may often be used with advantage to solve
the computational problems of Section 6.

In the next few pages we attempt to summarise the main contributions
and inter-relationships of the papers contained in Sections 1 to 6, as
well as briefly mentioning some recent developments.

1. Parallel evaluation of arithmetic expressions

The three papers in this section are concerned with algorithms for
the parallel evaluation of arithmetic expressions on a '"multiple-
instruction, multiple-data" (MIMD) machine [75]. The expressions may be
real, integer or Boolean, =and it is assumed that the associative,
distributive and commutative laws may be used freely to rearrange them
into a form suitable for parallel evaluation. Early results of Baer and
Bovet [65], Muracka [113] and others are weak unless the depth of
parenthesis nesting is small. Paper 1.1 [15] shows that n-variable
expressions involving only addition/subtraction and multiplication can be
evaluated in time 2.4651g(n) if enough processors (nonlinear in n) are
available. (Here and below we assume that an arithmetic operation can be
performed in unit time, and write lgi(n) for lngzin]. Our usage of the

"big O" notation follows the suggestions of Enuth [93].)

Paper 1.2 [22] improves the result of [15] in two ways: expressions
invelving division are allowed, and the number of operations required is
linear in n. Using a "simuwlation" argument {(Lemma 2 of [22]), it follows
that any n-variable expression can be evaluated with p processors in time
4.1g{n} + 10{(n-1)/p, which is within a constant factor (14) of the
trivial lower bound max (lg(n), (n-1)/p). (A sharper lower bound has
been given by Hyafil and Kung [85] for the case of small p.)

Paper 1.3 [18] =pecialises the result of [22] +to the case of
arithmetic expressions without division (as considered earlier in [15]),
giving a time bound 3.lg(n) + 5(n-1)/(2p), of the same form as the bound
in [22], but with smaller and more realistic constants. The constant "3"
here is still larger than the constant 2.465 obtained in [15], so the
result of [15] is better if p is sufficiently large. The algorithm given
in [18] is of interest because it is numerically stable in the sense of
backward error analysiz [135], and the use of the associative,
commutative and distributive laws does not cause any significant
amplification of the effect of rounding errors. Unfortunately, this i=a
noet the case (or at least has not been established) for most other
parallel algorithms [109, 120].

Subsequently, the constants given in [22] were improved by Winograd
[138] in the case of small p, and by Muller and Preparata [111] ir the
case of large p. MNo improvement which is valid uniformly for all p is
known. 1In a series of papers, Barak, Muller, Preparata and Shamir [66,
117, 118] obtained sharper results than these of [15, 18] for the special
case of Boolean expressions and large p. This case is of interest for its
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application to combinaticonal ecircuit design: see Section 2. A11 these
improvements wused refinements of the methods introduced in the three
papers [15, 18, 22] of 3esction 1.

Towle and Brent [38] showed that the proofs given in [18, 22] could
easily be transformed into efficient procedures for compiling arithmetic
expressions for execution on a parallel machine. In faect, the
compilation c¢an be performed in time O(n.lg(n)} on a serial machine.

2. Circuits for arithmetic operations

Paper 2.1 [3] considers the time required to add binary numbers,
using circuit elements with bounded fan-in. The upper bound obtained is
asymptotically equal {o Winograd's lower bound [136], and improves by a
factor of almo=st two on the obvious upper bound. & similar result was
cbtained 4independently by Krapchenko [94]. Fan-out restrictions are not
considered in [3], but in practice these tend to be less severe than
fan-in restrictions: see for example [96].

[3] provides 2 bridge with Section 1, for a corollary of (the proof
of) its main result is a good upper bound on the time reguired for the
parallel evaluation of a polynomial. This result predated work by
Maruyama, Munreo and Paterson [10Y4, 112], and improved earlier results of
Dorn, Estrin and Ofman [72, 73, 115]. The ecorollary follows from the
observation (due to Maruyama) that the construction used in [3] is valid
for variables over any commutative ring, net just Boolean variables, and
that a polynomial in one variable is a special case of the “earry
funetion" considered in [3].

Papers 2.2 [60] and 2.3 [55] use a new computational model,
appropriate for modern LSI and VLSI technolegy [105], in which the chip
area is a more realistic measure of cost than the number of gates. There
is a trade-off between time and area, and it is possible to give
nontrivial wupper and lower bounds on the area-time product for certain
computations. In [60] we consider the problem of binary addition, while
binary multiplication 1s considered in [55]. From the upper bounds for
addition and the lower bounds for multiplication, it follows tLhat
multiplication is "harder" than addition, in the sense that it requires a
larger area-time product [53].

In practical VLSI designs, as in the model of [55, 60], the cost of
communicating results between gates may be more zignificant than the cost
of computing logical functions at the gates. Earlier models [3, 134,
136, 1371 ignored communication costs because they were not significant
in the days of discrete component technology. Results related to those
of [55, 60] have recently been obtained by Abelson, Andreae, Thompson and
others [62, 63, 80, 128]. At present there is much interest in this new
area of complexity theory.

3. Continuous modela for discrete algorithms

The classical Buelidean algorithm for the computation of greatest
common divisors (GCDs) is simple to state but difficult to analyse. The
main results were conjectured by Gauss [78], but the proofs were not
completed until 160 yezrs later [140]. The classical algorithm involves
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divisicns, but shifts (i.e. multiplications or divisions by powers of
two] are faster than divisions on most computers. Consequently, several
"binary" Euclidean algorithms, which use shifts instead of divisions,
have been proposed [91]. In paper 3.1 [37] we analyse two of these
algorithms, and obtain results which are complete for all practical
purposes, although some intriguing theoretical questions remain
unresalved,

[37] «considers only +the oproblem of computing GCDs of
(single-precision) integers. See [59, 70, 91] and the references given
there for the more difficult problem of cemputing polynomial GCDs.

Paper 3.2 [13] describes and analyses a scatter storage (i.e. hash
coding) method which is more effective than previously known methods if
the table is nearly full and keys are (on average) looked up several
times. This is often true in practiecal applications. For a comparison
with other methods, see Knuth [92]. The method has been widely used, and
has led to further research by Gonnet [81], Mallach [102] and others.

4. Algorithms for manipulating formal power series

4 basie problem of symbolic algehraic computation is the
manipulation of formal power series in one or more variables. The three
papers of Section 4 give asymptotically fast algorithms for the
operations of reversion, composition, and iterated composition of dense
{as opposed to sparse) power series in a small number of variables. For
applications of such algorithms, see [82, 83, 114].

Paper 4.1 [45)] shows that the first n terms in the reversion of a

power series in one variable ecan be computed in D{[n.lng{n}}sz}
arithmetic operations in the coefficient domain. (The classical

algorithmsz [91, 1141 require order n3 operations.) Similar results hold
for the composition of two power series. In fact, it is shown in [U5]

that the composition and reversion problems have the same complexity
(modulo constant factors). It is an open question whether the exponent
3/2 ecan be reduced for the general problem. Hewever, at least in many
cases of practical interest, the composition problem can be solved in
O{n.log{n)) operations [45].

Paper 4.2 [39)] outlines how the results of [45] can be extended to
power series In  3several commuting variables. As the algorithms do not
take advantage of sparsity (i.e. zerc coefficients), they are unlikely to
be wuseful in practice for power series in more than two or three
variables.

Paper 4.3 [50] consideras the well-known problem of iterated
self-composition of a power series [68, 99, 127], and shows that this

problem can be solved in time D{{n.lug{n}}SIE}, independent of the degree
of self-composition. An analogous result for exponentiatien of power
series had been obtained in [28]. The results of [U45] were extended by
Kung and Traub [100], and in a different direction by Brent, Gustavson
and Yun [54].
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The algorithms considered in Section 4 are asymptotically fast,
i.e. they are good when n (the number of termz required) is sufficiently
large. Empirical estimates of how large n needs to be for the algorithms
to be faster than the classical ones have been given by Jones [88]. In
this connection, see also [67, T4, 79].

5. The complexity of algorithms for selving nenlinear equations

Section & ineludes four papers on the complexity of iterative
methods for the solution of nonlinear equations and systems of equations.
Paper 5.1 [16] gives one of the first significant results in the area of
analytic computational complexity. Essentially, the result states that a
method for the solution of the nenlinear equation fi{x) = 0, wusing only
gvaluations of f and its first d derivatives, can have order of
convergence at most d+2. This result iz the best possible, for order d+2
is attained by certain interpolatory metheods.

in paper 5.2 [27] we consider certain classes of algorithms which
use more evaluations of f' than of f. These algorithms generalise one of
Jarratt [B7], and improve on other known algorithms using the same
information [95, 129]. The algorithms were proved to be optimal by
Meersman [107]. Additional details and applications, e.g. to the
efficient evaluation of inverse probability distribution functions, are
given in [26].

Results for  systems of equations [86, 116] are much less
satisfactory than these for a single nonlinear equation. Paper 5.3 [12]
attempts to extend some of the results of [16] to systems of equations,
and paper 5.4 [14] deseribes several classes of algorithms which are both
practically useful [103, 110] and theoretically interesting. Other
practical methods are given in [30, 44). Traub, Wozniakowski and their
students have done much further work on gquestions of optimality of
iterative methods for nenlinear equations and systems of equations [89,
133, 11, 142].

6. Asymptotically fast algorithms for high-precision computations

The final section contains +three papers on the complexity of
high-precision computation of arithmetic operations (division, square
root ete.) and elementary functions (log, exp, sin, cos ete.). Paper 6.1
[28] considers the complexity of high-precision zero-finding methods, and
thus provides a bridge between 3ections 6§ and 6. Some power series
algorithms are formally similar to multiple-precision algorithms ({except
for the lack of carries), so there is some overlap with the material of
Section 4. [28] also dincludes =slightly faster alternatives to the
algorithms described in [34].

Paper 6.2 [32] analyses in detail the complexity of the basic
high-precision arithmetic operations. It alse includes some practical
{though not asymptotieally fastest) high-precision algorithms for
elementary funetiens, and further analysis of high-precision zero-finding
methods, The algorithm suggested for computation of +the exponential
function was later analysed in great detail by Clenshaw and Glver [69].
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Paper 6.3 [34] gives the best known asymptotie bounds on the time
required for high-precision evaluation of leog(x), exp(x), =inf(x) ete.
(The econstant factors may be improved: see [28]1.) To obtain n=bit
accuracy requires only O{log{n)) multiplications of n-bit numbers, and
each of these can be performed with O{n.log(n)log(log(n))) bit-operations
if the Schinhage-Strassen algorithm [124] is used. Similar results were
cbtained independently by Gosper, Salamin and Schroeppel, but apparently
were never published.

The "Gauss-Legendre" algorithm for fast high-precision computation of
T was first published in [28, 34], a2lthough discovered independently by
Salamin [119]. Its name comes from the fact that it depends on
identities known to Gauss [77] and Legendre [101], but it was not
discovered by them, probably because its usefulness depends on the
availability of a fast multiplication algorithm such  as the
Karatsuba-Ofman or Schonhage-Strassen algorithm [64%, 67, 90, 91, 124].
The algorithms considered in [34] are theoretically interesting because
they are asymptotically the fastest known (modulo constant factors), and
are within a factor 0(login)) of the lower bounds [32]. There are
certainly more practical algorithms for low and moderate precision
computation, see e.g. [32, 35, 42, 52, 121, 125].

This coneludes our brief introduction. In the apace available it
has net been possible to present a complete survey. The reader is
referred to the books and papers listed in the Bibliography below, and
particularly [64, 67, 84, 122, 132, 133, 139], for a broader coverage of
the field. Scome of the papers included in this collection also contain a
substantial amount of introductory or survey material.
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