THE AUSTRALIAN NATIONAL UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE

TECHNICAL REPORT

EFFICIENT IMPLEMENTATION OF THE FIRST-FIT STRATEGY FOR DYNAMIC
STORAGE ALLOCATION

BY

R.P. BRENT

TR-CS-81-05

EFFICIENT IMPLEMENTATION OF THE FIRST-FIT STRATEGY FOR DYNAMIC

STORAGE ALLOCATION

Richard P. Brent
Department of Computer Science
Australian National University

Box 4, Canberra, A.C.T. 2600

Abstract

We describe an algorithm which efficiently implements the
first-fit strategy for dynamic storage allocation. The algorithm
imposes a storage overhead of only one word per allocated block
(plus a few percent of the total space used for dynamic storage),
and the time required to allocate or free a block is 0(log W),
where W is the size of the dynamic storage area. The algorithm
is faster than commonly used algorithms when many small blocks
are allocated, is relatively easy to implement in a low-level
programming language, and could be used to provide runtime
support for high-level languages such as Pascal.

1. Introduction

The dynamic storage allocation problem is to maintain a
region of memory so that requests for the allocation and
subsequent liberation of blocks of various sizes can be met as
far as possible. The problem arises in operating systems (where
the blocks are usually large), in simulation (where they are
usually small), and in providing support for the rumn-time
facilities of some programming languages, e.g. the "new" and
“dispose” procedures of Pascal [3]. A surprising number of
current Pascal systems fail to implement "dispose”, implement
it inefficiently, or use a stack discipline imstead of genuine
dynamic storage allocation

It is important to distinguish between a strategy for dymnamic
storage allocation, and an algorithm (or set of algorithms)
designed to implement a particular strategy. Different
algorithms implement the same strategy if they always satisfy
identical sequences of requests by allocations at identical
sequences of memory locations, and differ only in the time and
space overhead required to satisfy the requests.

Several dynamic storage allocation strategies have been
proposed and compared [4, 5, 8]. The result of such a comparison
depends greatly on the assumed distribution of block sizes, block
lifetimes, and details of the testing procedure: see [4]. The
theoretical worst—case behaviour of several strategies has also
been studied [7]. For our purposes it is sufficient to note that
the "first-fit" strategy compares well with other strategies,
including the "best-fit" and "buddy" strategies, both empirically
and in the worst case. In the comparisouns the first-fit strategy
emerges either as the best strategy or close to the best,
depending on the precise assumptions and testing procedure.

This paper is concerned with algorithms for implementing the
first-fit strategy. The obvious algorithm [5, Alg. A] maintaiuns
a singly-linked list of free blocks and has to search about
halfway along this list (on average) to allocate a block, so it
is slow if the number of free blocks is large. A common
"improvement” [5, ex. 6] avoids this difficulty at the expense
of not implementing the first-fit strategy at all: instead it
implements a "next-fit"” strategy which is inferior to first-fit
for certain distributions of block sizes and lifetimes, e.g.
distribution (a) of Section 5. In Section 3 we describe an
algorithm which implements the pure first-fit strategy, but is
much faster than the obvious algorithm when the number of free
blocks is large. The worst—-case performance of the algorithm
is discussed in Section 4, and some empirical results are given
in Section 5.

~McCreight [6, ex. 6.2.3.30] has devised algorithms, based
on balanced binary trees, for the first-fit and best-fit
strategies. Our new algorithm is faster and easier to implement
than McCreight's algorithms, and has other advantages (mentioned
in Section 4) when small blocks are common. McCreight's first-
fit algorithm is described briefly in Section 2.

2. Two known algorithms for the first-fit strategy

A simple algorithm, which we call "Algorithm A", is given in
[5, Algs. A and B]. Each free block p contains two fields:

size(p) - the number of words in the block, and
link(p) - a pointer to the next free block.

(Here, p and link(p) may be memory addresses, array indices or
reference variables. For simplicity we shall assume that they
are memory addresses. We shall also assume that a "word"” is the
basic unit of storage.) If a block of n words is required, we
simply scan the list of free blocks from the beginning, until
either a block p is found with size(p) > n, or the end of the
list is reached (when no sufficiently large block is available).
1f size(p) > n, the block is split into two smaller blocks, of
size n and size(p) - n. (There may be a lower bound on the size
of a block which can be created by splitting, but we ignore this
complication here.) The block of size n is removed from the free
1ist and made available for use. For details see [5, Alg. A]l.

When a block p is freed it is necessary to add it to the list
of free blocks, and to merge it with its left and/or right
neighbours if they are free. This is possible if

a) the free list is kept in address order (i.e. link(p) > p if
p and link (p) are the addresses of successive blocks on the
free list); and

b) the size of a block to be released is known. The simplest
way to ensure this is to reserve a size field in allocated
blocks as well as in free blocks.

Let F denote the average number of free blocks. (We assume
that an equilibrium has been reached, so it makes sense to talk
about averages.) Algorithm A requires, on average, the
inspection of about F/2 blocks when a block is allocated or
freed. Algorithms which use tag fields or doubly linked 1lists
may be slightly faster than Algorithm A, but they still require
time O(F) on average to allocate a block [5, Alg. C and ex. 19].

McCreight [6, ex. 6.2.3.30] has given a (theoretically) more
efficient first-fit algorithm. His algorithm, which we call
"Algorithm M", uses a height-balanced binary tree (AVL tree) with
each free block corresponding to a node in the tree. A field is
reserved in each node to indicate the size of the ‘largest free
block corresponding to a node in the left subtree attached to the
given node. A disadvantage of Algorithm M is that the smallest
block must be large enough .to hold at least five fields (two
pointers to left and right descendants, a balance factor
indicating the difference in height between the left and right
subtrees, and two size fields). A practical implementation would
probably maintain three additional fields (two pointers to left
and right neighbouring free blocks, and an "up"” pointer to avoid
the need for a stack when traversing the tree). Thus, Algorithm M

is not suitable in applications where small blocks are common oOr
where, to avoid the need for "actual” and "requested” size
fields, allocated blocks must be exactly the size requested.

The time required by Algorithm M to allocate or free
a block is 0(log F), theoretically better than the O(F) of
Algorithm A. However, the constant hidden in the "0" notation
is rather large (see Section 5) and the implementation of
Algorithm M is not a trivial task. The algorithm described in
Section 3 avoids these difficulties while retaining a logarithmic
worst—-case time bound.

3. A new algorithm for the first-fit strategy

In this section we describe a new algorithm, "Algorithm N", for
the pure first-fit strategy. Suppose that W contiguous words are
available for the dynamic storage area. Choose S to be a power
of two in the range W < ¢S < 2W for some suitable constant c (e.g.
c = 200: see Section 4). The dynamic storage area is split into S
segments, each (except possibly for the last one) of [W/S] words.
For a reason which will soon be apparent, we number the segments S,
S+1, ... , 28-1.

The algorithm maintains two arrays:

PA: array [S .. (2S-1)] of integer; {"pointer array”}
ST: array [0 .. (2S-1)] of integer; {"segment tree” }

so that the following relatiomns hold:

(address of the first block starting in seg-

ment i, or nil if there is no block starting
{in segment i ("nil" is some address outside

the allowable range for the dynamic storage

larea);

Il

PA[1]

(max (ST[2i], ST[2i+1]) if 0 < i < S,

0 if no block starts in segment i, S < i < 28§,

1 if some block but no free block starts in
segment i, § < i < 28,

1 + (size of largest free block starting in
segment i) if some free block starts in

L segment i, § < 1 < 2S.

ST[1i]

It

Thus, ST[l], ..., ST[2S-1] is a "heap"” in the sense of [6, Sec.
5.2.3], though we shall avoid using the word "heap"” because it
has a different meaning in the coantext of dynamic storage
allocation. We may think of ST[1], ..., ST[2S-1] as a perfectly
balanced binary tree of 2S5S-1 nodes, with implicit links. This 1is
illustrated in Figure 1 for S = 4. -

Figure 1: An example with W =99, S = 4

Segment 4 Segment 5 Segment 6 Segment 7

(25 words) (25 words) (25 words) (24 words)

PA[4] = O PA[5] = 21 PA[6] = nil PA[7] = 80

[-1]-6]X[10][FBIXT] 9] FFFFF | 251 [ROCOC XXX XX XX XXX KKK XKKKKKX | =4 [XX [15[FFFEF|
0 1 7 17 20 29 80 84 98
Sentinel block Segment boundary

[ST[1] = 16 | (largest free block has size 15)

ST[2] = 11 | (free block of “TSsT[3] = 16 | (free block of
size 10 in size 15 in
left half) right half)

y
[sT[4] = 11 [ST[6] = o[[sT[7] = 16]
(free block of size (no free blocks (no blocks start (free block of
10 starts in start in in segment 6) size 15 starts
segnent 4) segment 5) in segment 7)
—n]XX] = allocated block of n words (mot drawn to scale)

il

free block of n words

[CR[FF]

The first word im each block (free or allocated) is reserved
for a signed size field. The sign is positive if the block 1is
free, negative if it is allocated. Thus, if V[p] denotes the
content of memory location p, a block starting at location p has
size abs(V[p]), is free 1f V[p] > 0, and the next block (if any)
starts at location p + abs(V[p]). We esseantially have a singly-
linked list of blocks with a one-bit field to indicate whether a
block is free or allocated. To find the first free block of
size at least n words, we have (in pseudo-Pascal):

if ST[1] < n then {error exit: there is no free block
large enough}l;

i :=1;
while i < S do {descend segment tree, keeping left
where possible}l
if ST[2%i] > n then i := 2%i else 1 := 2%i + 1;
p := PA[1l]; {the required block starts in segment i,

and p is the address of the first
block in segment i}

while V[p] < n do p := p + abs(V[p]); {scan until block
found in segment i}

{now the required block starts at address p}

Before allocating a block p it is necessary to split it into
two blocks, of size n and V[p] - n, if V[p] > n. To do this we
set

vip] - n;

il

Vip+n]
Vip] := n;

and update the arrays PA and ST. The actions required are a
combination of those described below (although some optimizations
are possible), so we omit the details and assume that vipl] = n.
To allocate a block p starting in segment i we set

Vipl .:= =-Vv[pl
and update the array ST as follows:

{compute new value mx for ST[i]}
mx := 0;
q := PA[1i]; {first block in segment i}
while q ¢ segment i do {look for largest free block in
segment 1}
begin
mx := max (mx, V[ql);
q := q + abs(V[q])
end;
mx := mx + 1;
{now update ST[i] and its ancestors up the segment tree
as far as necessary}
ST[O0] := 0; {sentinel to ensure that the while loop
terminates}
while ST[i] > mx do
begin
ST[i] := mx;
i := 1 div 2; {ancestor}
mx := max (ST[2%i], ST[2*i+1])
end;

When a block p in segment i is freed, it must be merged
with its left and/or right neighbours if they are free, and PA
and .ST must be updated appropriately. There are several cases,
depending on whether the neighbours are in segment 1 or not, but
everything is straightforward once the block q preceding block p
is found. This may be done in 0(log S) operations by:

j =13
if PA[i] = p then {the difficult case: block p is the
first block in segment i}
begin
while ST[j—-1] = 0 do j := j div 2; {ascend tree}
j := j - 1; move left
while j < S do {descend tree again, keeping right
if possible}
begin
j o= 2*%j;
if ST[j+1] > O then j := j + 1
end
end;
{now the predecessor of block p lies in segment j}
qn := PA[j]l; {first block in segment j}
repeat {scan segment j until predecessor of p is found}
q := qn;
gqn := qn + abs(V[qn]) {qn is the successor of q}
until qn = p
{now q is the predecessor of p}

This works provided that a "sentinel” block is allocated at the
start of segment S and never freed (so that each block except
the sentinel actually has a predecessor). This is illustrated

in Figure 1.

4. Worst-case analysis of Algorithm N

When comparing the space requirements of different algorithms
we count any space used outside the W words reserved for the
dynamic storage area, as well as any reserved fields in allocated
blocks. We do not count any space used in free blocks.

The space required by Algorithm N is 3S + R words (3S for
the arrays PA snd ST, and one word per allocated block for the
signed size field). Recall that cS < 2W, so if c = 200 the space
required for PA and ST is less than 3 percent of the space
reserved for the dynamic storage area.

Let n 4. be the size of the smallest block ever allocated.
(We ignore the initial sentinel block here.) Since only ng 4 -
words are actually available in such a block (one word being
reserved for the size field), we can assume that Doin > 2, and
probably n_;, > 3. Thus, the space overhead caused by the size
fields is at most w/nmin < W/2 words. Although substantial
if there are many small blocks, this overhead is common to all
the first-fit algorithms considered - they all need to know the
size of a block when it is released, so a size field is generally
necessary. (In Pascal the size of a record without variants can

be determined at compile-time, but a size field is necessary to

1

determine the size of a record with variants at run-time, unless
the maximum size over all variants is allocated, which may waste
more space than the size fields.)

The number of blocks starting in any segment is at most
rrw/S]/nmini, which is bounded by fc/nminT. To allocate or
free a block requires at worst a small number of scans along the
chain of blocks in a segment and a small number of traversals
of a branch of the segment tree. Thus, the number of operations
is 0(log S) + 0(l) = 0(log W).

For Algorithm A the worst-case (and average) number of
operations is of order F, where F is the number of free blocks.
F is of order W if the average block size is small and the
loading is heavy.

For Algorithm M the worst-case (and average) number of
operations required to allocate and/or free a block is 0(log F) =
0(log W). However, the constant implied by the "0" notation is
considerably larger than for Algorithm N (see Section 5).

5. Implementation of Algorithm N

Algorithm N has been implemented as part of package intended
to make dynamic storage allocation readily available to Fortran
library routines [l]. The package includes routines for
operations on multiple stacks, deques and priority queues. Often
a single stack is sufficient [2], but in some applications more
general facilities are useful. (In fact, the motivation for
development of the dynamic storage allocation package was that it
was needed to provide storage management for a multiple-precision
interval arithmetic package.) It would not be difficult to
translate the basic dynamic storage allocation routines into
another low—-level language.

To provide a benchmark we also implemented Algorithm A. The
implementations were tested with several distributions of block
sizes and lifetimes, using a "must keep going"” testing procedure
[4]. As expected, the algorithms both implemented the same (pure
first-fit) strategy, and differed only in their space and time
overheads. We found that Algorithm A was faster than Algorithm N
if there were few blocks allocated, but Algorithm N was faster if
there were more than about 100 allocated blocks (or 50 free
blocks: note the "fifty percent” rule [5]). Some statistics
are given in Table 1.

Table 1: Comparison of Algorithms A and N

Distribution(l) Average number Average time to Ratio
of free blocks allocate and free Alg.N/Alg.A
F a block (2)
Alg. A Alg.N
(a) 30 287 321 1.14
(b) 60 446 391 0.88
(c) 120 738 484 0.66
(d) 240 1182 559 0.47

(1) Distribution (a) has

blocksize uniform in 1..10,

with probability 0.8,

blocksize uniform in 10..100,

blocksize uniform inm 100..1000,

lifetime in 1..100,

lifetime in 1..100,
with probability 0.1,

with probability 0.1

lifetime in 100..200,

Distribution (b) is the same as (a) except lifetimes are
Similarly for (c) and (d),

doubled and blocksizes halved.

with factors of four and eight respectively.

blocksizes are rounded up to the next integer.)

(Non-integral

(2) Times are in micro—-seconds, based on 100,000 trials on a
Univac 1100/82. For Algorithm N we used W = 15,000 and

S = 128.

The times given for Algorithm N in Table 1 could be
decreased, at the expense of using more space for the arrays PA

and ST, by increasing S, the number of segments.

The almost

linear time required by Algorithm A (as a function of F, the
number of free blocks), and the logarithmic time required by
Algorithm N, is evident from the third and fourth columns of

Table 1.

Algorithm M has not yet been implemented fully,

of a priority queue implementation using

5.2.3], which are easier to update than AVL trees,
our implementation of Algorithm N would be at least twice as fast

as a similar implementation of Algorithm M.

but timing
"leftist trees"” [6, Sec.
indicates that

This is plausible

because the tree used by Algorithm N is always perfectly balanced
and links do not need to be maintained between its nodes (since

they are implicit).

6. Conclusion

We have shown that it is possible to implement a good dynamic
storage strategy, the first-fit strategy, so that:

1. Only one word per allocated block (plus a few percent of the
total space) is required for "housekeeping” purposes.

2. The time required to allocate or free a block does not
increase linearly with the number of free blocks, but only
as 0(log W), where the dynamic storage area has size W.

3. The algorithm is straightforward and relatively easy to
implement, even in a low-level language.

It is not clear whether a similar implementation of the best—-fit
strategy is possible. However, the average behaviour of first-
fit is usually about as good as that of best—-fit, and the worst-
case analysis clearly favours first-fit [7]. First-fit also
appears to make better use of the available storage space than
does the "buddy" system [5], unless the block sizes are
restricted to favour the "buddy"” system. . Another advantage of
the first-fit strategy 1is that it tends to leave a large free
block at the high end of the dynamic storage area, and this space
may be used for a stack which grows downwards. This facility
has been included in the implementation [l1]. Since allocation
of space on a stack is much simpler than general dynamic storage
allocation, it is desirable to use a stack where possible (e.g.
for procedure activation records).

References

1. R.P. Brent, A portable dynamic storage allocation package,
Tech. Report, Dept. of Computer Science, Australian National
University (in preparation).

2. P.A. Fox, A.D. Hall & N.L. Schryer, The PORT mathematical
subroutine library, ACM Trans. Math. Software 4 (1978), 104-
126.

3. B.J. Gerovac, An implementation of new and dispose using
boundary tags, Pascal News 19 (1980), 49-59.

4. J.B. Hext, A storage management laboratory, Austral. Comp.
Sci. Communications 2, 1 (Jan. 1980), 185-193,

5. D.E. Knuth, The Art of Computer Programming, Vol. 1l:
Fundamental Algorithms (2nd edition), Addison-Wesley,
Reading, Mass., 1973, Section 2.5.

6. D.E. Knuth, The Art of Computer Programming, Vol. 3: Sorting
and Searching, Addison-Wesley, Reading, Mass., 1973.

7. J.M. Robson, Worst case fragmentation of first fit and best
fit storage allocation strategies, Comp. J. 20 (1977), 242-
244,

8. J.E. Shore, On the external storage fragmentation produced
by first-fit and best-fit allocation strategies, Comm. ACM
18 (1975), 433-440.

