SIAM 1. COMPUT.
Vol. 11, No. 4, November 1982

SOME AREA-TIME TRADEOFFS FOR VLSI*

RICHARD P. BRENT+ anp LESLIE M. GOLDSCHLAGER#

Abstract. Area-time bounds on VLSI circuits for context-free language recognition, for the evaluation
of propositional calculus formulae and for set equality and disjointness questions, are considered. In all
cases, a lower bound AT =Q(n'"") is proved, where A is the chip area, T the execution time, and
0=a =1. Similar results were known for computations with ((n)-bit outputs, but the computations
considered here have only 1-bit outputs. Upper bounds are also discussed.

Key words. area-time tradeoffs, VLSI, formula evaluation, circuit-value problem, context-free
language recognition, set equality, set disjointness, computational complexity, crossing sequences, models
of computation

1. Introduction. Very large scale integrated circuit chips present an economic
method of building general-purpose parallel machines as well as special-purpose chips
which could be used as plug-in modules to conventional computers [9], [15], [17],
[18], [21], [22].

The main complexity measures relevant to VLSI technology are the execution
time of the algorithm (“parallel time’’) and the chip area required for the implementa-
tion. This chip area consists of both the active processing elements (transistors) and
the wires used to interconnect them. If A is the narrowest wire width allowed by the
technology of the day, then chip area can usefully be measured in units of AZ.

Because speed increases obtained through parallelism often require a large volume
of information transfer between the active processing elements, it has frequently been
observed that the resource needs of parallel algorithms are dominated by data com-
munication. For VLSI circuits this phenomenon manifests itself in the chip area
required for interconnections between active processing elements [15], [22], [23].

It is reasonable to expect that, as one increases the degree of parallelism used
to solve a problem in order to decrease the execution time, the required inter-processor
communication will increase. In a VLSI setting, we could therefore expect to find
tradeoffs between time and chip area. Such tradeoffs have been reported for the
discrete Fourier transform, matrix multiplication, Gaussian elimination, transitive
closure, sorting and permutation problems, and for integer addition and multiplication
[1], (5], [6], [20], [21], [22], [24], [25].

This paper gives area-time tradeoffs for context-free language recognition, finding
the truth value of a formula given the values of its variables, determining whether
two sets are equal (or disjoint), and determining if all elements of a set have distinct
values. These problems differ from those mentioned above in that they have only a
one-bit output. After our results were announced in [3], we learned that similar results
were obtained independently by Lipton and Sedgewick [14].

Preliminary results and definitions are given in §2, lower bounds on area-time
products are given in §3, and upper bounds are considered in §4. Finally, in §5, we
mention some open problems.

* Received by the editors January 5, 1981 and in revised form January 15, 1982,

t Department of Computer Science, Australian National University, Canberra, Australia.

t Department of Computer Science, University of Queensland, St. Lucia, Australia. Now at Basser
Department of Computer Science, Sydney University, Sydney, Australia.

737

738 R. P. BRENT AND L. M. GOLDSCHLAGER

2. Definitions and basic results.

DEFINITION 2.1. Let G denote a context-free grammar and L(G) the language
generated by G [11]. Then CFMEMBER = {(G, s)|s € L(G)}.

DEFINITION 2.2. Let F denote a formula of the propositional calculus in disjunc-
tive normal form (DNF), and let ¢ denote a truth assignment to the variables of F
Then FVAL ={(F, ¢)|F is true under ¢}.

DEFINITION 2.3. A circuit o is a sequence (ay, * -+, a,) where each q; is either
a variable xy, x5, ' * - or a gate AND (j, k), OR (J, k) or NOT (j) where j =k <i. Let
¢ be a truth assignment to the variables of «, and @' be the natural extension of ¢
to the gates of & [13]. Then the circuit value problem CVP = {{a, é)lo' (@n) =true}.

Let X =(xy,"+ ,x,)and Y =(yy, -+, ¥n) be sequences of integers in the range
Oton—-land N={1,2,--,n}

DEFINITION 2.4,

DISTINCT = {(X)| for all ;,j € N, i # j=>x, # x,},
DISJOINT = {(X,)| for all i, j € N, x; # y;},
NONDISJOINT = {(X, Y)| for some #,j e N, x; = y;},
EQUAL={(X, Y)laeX ifia e Y},

The VLSI model we use is that of [6]; see also [1], (2], [4], [5], [20], [21], [22],
[23]. Essentially, the model is a collection of processing elements, some of which
receive inputs or produce outputs, and which are connected by wires with finite width.
For completeness we state the model here. Comments and justification are given
following the statement of each assumption A1-A9. Our lower bound results are
insensitive to minor details of the model.

Al. The computation is performed in a convex planar region R of area A.

Because of heat dissipation, packing, and testing requirements, a two-dimensional
planar model is reasonable. The convexity assumption is not restrictive in the sense
that almost all existing chips or useful modular designs do have convex boundaries
for packaging or modularity reasons.

A2. Wires have minimal width A > 0.

A is assumed constant, but in applications of our results it will of course depend
on the technology. We also assume R has width at least A in every direction.

A3. At most v 22 wires can overlap (or intersect) at any point in R,

A chip may consist of v layers. Wire crossings through different layers are allowed.
In fact, transistors are typically formed by crossovers of wires. Since » = 2, the graph
of wires (edges) and gates (nodes) need not be planar in a graph-theoretic sense.

Ad4. 1/0 ports each contain a A XA square and thus have area at least pzAi

An 1/0 port can be multiplexed to handle more than one input or output
variable.

If R is a complete chip, p will be large compared to A2, If R is only part of a
chip and I/O is to other regions on the chip, p could be of order A2. We do not
require each input (or output) variable to appear on a distinct input (or output) port,
as required in [21]. I/O ports may be multiplexed as they often are in practice.

AS. A bit requires minimal time 7>0 to propagate along a wire or to be

transmitted through an 1/O port. The time for one gate computation and
an arbitrary fanout of the result is included in .

Since dimensions are limited by the minimal wire width A and minimal gate area,

a minimal propagation time is reasonable. We do not need to assume that the

SOME AREA-TIME TRADEOFFS FOR VLSI 739

propagation time increases with the length of the wire. With the (small) sizes of chips
we now have or anticipate, the propagation time, which is the time needed to charge
or discharge a wire, is limited by the wire capacitance rather than the velocity of light.
A longer wire will generally have a larger capacitance and thus require a larger driver
to maintain constant propagation time, but the driver area need not exceed a fixed
percentage of the wire area and so can be ignored if A is increased slightly. A thorough
discussion of this point may be found in [2]. Although it would be reasonable to
assume bounded fanout, we do not need this assumption for proving lower bounds.
When proving upper bounds in §4, we do assume bounded fanout.

A6. The times and locations at which input and output bits are available are

fixed and independent of the values of the input bits.

In the terminology of [14], the input-output schedule is “where-oblivious” and
“when-oblivious”.

A7. Storage for one bit of information takes area at least g8 > 0.

B is typically several times larger than A2

A8. Each input bit is available only once.

There is no free memory outside R. If the same input bit is required at different
times, it must be stored within R, taking area at least 8 (see A7).

A9. Computation is synchronous with clock period at least 7.

This assumption, not required in [5], [6], simplifies the definition of “crossing
sequence’’ given below.

DEFINITION 2.5. If V is any subset of the processing elements (i.e. gates and
I[/O ports), then a bisection of V is a cut of V into disjoint sets B and C such that,
for some chord L perpendicular to a diameter D of the chip, the elements in B lie
(at least in part) on one side of L and those in C lie (at least in part), on the other
side of L.

As in [5], [6], we shall assume that processing elements can be shrunk to points
and the chord L perturbed slightly so that L intersects only wires and not processing
elements.

DEFINITION 2.6. Given a bisection as above, the (maximal) information transfer
across the cut during a computation of time T is I = WT/r, where W is the number
of wires which intersect L.

(Informally, I is the maximum number of bits which can be transferred in either
direction between the processing elements in B and those in C. This definition is
closer to those implicit in [5], [6] than those given in [1], [21], [22].)

DEFINITION 2.7. The crossing sequence associated with a given bisection and
computation is the sequence of (binary) values on the wires crossing the cut (with
some fixed ordering) at intervals of the clock period during the computation.

THEOREM 2.8. Given a set V of processing elements, if there is a bisection of V
with information transfer I, then

AT?=Q(I?).

Proof. Let L be the length of the chord associated with the bisection of V. Then,
by Assumptions A1-A3, with W as in Definition 2.6, A = Q(L?) and L=ZAW/v, so
AT*=Q(W*T? =Q(?.

(The proof is similar to that of Thompson [21], [22] except that, because of our
Assumption A1l and Definition 2.6, we do not need to use the concept of ‘‘bisection
width” or to minimize over a class of bisections. Our argument is used in the proof
of [6, Thm. 3.1].)

740 R. P. BRENT AND L. M. GOLDSCHLAGER

Results similar to Theorem 2.8 have been used in the following way [1], [5], (6],
[21], [22]: one considers the bisection of V into two regions B and C with a split of
inputs xy, * * -, x, between them and an arbitrary distribution of outputs yy,* -+, y,.
Assuming that |Yc|=|Y3|, the idea is to prove that there must be a sizeable information
transfer I between Xp and Yc. If one can show that I is proportional to n, then an
area-time tradeoff of the form AT =Q(n %) follows from Theorem 2.8.

. Ly

B C

F1G. 2.1. One-way information flow.

For the problems considered in this paper, there is only one output, whose
Boolean value answers the membership question posed by the instance of the problem
which appears on the inputs. When the circuit produces: only one output, the proof
techniques required to bound the information transfer differ from the techniques used
in [2], [5], [6], [20], [21], [22], [23], [24], [25]. In particular, it is necessary to consider
the information transfer in both directions I's and I (see Fig. 2.2). The total information

X .
B Xo
N Loy
I \
B C
I
y

F1G. 2.2. Two-way information flow.

transfer =Jg +Ic. Our technique may be regarded as a hybrid of the *‘crossing
sequence” argument used to obtain lower bounds for Turing machine computations
[10] and the “information flow” arguments previously used to obtain lower bounds
on AT? for VLSI computations. All such techniques have the inherent limitation of
yielding lower bounds on AT? no larger than cn?, since all the inputs and outputs
can be trivially redistributed with I proportional to n. This limitation results from
ignoring the processing performed in B and C.

3. Lower bounds.

THEOREM 3.1. For any VLSI circuit of area A which accepts as input a proposi-
tional calculus formula in disjunctive normal form with up to n literals and a set of truth
values of its variables, and has as output the truth value of the formula in (worst-case)
time T,

AT?=Q(n?).

SOME AREA-TIME TRADEOFFS FOR VLSI 741

Proof. Without loss of generality we assume that the formula has exactly n
literals, n/2 variables, and that n is divisible by 8. Let M be the maximum number
of input variables sharing (or multiplexing) one input port. If M Zn/4 the result is
immediate, for T = Q(M). Thus, we may assume that M <n/4. It follows that there
is a bisection of the circuit into two parts B and C so that the input ports for between
n/8 and 3n/8 of the variables x; are in B, and those for the remaining variables are

in C. We denote the variables in B bybi, -, by, - -andthosein C bycy, ,c, 000,
where k =n/8, and write b= (6, - - -, bi), ¢=(cy, -+ +, cx). The 2k variables not in b
or ¢ are denoted by d=(dy, - - -, d,). Assume without loss of generality that the

output port is in B.
Consider the formula

k k 2k _
f(b,¢)= ‘_/l (bikc;) V (&'&Ci) _yl (di&d;)

i=1

which is in disjunctive normal form with 8% =n literals and 4k = n/2 variables.
(Intuitively, f(b, ¢) returns the truth value of b #c. By assumption A6, the bisection
into B and C is independent of f.) Let I be the information transfer between B and
C during a computation of f(b, ¢). Assume, by way of contradiction, that I <k. There
are at most 2" <2* crossing sequences (of bits across the cut), but there are 2% possible
values of b, so there exist distinct b'”, b such that the computations of ™, ™)
and f(b"”, b®) give identical crossing sequences. It follows that the circuit computes
identical values for f(b™, b'") and f(b'", b?), contrary to the definition of f. Thus
I =k =Q(n), and the result follows from Theorem 2.8.

THEOREM 3.2. With the assumptions of Theorem 3.1, A = Q(n).

Proof. Without loss of generality we may assume that there are n/2 variables
and that n is divisible by 8. Suppose that there are P input ports. If P=n/4 the result
is immediate, for A =Q(P). Thus, we may assume that P<n/4. At most P truth
values can be read in simultaneously4 so at some time during the computation, the
truth values of a subset B of variables will have been read in, where n/8 =|B|=3n/8.
Let C be the complementary set of variables, and suppose B ={by, -+, by, -},
k =n/8. Using the same function f as in proof of Theorem 3.1, we see that the output
f(b, c) distinguishes between all 2% possible vectors b= (by, - - -, b;) for suitable choice
of ¢=(c1," -, cx). Thus, the circuit must have at least 2* internal states, i.e., it must
store at least k = {)(n) bits of information. The result now follows from Assumptions
A7 and AS.

THEOREM 3.3, With the assumptions of Theorem 3.1,

AT* =Q(n"*) forall a €[0,1].

Proof. The result follows by combining the bounds of Theorems 3.1 and 3.2 (as
in the proof of [6, Thm. 3.3]).

COROLLARY 3.4. For VLSI circuits which evaluate Boolean formulae in general
(not necessarily disjunctive normal) form,

AT* =Q(n'") forall « [0, 1].
CoROLLARY 3.5. For VLSI computation of the circuit value problem CVP,
AT* =Q(n'"*) forall « [0, 1].

THEOREM 3.6. Any VLSI circuit which computes DISTINCT has AT =
Qn't) for all a €[0, 1], where n is the number of elements in the input sequence.

742 R. P. BRENT AND L. M. GOLDSCHLAGER

Proof. Call an element of an input sequence a block, and note that each block
consists of at least [log, n] bits.

We proceed much as in the proof of Theorem 3.1, taking k =n/4, and consider
any bisection of the least significant input bits of each block into two parts B and C,
k=|B|=3k.Letb=(b,, - , bx) denote a subset of the bits in B, and similarly for
c¢=(c1, "+, ck). Now for each i, 1 =i =k, if b; or c; is the least significant bit of block
x;, then assume that the other bits of x; equal the binary representation of i — 1. Let
I be the information transfer between B and C. If I <k, then there exist distinct b,
b® such that b=b" and ¢=b" results in the same crossing sequence across the cut
asb=b" and ¢=b®, where bis (5, - - - » bk). So the circuit computes the same output
for b=b" and c=b", as for b=b'" and ¢ =b?. But this is a contradiction, as in the
former case all blocks are distinct, while in the latter there is at least one pair of
blocks which have identical input values. Hence I = k.

The remainder of the proof is similar to the proofs of Theorems 3.1-3.3.

THEOREM 3.7. Any VLSI circuit which computes DISJOINT (or NONDIS-
JOINT) has AT*® = Q(n'*) for all @ €[0, 1], where n is the number of elements in the
input sequences.

Proof. As in the proof of Theorem 3.6, taking k = n/8, consider any bisection of
the least significant input bits of each block into two parts B and C, 2k =|B|=6k.
At least half of the least significant bits of X must be in one part (say B), and thus
at least half of the Jeast significant bits of Y must be in the other part (C). Let b and
¢ (respectively) denote k-subsets of these bits, assume that the most significant bits
of their corresponding blocks are as above, and that all remaining blocks in X equal
2k and in Y equal 2k +1. Choose b and b® as above. Now b=b" and ¢ ="
produce the same output as b=b"’ and c=b", but in the former case X and Y are
disjoint, whereas in the latter they have some element in common.

THEOREM 3.8. Any VLSI circuit which computes EQUAL has AT** = Q(n'**)
for all @ €[0, 1], where n is the number of elements in the input sequences.

Sketch of proof. The proof is similar to that of Theorem 3.7, but now b =b"" and
¢=b"" produces the same crossing sequence as b=b'® and ¢ = b®, and so the circuit
produces the same output for b=b"" and ¢=b" as for b=b"" and ¢ = b2,

Remark. The proof of Theorem 3.8 breaks down if we allow probabilistic
algorithms which have a positive (albeit very small) probability of error [M. O. Rabin,
personal communication, August 1981].

THEOREM 3.9. Let m = O(n). There is a context-free grammar G with the follow -
ing property. Any VLSI circuit which, given a SIring s =515 * * * S, determines whether

(G, s)e CFMEMBER,

has AT** = Q(n'*®) for all a €0, 1].
Proof. Let G be the context-free grammar with start symbol S, nonterminal
symbols D, E, F, terminal symbols 0, 1, $, ¢, and productions

S EF¢E

F-0F0|1F1|¢tESE

E - ED¢|e

D - DO0|D1le (where ¢ is the empty string).
It is easy to see that G generates the language

L(G)={x1¢- - x,¢$v ¢ yRelp>0,9>0, x, =y; for some i =p, j =q}

SOME AREA-TIME TRADEOFFS FOR VLSI 743

where each x,, y; is a (possibly empty) string of binary digits and y is the reverse of
yi- L(G) is just a generalization of NONDISJOINT. Hence, a circuit which can
determine if (G, s) € CFMEMBER, i.e., if s € L(G), can also determine if (X, Y) €
NONDISJOINT provided (X, Y) is encoded as the string x,¢ - - -x,.ctSyfd; v yfct.
Hence, the result follows from Theorem 3.7.

4. Upper bounds. The following theorem shows that, for several of the problems
considered in §3, the exponent of n in the lower bound AT? = Q(n?) is the best possible.

THEOREM 4.1. There is a VLSI circuit which solves the problems of Theorem 3.1,
3.6, 3.7 or 3.8 with

A=0(n"log’ n)
and

T =0O(logn).

Proof. We shall consider the problem of Theorem 3.1 (evaluating propositional
calculus formulae in disjunctive normal form with up to r literals); the problems of
computing DISTINCT, DISJOINT and EQUAL may be dealt with in a similar fashion.

A literal is a variable or its negation, so any formula with at most n literals has
at most n variables. We shall construct a circuit for which there are n input ports
along the north edge, the ith such port giving the Boolean value of the variable x;,
fori=1,2,--,n. Aliteral is of the form x; or &, so can be encoded by [logy n] +1
bits. Since the formula is in disjunctive normal form, it can be encoded simply as a
string of literals separated by encoded operators “& " and “ V. The encoded formula
will enter the west edge of our circuit through O(n log n) input ports. The overall
layout is illustrated in Fig. 4.1.

To simplify the description we first assume unbounded fan-out. Consider the
evaluation of a single literal p; = Nix;, where N; may be either the identity or negation
operator. It is easy to construct a circuit, of area O(n log n) and delay O(log n), which
has a grid of # lines running north to south (of which the ith is to be selected), and
along the south edge a fan-in tree whose result may be complemented (depending on
N;) and fed out along the east edge. This is illustrated in Fig. 4.2.

It remains to specify an evaluation tree which inputs the value of each literal and
the operators, and outputs the value of the formula. This is illustrated in Fig. 4.3,
where the wires between each node transmit six bits x6,y8,z6., where x, y and z can
be 0 or 1 and 6,, 6, and 6, can be encodings of & or V.

Initially, the ith node of the evaluation tree carries the signal 1 & 1 & p;6;, where
p: is the value of the ith literal and 6; the operator to its right (irrelevant if i = n).

Each node of the evaluation tree takes two six-bit signals f, and f, representing
partially evaluated formulae, and evaluates as much as possible of the concatenated
formula f1f;. It is straightforward to verify by induction that each six-bit signal must
have one of the forms

xVyVz&,
1&yVzo,
or

1&1&z6

where x, y, z are 0Oor 1 and 6 is & or V.

744 R. P. BRENT AND L. M. GOLDSCHLAGER

literal and variable values
operand encodings

P —_— literal evaluation
6 N
4 N N
P " .
2 — literal evaluation .
] b=
@ a
5 3
6 = <
2 > S S
.
N N N 9
)))
P ——f literal evaluation z
J
Y
en—l [d
4 a
Py — literal evaluation »

Y
_—

(6,)

F1G. 4.1. Overall layout.

The root of the evaluation tree evaluates the final six-bit signal to give the values
of the formula.

The circuit constructed above has width O(n), height O(n logn), and delay
O(log n). However, we have neglected the problem of fanout. In order to reduce the
fanout of the input lines entering along the west edge (i.e., the literal encodings) we
must separate each line by a distance O(log n) to accommodate fanout trees of width
O(n) and height O(logn) (see [4]). This makes the height of the complete circuit
O(n log® n). A similar problem arises with the lines (carrying variable values) which
enter along the north edge and must be fanned out to the sub-circuits evaluating each
literal. We separate each line by a distance O(log n) to allow space for fanout trees.
Thus, the circuit has been “‘stretched” by a factor O(log n) in both directions, giving
it a width of O(n logn), height of O(n log’n), and area O(n°log®n). (A more
detailed analysis might lower the exponent of log n, but we are more interested in
the exponent of n, which is optimal by the results of §3.)

Remark 4.2. The problems of evaluating DISTINCT, DISJOINT and EQUAL
can clearly be solved rather easily if a sorting circuit is available. Hence, upper bounds
on the area and time required for these problems may be obtained from the correspond-
ing upper bounds for sorting networks. In particular, these problems can be solved
with AT?* =O(n"** log® n) for some constant c. See, for example, Thompson [23].

SOME AREA-TIME TRADEOFFS FOR VLSI 745

variable values

n-1 n
¥ ' v 4
hY
/
N
S
literal encoding ° Selection
O(log n) bits ' network
N,
>
N
>
Fan-in tree
~
"n "
negate N result
line 7 }

F1G. 4.2. Literal evaluation (fan-out restrictions ignored).

In[5], [6]it was shown that the exponent 1+« in the lower bound A T2 = Q')
was sharp (for all a € [0, 1]) for the problem of binary multiplication of n-bit numbers.
Except for the cases covered by Theorem 4.1 and Remark 4.2, and the trivial case
a =0, we do not know if the same is true for the problems considered in §3. In fact,
this is unlikely for the context-free language recognition problem, as the best known
serial algorithm uses 7 by n matrix multiplication [11], [16], [20]. Combining ideas
of Preparata and Vuillemin [18] and Ruzzo [19], it may be shown that the context-free
language problem can be solved by a VLSI circuit having T = O(log*n)and A = O(n)
for some constant ¢. (We believe that ¢ =8, but have not yet worked out all the
details. ¢ can be reduced by the method of [12], at the expense of increasing T to
O(n).) Recognizing regular expressions appears to be a much easier problem [7], [8].

5. Conclusion. We have given lower bounds AT>* = Q(n'*®) for several natural
recognition problems. The case « =3 is interesting, as the area-time product AT can
be viewed as the “rental cost” for a VLSI chip for the duration of the computation.
On the other hand, for VLSI circuits which allow pipelining, AT overestimates the
cost since portions of the chip can be re-used for subsequent computations before
earlier computations are completed. In these cases the area alone (i.e., the case o = 0)
may be a better measure of cost.

Possible areas for future research include:

a) Finding a technique to prove lower bounds better than AT = Q(n*®),

b) Obtaining sharper upper bounds for problems of practical interest, e.g., the
context-free language recognition problem.

746 R. P. BRENT AND L. M. GOLDSCHLAGER

each line carries 6 bits

+..

~

~

~

result

~

hd

W

—_—

FiG. 4.3, Final evaluation tree.

¢) Extending our results to probabilistic algorithms (see the remark following the
proof of Theorem 3.8).

Acknowledgments. We are grateful to Al Borodin for suggesting the set equality
and disjointness problems, and for fruitful discussions. We also thank the referees
and Professor W. L. Ruzzo for their comments which helped us to sharpen Theorem
3.9 and to correct the proof of Theorem 4.1.

REFERENCES

[1] H. ABELSON AND P. ANDREAE, Information transfer and area-time tradeoffs for VLSI multiplication,
Comm. ACM, 23 (1980), pp. 20-23.

[2] G. BILARDI, M. PRACCHI AND F. P. PREPARATA, A critique and appraisal of VLSI models of
computation, VLSI Systems and Computations, H. T. Kung et al., eds., Computer Science Press,
Rockville, MD, 1981, pp. 81-88.

[3] R. P. BRENT AND L. M. GOLDSCHLAGER, Some area-time tradeoffs for VLSI, Report 22, Dept.
Computer Science, University of Queensland, Australia, August 1980.

[4] R. P. BRENT AND H. T. KUNG, On the area of binary tree layours, Inform. Proc. Letters, 11 (1980),
pp. 46-68.

[5] The chip complexity of binary arithmetic, Proc. 12th Annual ACM Symposium on Theory of

Computing, New York, April 1980, pp. 190-200.

SOME AREA-TIME TRADEOFFS FOR VLSI 747

(6] ——— The area-time complexity of binary multiplication, J. Assoc. Comput. Mach., 28 (1981), pp.
521-534.

[7] R. W. FLoyp AND J. D. ULLMAN, The compilation of regular expressions into integrated circuits,
Proc. 21st Annual IEEE Symposium on Foundations of Computer Science, New York, 1980, pp.
260-269.

(8] M. J. FOSsTER AND H. T. KUNG, Recognize regular languages with programmable building blocks,
VLSI 81, 1. P. Gray, ed., Academic Press, New York, 1981, pp. 75-84.

[9] L. J. GuiBas, H. T. KUNG AND C. D. THOMPSON, Direct VLSI implementation of combinatorial
algorithms, Proc. Conference on VLSI: Architecture, Design, Fabrication, California Inst. of
Technology, Jan. 1979.

[10] F. C. HENNIE, On-line Turing machine computations, IEEE Trans. Electronic Computers, EC-15
(1966), pp. 35-44.

[11] J. E. HOPCROFT AND J. D. ULLMAN, Iniroduction to Automata Theory, Languages, and Computation,
Addison-Wesley, Reading, MA, 1979.

[12] S. R. KOSARAJU, Speed of recognition of context-free languages by array automata, this Journal, 4
(1975), pp. 331-340.

[13] R. E. LADNER, The circuit value problem is log space complete for P, SIGACT News, 7, 1, Jan 1975,
pp. 18-20.

[14] R. J. LIPTON AND R. SEDGEWICK, Lower bounds for VLSI, Proc. 13th Annual ACM Symposium
on Theory of Computing, New York, 1981, pp. 300-307.

[15] C. A. MEAD AND L. C. CONWAY, Introduction to VLSI Systems, Addison-Wesley, Reading, MA,
1980.

[16] V. YA. PaN, New fast algorithms for matrix operations, this Journal, 9 (1980), pp. 321-342.

[17] F. P. PREPARATA AND J. E. VUILLEMIN, The cube-connected-cycles: a versatile network, Proc. 20th
IEEE Symposium on Foundations of Computer Science, New York, Oct. 1979, pp. 140-147.

Area-time optimal VLSI networks for multiplying matrices, Inform. Proc. Letters, 11 (1980),
pp. 77-80.

[19] W. L. Ruzzo, On uniform circuit complexity, Proc. 20th IEEE Symposium on Foundations of
Computer Science, Oct. 1979, pp. 312-318.

[20] J. E. SAVAGE, Area-time tradeoffs for matrix multiplication and related problems in VLSI models, J.
Comput. System Sci., 22 (1981), pp. 230-242.

[21] C. D. THOMPSON, Area-time complexity for VLSI, Proc. 11th Annual ACM Symposium on Theory
of Computing, New York, April, 1979, pp. 81-88.

(18]

[22] A complexity theory for VLSI, Report TR-CS-80-140 (Ph.D. thesis), Dept. Computer Science,
Carnegie-Mellon University, Pittsburgh, August 1980.
(23] The VLSI complexity of sorting, in VLSI Systems and Computations, H. T. Kung et al,, eds.,

Computer Science Press, Rockville, MD, 1981, pp. 108-118.

[24] J. E. VUILLEMIN, A combinatorial limit to the computing power of VLSI circuits, Proc. 21st Annual
IEEE Symposium on Foundations of Computer Science, New York, 1980, pp. 294-300.

[25] A. C. YaO, The entropic limits on VLSI computations, Proc. 13th Annual ACM Symposium on the
Theory of Computing, New York, 1981, pp. 308-311.

