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Abstraet

The implementations of most programming languages restrict the maximum
size of integers because they are represented in a fixed number of bits.
Similarly, reals have a restricted exponent range and a restricted
precision. This paper suggests semantics for integer and real types which
are closer to the usual mathematical definitions of "integer" and "real",
and gives examples to illustrate their use. Possible implementations (both
with and without special-purpose hardware) and implications for space and
time-efficiency of programs are discussed.

l. Introduction

Because of a desire to implement basiec arithmetic operations
efficiently on the hardware available, the implementors of most high-level
lanpguages have restricted the range of "integers" so that they can be
represented in a fixed number of bits {(typically l6-64). Similar
restrictions have been imposed on both the exponent range and the precision
of "reals", which are typically packed inte a fixed number (32-96) of bits.
When languages have been rigorously defined, the definitioms have usually
compromised the accepted mathematical meaning of "integer" and "real" by
building such restrictions into the definition, although the precise number
of bits used is generally left unspecified as an "implementation dependent"
detail.

For example, Pascal [Al, J1] has a type "integer" which represents
integers in the range =-maxint .. +maxint, where "maxint" is an
implementation-dependent constant. Pascal has a "real" type, but the
standard [Al] does not specify the exponent range or precision. Typical
Pascal compilers use the "single—precision" or, in a few cases [52], the
"double-precision” representations supported by the hardware.

Some languages allow several varieties of "reals". For example,
Fortran [A2, A3] allows "real™ and "double precision", Algol 68 [Wl]
allows "short real", "real', "long real", "long long real", ... . PL/1
[L1], Cobol [A4] and Ada [D1] allow the specification of an "equivalent"
number of fixed or floating decimal places. TFor example, in Ada the user
can write:

type F is dipgits 10;

and the implementation is free te provide a hardware type with at least

10 decimal digits of precision to implement F . The meaning of "at least"
iz defined in terms of Brown’s model [B5] (which models a binary rather
than decimal machine). The exponent range can not be specified direcrly,
but the (binary) exponent range Is required to be at least four times the
number of bits in the floating~point fraction.



The proliferation of implementation-dependent types to approximate the
one mathematical comcept ("real"), as in Fortran or Algol 68, is
unappealing and inhibits portabilicty of programs. The Pascal "solution"
of a single type "real" is more elegant, but not useful for solving
problems which require more precision or exponent range than is provided by
the implementation. 4Ada, PLfl and Cobol suffer from a lack of dynamically
variable precisioen. For example, "digits n", where n 1is a variable, is
not permitted in Ada. There are also problems associated with type
Incompatibilities {(especially in Ada [C4, H1]), the decimal specification
of a binary representation, the lack of direct control over exponent range,
and implementation—dependent restrictions.

In Section 2 we suggest "ideal" semanties for "integer" and "real"
types. Some example of program segments which take advantage of these
semantics are given in Section 3. In Section 4 we discuss some variations
in the possible "ideal" semantics, and in Sections 5 and 6 we suggest some
possible implementation techniques. The status of current implementations
is outlined in Section 7.

Similar ideas have been suggested and (in some cases) implemented
several times before. 3See, for example, [B2, H3, S1, Tl]. Hull's
proposals [H2Z, H3, B4] are discussed briefly in Section 4.

Because of space limitations we do not discuss arithmetic exception
handling or the related topics of "infinities" and "NaNs" [Kl, 53] here.
However, they are important topiecs which should be considered when a
programming language is being designed [F1l].

2. Ideal semantics for "integer" and "real" types

There is no doubt about the ideal semanticse for type "integer": all
integers {0, +1, +2, ...} should be represented exactly, and the
arithmetic operations + , = , # , mod and div showld give exact
results. The only implementation—dependent restriction should be that
sufficient storage is available. In fact, some symbolic algebra systems
[M2] do implement "ideal" integer semantics.

For type "real" some compromise is necessary because most real numbers
(e.g. 7 ) can not be represented exactly in any binary or decimal system.
The semantics of "real" variables can not be separated from the semantics
of the arithmetic operations performed on them.

Before proceeding we need some notation. Let B> 2 be a fixed base
(or radix), and t > 1 a (variable) number of digits which is defined for
each arithmetic operation. Let R be the (marthematically defined) set of
real numbers. For any x £ R we define



[
“N{-x) if = =< 0,
N{x) = x=% if x + % is an odd positive integer,
lx+5] otherwise,

and

0 if x=0
r.(x) =
C - - -
Ek tH{Et ko) s sk l_g =] < ﬁk for integer k.

Thus, N(x) is the "nearest integer to x" (with the "round to even"
rule for breaking ties), and rt{x} is one of the nearest real numbers
to x In the set

Ry = {8%1 131 < 6%, i, m integer}
of reals representable exactly with a t-digit , base £ fraction.

If p 1is a variable of type "real", then the "value" of p is either
undefined or an exact real number F ¢ R . If 8 is an arithmetic
operation ("+', """, "&" or "/") peeuring in an expression, 0§ denotes
the corresponding (exact) mathematical operatiom.

We now specify the value p 6 q of an expression p q , where p
and q are variables of type "real". TFormally,

undefined if p , ¢ or t is undefined,
{2.1) pBgqg = undefined if 8 = "/" and q = 0,
rt{rtiﬁ) & rL{E]) otherwise.

Informally, we round the operands p and q to t floating digits,
perform the arithmetic operation exactly, then round the result to t
digits. This is not difficult if a "sticky bit" is used [K1].

In the following examples we assume the existence of a global wariahble
"precision" which may be copied or changed in the same way as other
variables. The value of t 1is required to satisfy

(2.2) t = digits (precision)

where "digits" is some specified positive, monotonie nondecreasing, integer
function. The simplest and probably best choice [H3] is B = 10 and

t = precision . However, to allow implementations with g #F 10 {e.g. g = 2)
and/or for which t must be a multiple of the wordlength, we only insist
on the weaker condition (2.2). For example, we might choose



t = 32 F{logzlﬂ} * precision/327]

on a binary machine with a 32-bit word, if "precision" was regarded as
specifying a lower bound om the Mequivalent" number of decimal places.
Alternatively, we might choose t = precision if "precision" was regarded
as specifying the exact number of floating (base B) digits. We say that a

result is "accurate to precision p" if its relative error is
U[E—dlgltE(P)}_

Lack of space prevents us from discussing "ideal" semantics of real-
valued funetions such as sqrt, exp, cos here.

3. GSome examples

In this section we give some fragments of Pascal-like programs which
use the "real" semanties described in Seetion 2. Several similar examples
are given in [H4). Examples using the "integer" semantics of Section 2
are easy to construct.

g+ Inner products

In many linear algebra routines it is desirable to accumulate inner-—
products in higher precision than the rest of the computation [W2]. Hence,
to compute

n
g 1= ) x[i]*y[i]
i=1
we might have:

constt 0 = ass 3}

8 1 real;

%, ¥ : array [l..n] of real;

it laamg

precision := 2¥precision;
s 1= 0;
for i := 1 te n do
5 1= 5 + x[1]%*y[1];
precision := precision div 2}



b. Seclution of ill-conditioned problems

Some problems are inherently ill-conditioned and require high-precision
computation to obtain moderate-precision solutions. This is justified if
the data for the problem is exact, though usually not if the data is
contaminated by observational errors (because the 1ll-condition may magnify
these errors to make the "solution" meaningless). As an example we
consider the solution of a linear system of equations

Ax = b,

where A 1is nonsingular but ill-conditioned, and A and b are given
exactly. The structure of a program which usually gives x accurate to
any tequired precision is:

CONSE N = wuw }

p0 : intepger;

tol : real;

b, r, %, v : array [l..n] of real;
A, LU : array [l..n, l..n] of real;

'R

precision = ... {required final precision};
pl := precision {save to restore later}:
tol i= ... {tol := E—digits{pﬂ}};
{set up A and b to current precision}

repeat

{compute and save LU decomposition of A with pivoting}
{compute = using LU decomposition of A}
precision := 2*precision {double the precision};
{recompute A and b to current precision}
{compute r := Ax~b}
{solve Ay = r using LU}
until f|w¥l] < tol * ||x]||;
precision := pl {restore precision};

4n alternative termination criteriom is ||x]|| * ¥ < tel * [|b]|], where
¥k 1s an estimate of the condition number of A, obtained as in [C2].

c. Computation of special functions

To compute some mathematically defined funetion £(x) to precision
P by an obvious method (e.g. Taylor's series) often requires working to
higher precision [BZ, Cl]. In order to give a simple example, suppose
that

f{x) = E ﬂi{x} 3
i=0



where the ay alternate in sign and lai{x}l > Lai+l(x)]. The
following program computes f£{x) to any desired precision.

i, p0, del : integer;
a, est, £, tol : real;

- wm

precision := ... {required final precision};
tol i= ... {tol := g-digits {preclsion}}i
pQ := precilsion;
del 1= 1 {or some positive Function of est/ftol};
repeat
precision := precision + del {increase precision};
£ := 0;
est = 0;
i = 0;
repeat [sum enough terms}
8 1T was {compute a := ai(x) accurate to current precision};
£ 1= f+a;
ast := est + abs(f) {for rounding error estimate as in [P1]};
i := i+l

until abs{a) <€ tol*abs{(f) {truncation error bounded by absf{a)};
est := est/ptdigits{precision) {a posteriori rounding error estimate}
until est € tol®*abs{f);
precision i= pl {restore precision};

4. Alternative semantics for tvpe real

Hull’s proposals [H2, H3, H4] have the same motivation as ours but
differ from ours in one major respect: when declared, his "real" variables
have some precision assoclated with them, e.g.

real {16} x
or real (p) ¥

where p may be a variable (as in the declaration of a dynamic array
hound}. If the "current precision™ is higher than the declared precision
of the variable on the left of an arithmetic assigmment, the result is
rounded to the lewer precision. With our proposal (described in Section 2)
a "real" variable does not have any precision associated with it at the
time of its declaration. This seems more matural, as we may not know in
advance what precision is required, and at different times the same
variable may be used on the left of assignments with varying precisions (as
in examples b and ¢ of Section 3).

Hull proposes setting the current precision in a "precision block"
declaration. For example, his:



begin precision (p)
. {no jumps out of block}
end

is equivalent to our:

psave: Iinteger; {temporary]

begin
peave i= precision {zave precision};
precision i= p {set precision to pl;

precision := psave {restore precisiomn}
end

We avoided the introduction of "“precision blocks" for the following
reasons:

1. They introduce a new (and avoidable) syntactic entity.

2. Precision blocks are only possible in block-structured languages,
but we planned to incorporate "ideal" real semantics in both block—
structured and non—block-structured lanpguages {see Section 7).

Some wvariations on the definition (2.1} are possible. We might, for
example, perform the operation exactly and then round the result to ¢t
digics, i.e.

(4.1) peq = r.(poaq

when p g q dis defined. This definition was excluded because it would
be very aexpensive to implement in certain cases. For example, in:

real p, q, T;
precision := 1000;
D 1= e

g iF ses 3
precision = 10;
T = p/q

the division might need to be performed to wvery high precision. HNote,
however, that (2.1) and (4.1} are equivalent if p and gq were computed
with precision less than or equal to the current precision.



5. Possible implementations of type integer

Any implementation of arbitrary-length integers requires some form of
dynamic storage management, because the space required te represent the
variables and intermediate results In arithmetic expressions is not known
in advance. The obvious schemes use

a. Singly linked lists; or
b. Contiguous blocks of storage.

The second scheme has the advantage of permitting faster arithmetic
operations (because the arithmetic routines do not have to traverse lists)
and has been chosen for the implementation described in Section 7. Scheme
(b) can be expected to generate less page faults than scheme (a) on
machines with virtual memory. Scheme {a) has the advantage of simplicity;
dynamic storage allocation simply requires the maintenance of a free-list,
whereas scheme (b) requires an algorithm to allocate and free contiguous
blocks of memory efficiently [K2].

With either scheme, arithmetic operations on integers would be much
slower than the corresponding operations on one—word integers implemented
by hardware or microcode. Hence, when implementing a language similar to
Pascal or Ada, it would be important for a compiler to generate single-word
instructions where they could be guaranteed to be sufficient. For example,
a Pascal-like language might have:

const n = 100;
%, ¥ : array [0..n] of integer;
i Oeam;
for 1 := 0 to n de
®[1i] := x[1 div 2] + ¥[i];

Bince all indexing operations, de-loop control, ete. require only single-
precision operations, only one (possibly) multiple—precision operation
needs to be performed in the loop.

On many machines it would be possible to implement operations on
arbitrary=-precision integers at little cost in space or time if the
operands and results happened to be small, although at the expense of
processing a memory-protection exception for each "genuine" multiple-
precision operation. The idea is that all integers (except those known to
be small, as in the example above) would be accessed indirectly through a
word which would contain their address (if representable in single-—
precision) or an illegal address (if not representable in single=
precision). The cost for single-precision operations would be one
additional level of indirection (and some restrictions on code generation).



For operations invelving a multiple-precision operand, the trap handler to
which control would pass om an illegal memory reference would have to add a
suitable constant to the illegal address (to get the actual address of the
block or header of the linked list containing the multiple-precision
operand), interpret the instruction which penerated the trap (and possibly
one or more following instructions), and call the appropriate multiple-
precision arithmetic routine. Similar modifications would be required for
the trap handler dealing with integer overflow.

On a micro—coded machine, or one designed with multiple-precision
arithmetic in mind, it would be possible to reserve one "tag" bit per word
as a flag to indicate if the remaining bits were to be regarded (in Iinteger
arithmetie operations) as single—precision integers or as pointers to
multiple-precision integers. Then the facility for performing multiple-
precision arithmetic would not increase the cost of operations on small
integers. The cost of performing multiple-precision arithmetie could also
be reduced by specially designed hardware [C3, RZ].

b. Possible implementations of type real

A pair (e, f} of integers can be used to represent a "real" wvariable
x with value B®f (or, more conventionally, Be_tf}, where |f]| < Bt,
B is the base (see Section 2} and t the value of digits (precision} on
the last assignment of a walue to x . Thus, the problem of implementing
type real reduces to the problem of implementing type integer, already
discussed in Section 5+ For the sake of efficiency in dealing with real
variables whose precision matches the precision implemented in fleoating-
point hardware on the machine, ideas similar to those discussed at the
end of Section 5 could be used.

In practice it is unlikely that the exponent e of a real variable
will exceed the maximum size of a single-precision integer during execution
of a correct program. Thus, an implementation might impose this
restriction on the allowable exponent ramge of real variables. This was
done in the MP package [Bl, B4], for example. A disadvantage is that the
possibility of exponent overflow and underflow has to be considered,
whereas overflow and underflow are impossible if e 1is an unrestricted
integer.

7« Current and planned implementations

Hull has implemented his proposals for type real (which differ from
purs as outlined in Section 4) with both a precompiler [H4] and an Algol-
like language [C6]. He is also implementing decimal multiple-precision
hardware [C3] so as to make it feasible to choose B = 10.
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We have implemented both type integer and type real (as described in
Section 2) by a set of Fortran subroutines which call the MP package [Bl,
B4] and some Fortran dynamic storage routines [B3]. Using the Augment
precompiler [C5], this allows an extension of Fortran incorporating the
"ideal" integer and real semantics. The user need not be familiar with the
MF package or the actual representation of multiple-precision integer and
real variables. The implementation is currently working, but not (as of
October 1981) completely tested or documented.

Implementation using Augment and the MP package was considered a "quick
and dirty" way of obtaining experience in programming a variety of problems
which could benefit from the "ideal" semantics for type integer and real.
We plan to implement a modification of Pascal (hardly an extension
because no change in the standard Pascal syntax is proposed, only a change
in the semantics of type integer and type real). One possibility is to use
an existing portable compiler and merely modify the P-code interpreter.

Historically, the project started from an attempt to implement
variable-precision interval arithmetic [M1] using Augment and the MP
package. We now plan to implement intervals as pairs of "ideal" real
variables.

8. Conclusion

In Section 2 we presented "ideal" semantics for type integer and type
real. These semantics are actually simpler and more amenahle to
mathematical analysis (e.g. for correctness proofs) than the usual
semantics because they avoid problems of limited range and machine-
dependence. The utility of the "ideal" semantics was demonstrated by some
examples in Section 3, and alternatives were discussed 1n Section 4.

The only valid argument against the adoption of our "ideal" semantics
(or something similar) is the cost of implementation. In Sections 5 and §
we argued that this cost need not be very great. & practical demonstration
will depend on the success of the implementations described in Section 7.
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