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NUMERICALLY STABLE SOLUTION OF DENSE SYSTEMS OF
LINEAR EQUATIONS USING MESH-CONNECTED PROCESSORS*

A. BOJANCZYK", R. P. BRENT: AnNp H. T. KUNGS§

Abstract. We propose a multiprocessor structure for solving a dense system of n linear equations.
The solution is obtained in two stages. First, the matrix of coefficients is reduced to upper triangular form
via Givens rotations. Secnnd a back substitution process is applied to the triangular system. A two-
dimensional array of 6(n?) processors is employed to implement the first step, and (using a previously
known scheme) a one-dimensional array of 8(n) processors is employed to implement the second step.
These processor arrays allow both stages to be carried out in time O(n), and they are well suited for VLSI
implementation as identical processors with a simple and regular interconnection pattern are required.

Key words. Givens method, least squares, linear systems, numerical stability, orthogonal factorization,
parallel algorithms, QR method, special-purpose hardware, systolic arrays, VLSI

1. Introduction. Recently, several algorithms have been proposed for solving a
system of linear equations on a parallel computer. The algorithm of Csanky [1] solves
a dense system of size n in 6 (log” n) time steps with 8(n*) processors. This is the best
known upper bound on the time complexity of the problem. Since Q(log #) is a lower
bound we have a gap of order log n. Unfortunately, Csanky’s algorithm is numerically
unstable [14] and uses too many processors to be useful in practice. Gaussian elimina-
tion without pivoting can trivially be carried out in parallel in ¢(n) steps using n”
processors [5]. If the matrix of the system is not special (e.g., diagonally dominant or
symmetric positive definite) then pivoting is generally necessary to guarantee numerical
stability. With pivoting we need 6(n log n) steps and n? processors. To avoid the
pivoting problem, Sameh and Kuck [12] (and also Kowalik et al. [7], [8], [11])
proposed the use of Givens transformations to triangularize the matrix of coefficients.
The orthogonal factorization requires 6(n) steps with @ (n>) processors. The factorized
linear system can then be solved in 6(n) steps using #(n) processors. Hence, the
algorlthm for solving dense system of linear equat:ons requires 4(n) time steps and
¢(n>) processors, y:eidmg aspeed-up of order n* over the usual sequential algorithms,
which require G(n ) time steps.

However, traditional operation counts do not adequately measure the cost of a
parallel computation. There are many other factors which must be considered when
evaluating the performance of parallel algorithms. One of the most important is the
cost of data transmission. In many papers dealing with parallel algorithms, there is
an explicit or implicit assumption that the time required to obtain a single datum is
negligible. This is not true in practice as every data transfer between processors takes
time. Interprocessor communication must be realized by a network that interconnects
the processors. Any algorithm can be supported by different networks but, in general,
the number of data transfers depends on the topology of the network. With different
networks one can have different execution times for the same algorithm. Thus, one
should decide what kind of network is to be employed and only then proceed to
evaluate the performance of the algorithm. Bearing this in mind, Kant and Kimura
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[6] showed that the solution of a dense system of linear equations can be obtained
in @(n) steps using n” mesh connected processors, but their algorithm requires that
the matrix of the system be “'strongly nonsingular”. The assumption of strong nonsingu-
larity is a severe one as it excludes many interesting nonsingular matrices (e.g. the
identity matrix) and it appears to be no easier to verify the assumption than to solve
the corresponding linear system. Thus, the result of Kant and Kimura [6] is mainly
of theoretical interest.

Kung and Leiserson [10] introduced a new model of parallel computation. The
model takes into account such issues as cost of I/0, control and data transfers. A
point of their work is that one should fit a network to an algorithm in order to obtain
good overall performance. Using a simple and regular network, called a “‘systolic
array”, of #(n”) hexagonally connected processors, Kung and Leiserson [10] improved
the result of Kant and Kimura [6] by requiring only that the linear system be solvable
by Gaussian elimination without pivoting. For example, the matrix of the linear system
could be symmetric positive definite or irreducible and diagonally dominant. See Kung
[9] for a general discussion of systolic architectures for various special-purpose compu-
tational devices.

Combining the ideas of Sameh and Kuck [12] and Kung and Leiserson [10], we
introduce a systolic array of 6(n”) processors which is capable of transforming any
nonsingular matrix to triangular form in @(n) units of time in a numerically stable
manner. The resulting triangular system can be solved in #(n) steps on an array of n
linearly connected processors. Both processor arrays enjoy regular geometries, and
all processors are similar. As a consequence, cost-effective special purpose hardware
devices based on our scheme could conceivably be built using VLSI technology. For
many applications each processor needs to perform floating-point computations on
words of at least 32 bits. To achieve a throughput of one floating-point operation
every microsecond, present technology would allow only one (or a small number) of
processors per chip, but advances in technology should soon make it possible to put
many processors on a chip.

2. Givens rotations. Our algorithm is based on the orthogonal factorization of
a real nonsingular #n by n matrix A = (ay),

QA =R,
where Q is an orthogonal matrix formed as the product of plane rotations, and R is

upper triangular,
A plane rotation is defined by a matrix

col. i
¥
1
P['-Q,.ld': Ci Si o« . “TOow i,
=8 C;
1

The matrix P;.,,; applied on the left rotates rows i and (i + 1) of A so as to annihilate
the off-diagonal element a;. ;. The parameters of P, ;; are defined (except in degener-
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ate cases, which are dealt with in § 4) by

- .2 2 \1/2
aij=(aj;taia;) ",

ci = ai;/d;,
§i = ai+1.;'/5£.j-
Rows i and i+ 1 of the product A=P,,, ;A are given by
Gip = Ciaipt 5054 p,
@i41,;=0,
Giv1,p=—SiGip+ CiQis1, forp#j.

The orthogonal matrix Q is formed as the product of plane rotations P;; such that
the elements of A below the main diagonal are annihilated.

3. Parallel Givens rotations. As some of the rotations P;; are independent it is
possible to apply more than one at a time. There are many possibilities. We propose
a scheme that requires N =3n — 5 sweeps. Each sweep Q, k =1,2, - -+, N, is a direct
sum of plane rotations P;;, where (/, )€ L, and sets of indices L,, k=1, 2,---, N,
are defined by

(3.1) (i,j)eLy iff 3(j—-1)+n—-(i—-1)=k, l=sj<i=n.

Note that Q, is a product of commuting orthogonal matrices P;; The orthogonal
matrix Q is the product of sweeps Q,

Q=0QNQN-1"" Q1.

From (3.1) it follows that if (¢, j)e L, then (i +3,j+1) and (i =3, j — 1) also belong
to L provided they are in {(i, j)|1 =j <i =n}. The rule of thumb is as follows. Starting
from any element a;;, / >, and moving like a “long” chess knight on the chessboard,
one square left and three squares up or one square right and three squares down
within the lower triangular part of the matrix A, we reach all elements which are
annihilated at the same time as the element a;;. This is illustrated for n =8 in Fig. 1,
where all elements annihilated in the kth sweep are denoted by [&.

X
7 X
6 9 x

5 8 11 x

4 7 10 13 x

3 6 9 12 15 X

2 5 8 11 14 17 x

1 4 7 10 13 16 19 x

FI1G 1. Ordering of rotations (n = 8).
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4. The basic processing element. Two kinds of operations are required for the
transformations P;;: determination of the rotation parameters ¢ and s, and application
of the rotation, which is equivalent to

L5 a0
y —s clly
The operation (4.1) will be referred to as a rotation step.

Thus, we need a processor which is able to determine rotation parameters and
execute rotation steps. In addition to its computing capabilities the processor should
have four connections (two inputs and two outputs) and four internal registers (R,,
R,, R. and R,). To perform the first operation, the processor shifts data x and y on
its input lines (denoted by X and Y) into registers R, and R, (see Fig. 2). Then it

% .
'\\ /
Processor
/TN
. Y

FiG. 2. The processing element.

computes parameters ¢ and s by the following algorithm:

if R, =0 then

begin
¢ =0,
s=1
end
else if abs (R,)>abs (R,) then
begin
x = abs (R,) Xsqrt (1+(R,/R,)*);
¢ = Ry/x;
s = Ry/x
end
else
begin
x = abs (R,)xsqrt (1+(R/R,)");
¢ =R./x;
s =Ry/x
end;

The computed values ¢ and s are stored in registers R, and R,, and the new value x
is made available as output on the output line X. (The new value y on the output
line Y is not calculated since ¢ and s are chosen in such a way that y is known to
be zero.) The processor determines the parameters ¢ and s only once, so the contents
of the R, and R, registers are not subsequently changed. Every subsequent operation
performed by the processor is a rotation step. More precisely, the processor shifts
data on its input lines X and Y into registers R, and R,, then executes the rotation
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step, i.e.,
x = R.R.+R,R,, y = —R.R; +RyR,

and makes new values x and y available as outputs on the output lines X, Y. There
is a simple finite-state machine which controls switching the processor from one kind
of operation to the other.

Knowing what operations the processor must perform, we define a time unit to
be the maximal time that is necessary for a processor to determine parameters ¢ and
s or to perform a rotation step together with loading and unloading its registers.

It is possible that a rotation will take more or less time than determination of
the rotation parameters. The rotation parameters are determined only once, so the
processors may occasionally be idle. This is a price we pay to guarantee that the whole
system works correctly while keeping the system control relatively simple.

We assume that there is a synchronization mechanism which latches input and
output lines. When processors are connected together, the changing output of one
processor during a time unit should not interfere with the input to another processor.
Sometimes we shall refer to the operations executed by a processor within one time
unit as a pulsation (see Kung and Leiserson [10]).

5. Network organization. The systolic array proposed here is made up of a
network of n(n —1)/2 processors, where n is the problem dimension. The position
of a processor in the network is fully determined by integers i and &k, 1=k <i=n,
so every processor will be specified by a pair (i, k). The processor (i, k) is assigned to
perform the transformation P; .

The network organization has the property that all connections from a processor
are to at most four neighboring processors. More precisely, output line X of pro-
cessor (4, k) coincides with input line Y of processor (i —1, k), and output line Y of
processor (i, k) coincides with input line X of processor (i + 1, k + 1) (see Fig. 3). All
connections form a rectangular grid on a triangle, as illustrated for n = 6 in Fig. 4.

There are special “‘gray” processors or shift registers along the bottom of the
network. A gray processor does not perform any arithmetic, It simply delays data

(i—1,k) (i~1,k-1)

(i, k) l

(f+1,k+1) (i+1,k)

/

F1G 3. Inter-processor communication.
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(2,1
(3,2) 3,1
(4,3) (4,2) 4, 1)
Z .
(5,4) (5,3) (5,2) 5, 1)
\_/
(6,5) (6,4) (6,3) (6,2) (6,1)

Y/ /77

FiG. 4. Layout of the processors (n = 6).

FIiG. 5. Data flow into the systolic array (n = 5).
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transmission by one time unit. This is necessary because only every third sweep
introduces a zero in the last row.

Data enter the network through the right boundary, i.e. through the processors
(hb1),i=n,n—1,---,2,and leave the network through the left boundary, i.e. through
the processors (7,i—1),i=2,3,---,n (see Figs. 4 and 5).

6. Operation of the systolic array. Our computational scheme is applied to the
X(n+1) matrix A =[A, b], i.e., to the matrix A augmented by the vector b.

In the following description the superscript of a matrix coefficient will usually
indicate the number of plane rotations P;; in which this coefficient was involved. By
convention, the coefficients of the original augmented matrix have superscript 0, with
the exception of the coefficients of the last row, which for notational convenience
have superscript 1.

The computation is initiated at time 7 =0, when a,.~;; and a\| enter the systolic
array through the right bottom processor, i.e., processor (n, 1). As its first operation,
this processor determines rotatlon parameters ¢ and s corresponding to transformation
P, as well as computing al’;;. At subsequent time steps processor (n, 1) performs
rotation steps. At time 7=1, processor (n—1,1) starts to work. Subsequent]y pro-
cessors (n—2,1),(n—3,1),- -+, (2, 1) are activated at times r=2,3,- - -, n—2. Figure
5 depicts how elements of the matnx are fed into the systolic array. In Fig. 6 we show
four consecutive pulsations of the network.

We now specify the operation of the network precisely by giving the schedule of
processor (i, k), 1 =k <i =n. The processor (i, k) (assigned to perform plane rotation
P;;) begins its activity at time 7= 3(k —1)+(n —i). Its first task is to annihilate the
k-th element of row i. (The first X —1 elements of rows i —1 and / will already have
been annihilated.) At time 7 the processor determines rotation parameters ¢ and s
based on data a{>§ > and a3 ", and computes the new value of the kth element of
row i—1, i.e. element @53, Then ai*ix’ is made available as an output on the
output line X, Every subscquent operation by the processor is a rotation step. More
precisely, for k <j=n, at time 3(k—1)+(n—i)+(j—k) processor (i, k) executes
operations

(Zk—l) — (2k=2) (2k-1)
ai’—l;’ cXa;- 1. +s Xﬂ” 3
2k 2k-2 2k -1
aii’ = -sxali? +exalZY
(2k-1) [2k] : . .
and makes @;~7;" and a;;" available as output on its output lines X and Y respec-

tively. It is easy to check by induction that every processor gets its data at the right time.

It follows from the schedule of the output processors i.e. processors (i, i—1),
i=2,3, , 1, that at time n — 1 the coefficient a!'} leaves the network. The whole
upper triangular matrix R = QA and transformed right-hand side vector Qb are known
at time 3n —3. Thus we have:

THEOREM 6.1. A dense nonsingular system of n linear equations can be
orthogonally transformed to a triangular system in 3n —3 time units using a systolic
array consisting of n(n —1)/2 mesh-connected processors.

We still have to solve a triangular linear system. This can be done in 3n time
units, using a systolic array first introduced by Kung and Leiserson [10]. Thus we have:

THEOREM 6.2. If A is an n X n nonsingular matrix, then a linear system of equations
Ax =b can be solved in 6n + O(1) time units using systolic arrays of n(n —1)/2 and n
processors.

Remarks. Note that several systems with the same matrix A and different right-
hand side vectors b,, by, * -, b,, can be processed almost as easily as one. The



102

(o)
Ap-1,1

n, 1

1
an

{a) time7 =0

A. BOIANCZYK, R. P. BRENT AND H. T. KUNG

[

an-3.1
n—-2,1
atly aylaa aylaa
/
n—1,1 n-11
aillu ﬂ:solu a L‘lz.z ay! 13

n, 1 n, 1

al) /e

(b) time =1 {c) timer =2
ai\nld.l
n=31
ﬂ.r».lla.l a:)llz

Y
n-2,1

\05312.2 ﬂs?lz.s-

n—11
alia  anlis atha
n,2 n,1
a%  aB el
%
%

(d) timer =3

F1G. 6. The first four steps.
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computational scheme is applied to the matrix A =[A, by, -, b,,] rather than to
[A, b], and QA is obtained in the time 3n —4+m. Similarly, an obvious extension
of our scheme may be used to solve linear least squares problems. Recently Gentleman
and Kung [4] have proposed a different systolic scheme which has advantages over
ours for solving linear least squares problems. In addition, for handling banded matrices
they have proposed a scheme in which the number of processors needed in the systolic
array depends on the band width of the matrix rather than its order.

The error analyses of our Givens process and back substitution process are as
described in Gentleman [3] and Wilkinson [14] for the classical sequential processes.
Thus, we have speeded up the process of solving systems of linear equations and
maintained the numerical quality of the well-behaved sequential algorithm at the
same time. (Singular or nearly singular A can be detected once the Givens triangulariz-
ation of A has been computed, as in the sequential case.) A multiprocessor array
structure equivalent to ours was independently proposed by Gannon [2].

It is worth noting that matrices which are too large for a given systolic array can
be triangularized by first splitting them into blocks. The triangularization time is
0(n’/p?) where n is the matrix dimension and p” is the number of processor used,
p=n

Sameh and Kuck [12] and Kowalik and Kamgnia [7] present schemes that require
only N=2n-3 “sweeps” using the “short” chess knight move elimination order.
However, the time taken by each of these sweeps is that required to generate the
parameters in a rotation matrix and to perform a rotation. In addition, they do not
consider the cost of data transfers. Suppose that generating a rotation matrix and
performing a rotation each take a unit time, as assumed by the timing analysis of this
paper. Then one can easily see from data dependency relations that our N=3n-35
sweeps with the “long™ chess knight move elimination is the best one can do.

7. Application to the QR algorithm. One iteration of the QR algorithm can be
expressed in the form

factorization phase: QA =R,
multiplication phase: A = RQ",

where Q is orthogonal and R is upper triangular. See, for example, Stewart [13].

Our systolic array is capable of performing the factorization phase. While the
matrix A passes through the network, the orthogonal matrix Q is formed as a product
of plane rotations P;;. Parameters defining the transformations P;; are stored among
the processors of the network. If we do not switch our network to process another
factorization phase, the previously computed orthogonal matrix Q (in multiplicative
form) is not destroyed and remains intact in the network. Now, by passing any other
matrix B through the network, we obtain the product QB.

In the multiplication phase we have to know how to form a product A = RQ”.
By applying our systolic device to the matrix R” we can easily get A" =QR”
mstead Now, to complete the multiplication phase it is enough to transpose the matrix
AT, Thus we need a fast method for matrix transposition. One way to achieve this is
to use a buffer that supports fast two-dimensional addressing.

When we have a systolic array for matrix triangularization and a buffer to support
matrix transposition, one iteration of the QR a[gorithm is easy to execute. First we
produce the matrix R, then transpose it, form AT =QRT, and transpose the matrix
A" to obtain A. The cost of one iteration of the QR algorithm performed in this way
is Kn time units, We shall not specify the constant K as it depends on how fast we
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compute matrix transposition. Our treatment of the QR algorithm here is preliminary;
future research is needed to study issues such as shift selection, convergence testing,
etc.
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