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Systolic VLSI Arrays for Polynomial
GCD Computation
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Abstract — The problem of finding a greatest common divisor
(GCD) of any two nonzero polynomials is fundamental to
algebraic and symbolic computations, as well as to the decoder
implementation for a variety of error-correcting codes. This paper
describes new systolic arrays that can lead to efficient VLSI solu-
tions to both the GCD problem and the extended GCD problem.

Index Terms — Algorithms, error-correcting codes, greatest
common divisor, special-purpose hardware, systolic arrays,
VLSIL.

[. INTRODUCTION

HE polynomial GCD problem is to compute a greatest

common divisor of any two nonzero polynomials. The
problem is fundamental to algebraic and symbolic com-
putations (see, e.g., [3],[7]), and to the decoder imple-
mentation for a variety of error-correcting codes (see, €.g.,
[12], [13]). Many sequential algorithms for solving the GCD
problems are known in the literature. In fact, the Euclidean
algorithm and its variants for solving the problem are among
the most well-known and well-studied computer algorithms
(see [1],[7]). However, for direct VLSI implementation,
these previously known algorithms all seem to be too irregu-
lar and/or too complex to be useful. For example, the
Euclidean algorithm involves a sequence of complicated
polynomial divisions on polynomials whose size can only be
determined during the computation. This paper describes
some simple and regular systolic structures that can lead to
efficient VLSI solutions to the GCD problem and some of its
variants. For instance, we describe a systolic array of
m + n + 1 cells that can find a GCD of any two polynomials
of total degree no more than m + n. Fig. 1illustrates that the
systolic array inputs the coefficients of the given polynomials
2o ax’ and XL, bx' at the left-most cell, and outputs the
coefficients of their GCD at the right-most cell. More pre-
cisely, if a unit of time is the cell cycle time (which is basi-
cally the time to perform a division, or both a multiplication
and an addition), then at 2(m + n + 1) time units after the
a, and b,, enter the left-most cell, the coefficients of the GCD
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Fig. 1. Systolic GCD array.

will start coming out from the right-most cell at the rate of
one coefficient every time unit. During computation all
cells work in parallel and communicate with their nearest
neighbors only.

Like many other systolic designs (see, e.g., [10],[11]),
systolic GCD arrays in this paper are suitable for VLSI
implementation and can achieve high throughputs with rela-
tively low costs. These systolic GCD arrays were actually
designed for the purpose of implementing the decoder for
Reed—Solomon error-correcting codes (and BCH and Goppa
codes, in general) with the CMU programmable systolic chip
(PSC) that has been fabricated in nMOS and is functionally
working [5], [6]. The most difficult step in the decoder im-
plementation was to solve a version of the extended GCD
problem; results of this paper helped solve this problem
(see Section V).

1t may not be easy to understand some of the more compli-
cated systolic arrays of this paper. We shall start with the
basic ideas and describe some simpler designs first. We hope
informal arguments we give will convince the reader that
our designs are correct. Formal correctness proofs for our
designs would be very interesting, but they are beyond
the scope of this paper. Nevertheless, every design men-
tioned in this paper has been coded, and thoroughly tested
by simulation.

II. GCD-PRESERVING TRANSFORMATIONS

All of the known algorithms for solving the GCD problem
are based on the general technique of reducing the degrees
of the two given polynomials by “GCD-preserving trans-
formations.” A GCD-preserving transformation transforms a
pair of polynomials A and B into another pair A and B, with
the property that a GCD of A and B is also a GCD of A
and B, and vice versa. When one of the two polynomials is
reduced to the zero polynomial by a sequence of such
transformations, the other polynomial will be a GCD of the
original two polynomials.

Methods of this paper are also based on the general tech-
nique outlined above. We assume throughout that coeffi-
cients of the polynomials belong to a finite field F. This
assumption is appropriate for applications to the decoder
implementation for error-correcting codes; in the last section
of the paper we point out that with straightforward modi-
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fications our designs will work over any unique factorization
domain and thus require no divisions. In the following we
define two GCD-preserving transformations R, and R,. Let

A=ax'+ - +ax+ q
and
B=bj.rf+---+b|.r+bu

be the two polynomials' to be transformed, where a; # 0 and
b; # 0. Depending on the value of i — j, one of the following
two transformations is applied to A and B.

Transformation R, (for the case when ; - j=0)

A=A—-qgxB
_________ B=8B
whered = i — jand g = a,/b,.

Transformation R; (for the case when i — j < 0):

whered = j — i and ¢ = b;/a;.

It is easy to check that both the transformations are GCD
preserving. Furthermore, note that R, reduces the degree of
A by at least one, i.e.,

deg A < degA — |,
and Rp reduces the degree of B by at least one, i.e.,
degB <degB — 1.

For notational convenience, we assume that the degree of the
zero polynomial is 1. Suppose that both A and B are poly-
nomials of degree zero, i.e., they are nonzero constants in the
underlying field F. Then by transformation Ri, A will be
reduced to the zero polynomial, which has degree —1.

ITII. TRANSFORMATION SEQUENCE FOR THE
GCD COMPUTATION

Suppose that we want to compute a GCD of two given
polynomials A, and B, of degrees n and m. We will apply a
sequence of GCD-preserving transformations, each one be-
ing either R, or Ry, to the two polynomials until one of them
becomes the zero polynomial; at this point a GCD of Ay and
By is the other (nonzero) polynomial. We call this sequence
of transformations the transformation sequence for the GCD
computation for Ay and By, and denote it by (I, Th, -+, T)
for some k, where T, | < i < £, is either transformation R4
or R;. Note that the transformation sequence is uniquely
defined for given A, and B,.

An instructive way to view the function of the trans-
formation sequence is to imagine that polynomials A, and B,
move through the “transformation stages,” T\, 15, - -+, T}, in
the left-to-right direction, and get transformed at each stage

‘Throughout the paper polynomials are represented by upper-case letters
and their coefficients by corresponding lower-case letters.
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accordingly. When the polynomials move out from the last
stage 7;, one of them will be the zero polynomial and the
other the GCD of A, and B, that we want to compute. This
view is illustrated in Fig, 2.

Foreachi = 1, k, transformation T; reduces the de-
gree of one of its two input polynomials by some positive
integer 6;. We call §; the reduction value of T:. Usually, §
is 1, but it could be greater than 1 at times. Since the total
degree of Ay and B, is n + m, the sum of reduction values
over i = 1, k obeys the important relation =%, §, <
n+m-+ 1.

IV. SystoLic GCD ARRAY

In this section we describe a systolic array of n + m + |
cells capable of computing a GCD of any two polynomials A,
and B, of degrees no more than n and m, respectively.

Consider the transformation sequence (7;, Ty -, T for
the GCD computation for Ay and B,. We shall show that for
each i =1, -+, k, transformation 7; can be realized by a
subarray of & cells where &, is the reduction value of 7. Since
S8 =n+m+ 1, the systolic array with n + m + 1
cells can realize all the transformations, and therefore can
compute a GCD of A, and By. This is illustrated in Fig. 3.

A. Basic Idea {for Realizing a Single Transformation Stage)

Let T be any transformation in the transformation sequence
(T, 15, - -+, Ty), and & its reduction value. We illustrate how
a subarray of & cells can realize T, assuming that by some
other methods (see, for example, Section IV-B) we know
which one of R, and Ry transformation T is.

Here we consider only the case when T is R,; the case when
T is Ry can be treated similarly. Without loss of generality,
assume T is defined as follows:

A— 7T — A =A-gxB
B—a{”__}f"___é—>§=3

where
A=ax'+ - + ax + a, (a; # 0),
B=bx'+--+bx+b, (bh+0)),
q = ai/b;,

and

d=i-j=0.

Note that either A is the zero polynomial, or

Z = E,-_(g,l'i_a + -0+ E|X + Eo,

where a;_; # 0. The systolic subarray for realizing T,
together with the operations performed by each of its cells at
every cycle, is shown in Fig. 4.

Terms in A and B move through the subarray serially, high
degree terms first. The nonzero leading terms of A and B are
lined up so that they enter the left-most cell at the same cycle.
Fig. 4 assumes that i = j + 1 to illustrate the point that for
the case when i > j, for the input of B, as many as{ — jzeros
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Fig. 3. (a) Transformation sequence, and (b) its realization by three
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Fig. 4. Systolic subarray and its cell definition for realizing

a transformation R ;.

should be added to the left of by. Besides the systolic data
paths for a and b, there is another 1-bit wide systolic coniro!
path, denoted by start; a true value on this path signals to a
cell the beginning of a new GCD computation in the follow-
ing cycle. In Fig. 4 (and other figures in sequel) 1-bit wide
systolic control paths and the associated latches in a cell are
shown by dotted arrows and boxes.

It is easy to see that the left-most cell performs g : = a;/b;
in the first cycle and computes terms of A in subsequent
cycles. The ¢’s computed by other cells, however, are always
zeros since terms of A that have degrees higher thani — Sare
zero terms. The only function of these cells is to shift the a’s
faster than the »'s; notice that each b stays at each cell it
passes for an extra cycle. Through these “shifting” cells the
nonzero leading term a;_; of A will depart from the right-most
cell at the same cycle as b;, the nonzero leading term of B.
Thus, a;—s and b; are ready to enter another subarray of cells
to the right-hand side for realizing whatever transformation
follows 7. The important fact that outputs A and B are lined
up is depicted in Fig. 3.

There is no need to keep track of the & value in the systolic
subarray. If A is nonzero, the realization of the trans-
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Outputs of the systolic subarray of Fig. 4.

formation following T starts automatically at the first cell
that sces a nonzero input, i.¢., G;_5 appearing at its input
line a,,. If A is the zero polynomial, then T must be the last
transformation 7. In this case, the b’s will continue being
shifted to the right-hand side to be output from the right-most
cell, and they will be the terms in the GCD that we wish
to compute.

B. Design Using Difference of Degrees

We have seen that a systolic subarray with its cells defined
by Fig. 4 can realize any transformation 7T, if it is known
which one of the transformations R, and R, transformation
Tis. Let

d=deg A — degB

where A and B are the polynomials to be transformed by 7. By
the definition in Section 11, T is R, if d = 0; otherwise, T is
Rp. The cell design in Fig. 6 keeps track of the value of d, and
consequently is able to determine on-the-fly which trans-
formation to perform. We specify the cell in terms of a finite
state machine of three states. Operations performed by each
cell during a cycle depend on the state that the cell is in.
Initially, every cell is in state initial. Triggered by the start
signal it will go to one of the other two states — reduceA or
reduceB, and eventually return to state initial.

To illustrate what the code does, consider once more the
systolic subarray in Fig. 4. Suppose thatd = i — j > 0 and
b; # 0. Marching to the right-hand side together with b; is the
current value of d. Each cell upon receiving a true value from
the systolic control path start will go to state reduceA (since
d > 0). When a;-; (¥ 0) and ;are output from the right-most
cell of the subarray, they will enter the cell to the right in the
following cycle with state reduceA if d = 0 or reduceB if
d <0,

Withm + n + 1 cells a systolic array based on this design
can compute a GCD of any two polynomials of total degree
less thanm + n + 1. Moreover, immediately after the input
of one pair of polynomials, a new pair of polynomials can en-
ter the systolic array. That is, the systolic array can compute
GCD’s for multiple pairs of polynomials simultaneously, as
they are being pumped through the array. Fig. 7 depicts this
pipelined computation.

We assume that none of the given pairs of polynomials
has x as its common factor, so their GCD’s have nonzero
constant terms. (Note that common factor x of two poly-
nomials can be easily factored out from the polynomials
before the computation.) With this assumption, one can de-
duce a GCD from the output emerging from the right-most
end of the array in a straightforward way. More precisely, the
constant term of the GCD is the last nonzero term coming out
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1f start then
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it (ain = 0) or ((bin <= 0) and {dig >= 0)) then
begin
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if bis = 0 then q := 0 else q:= Ajn/bin:
a:= 0 b :® byns d 23 dypy - 1
end
alse
bagin
state := reduceB; q := binfays: b := 0
2 :® s d 1w odyy + 1
and
and;
start := starty,
end;
reduceA: (transfora A and shift a's faster than b8}
begin
dour :® d; startey := start;

1t starty, then state := initial;

Bout 1% 8ja ~ Q*Bini  Bour :¥ b: b = bia;
start ;= startyg; d := dy,
and;

reduceB: (transform B and shift b's faster than a's}
bagin

dout := d:i startoy := start:

17 starti, then state := initial;

Byt 1T 27 @ T A4n; byl 17 Bia - g*ayp:
start := startj,; d := dy,

end;

Fig. 6. Cell definition for the design using difference of degrees.

a’ a’ a’ a a 0
O . PR Pt PO — —
0 by b, o b

e ... o, 8 Po —{ ]
1 0 1 il

R T . . S - .

2D HATEH —— 15T BHATCH  —3»

Fig. 7. Multiple batches of polynomials entering the systolic
array continuously.

from the array before output of the next batch of polynomials
starts emerging, and the high-degree terms of the GCD are
those terms that are output earlier at the same output line.

V. SYSTOLIC ARRAY FOR THE EXTENDED GCD PROBLEM

The GCD problem can be extended to find not only a
greatest common divisor, GCD(A,, By), of A, and B, but also
polynomials ¥ and V such that

UAU + VBO = GCD{AQ, Bo) .

More generally, for n = deg A, = deg B,, we want to find
polynomials U, V, and W such that

UAy + VB, = W

wheredeg V < n — k,deg W < k, and k(=n) is some given
integer greater than the degree of GCD(Ay, By). This new
problem, called the extended GCD problem, is important for
many applications including the decoder implementation for
a variety of error-correcting codes. For example, finding the

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-33, NO. 8, AUGUST 1984

error location polynomial of Reed-Solomon decoding men-
tioned in Section I calls for solving the extended GCD prob-
lem in the general sense, with Ay = x™, B, being a given
(syndrome) polynomial of degree 31, and & = 16 [13].

We show that U/, V, and W can be computed by the same
transformation sequence as for the GCD computation for A,
and By. The following equations hold when A = A,, B = B,,
L=I,M=0,R=0,and S = 1:

LAy + RBy = A,

(
MA, + SBy = B.

Replacing the first equation with a difference gives

(L — qxMA; + (R — gx“S)By = A — gx“B,
MA, + SBy = B .

Thus, equations in (1) are invariant under the “extended”
transformation R,:

Ai=A-gx'B, L:=L-qgx'M,

R:=R — gx's. (2)

Similarly, they are invariant under “extended” transforma-
tion Rﬂ:

B:=B - gx'A, M:=M - gx'L,

§:=85 - gx'R. (3

Therefore, we can apply a sequence of these extended GCD-
preserving transformations to A(= A,) and B(= By) until
A(or B) becomes GCD(A,, By) or, for the general case, a
polynomial W of degree less than k. At this time L and R
(or M and §) will be the U/ and V that we want to compute.

Each cell of the systolic array will now perform the ex-
tended transformation R, defined by (2) or R, defined by (3).
Consider the case when the extended transformation R, is to
be performed. At first glance, one might think that terms in
L and R could be computed exactly the same way as those in
A since they are defined by the same transformation [see (2)].
This scheme does not work, however, because degrees of L
and R are increased by the transformation, while that of A is
decreased. It is therefore necessary to “leave room,” in front
of the current leading terms of L and R to accommodate those
higher degree terms to be acquired in the future. This implies
that in the systolic array terms in L and R should travel more
slowly than those in A. Based on this observation, a cell
design for the extended GCD computation is given in Figs. 8
and 9. Codes involving terms in R and § are not shown in
Fig. 9, as they are similar to those involving terms in L and
M. To save pins in chip implementation, the current design
can be trivially modified so that terms in L and M (or in R and
§) will be computed in a separate pass.

Note that a cell has two internal registers for each of the I,
m, r, and s data streams. Therefore, if the cell is in state
reduceA, then a term in L or M will take twice as long to pass
the cell as a term in A or B, respectively. Relatively speaking,
if terms in M and S cross the cell at speed 1, then terms in L,
R, and B cross at speed 2 and terms in A at speed 3. The
correctness of the cell specification can be verified by
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begin
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1f starty, then state := initial;
Bout % 24p = q*byn:
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bagin

dout := d; startour :® start;

1f starty, then state := {nitial;
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Fig. 9. Cell definition for the systolic cell of Fig. 8 for the extended GCD

compulation (omitting statements involving r, s).

showing that the cell preserves the invariance of (1). Indeed,
this invariance condition was used explicitly by the authors
when designing the cell.

The systolic array described here for the extended GCD
computation helps solve the difficult error-location problem
in the decoder implementation of various error-correcting
codes [12], [13]. All other portions of the decoder basically
involve only polynomial evaluations, which we know can be
efficiently carried out by systolic arrays using Horner’s rule
[8]. The CMU programmable systolic chip (PSC) mentioned
earlier can implement systolic arrays for polynomial evalua-
tion and for the extended GCD computation.

Suppose that in the Reed-Solomon code each codeword
consists of 224 information bytes and 32 check bytes, so
errors involving no more than 16 symbols can be corrected.
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We estimate that by using a linear array of 112 PSC’s the
Reed—Solomon decoding can be performed in a throughput of
8 million bits per second [5]. (The encoding is much easier;
it requires only about 30 PSC chips to achieve the same
throughput.) The fastest existing Reed—Solomon decoder
with the same characteristics that we are aware of uses about
500 chips but achieves a throughput of no more than
1 million bits per second. The performance of our design is
largely due to the new systolic arrays for the extended GCD
problem reported in this section.

VI. VARIANTS AND EXTENSIONS

By keeping track of the beginning and end of each poly-
nomial during the computation, it is possible to have designs
without explicitly using difference of degrees of polynomials
(and hence, no upper bound on this difference need be known
when the cells are designed). Also, by interchanging data on
the output lines a,, and by, We can ensure that the output
GCD always emerges on a fixed output line, say the ag
output line, as depicted in Fig. 1. These modifications lead
to systolic algorithms whose VLSI implementations do not
require pins for d;, and d,,. In one such algorithm [4], d is
represented in unary as the distance between | bit on the start
systolic control path and 1 bit on another systolic control
path.

For some implementations division could be expensive.
Fortunately, division can be totally avoided. More precisely,
we can modify designs of this paper to deal with polynomials
over any unique factorization domain rather than a field.
Suppose that we are given polynomials A = gx' + -+ +
aix + qpand B = bjx/ + -+ + bx + by, where ¢; # 0 and
b; # 0, and that we want to reduce the degree of A. Instead
of performing transformation R,,

A=A —q'.\'dB
where ¢ = a;/b;and d = i — j, we perform
A:=a+A-B-xB

where a = b;and B = g,. This leads to designs requiring no
division. The cell corresponding to Fig. 4 will now store
values of a and B rather than ¢ when in state initial, and
perform two multiplications during each cycle when in state
reduceA or reduceB.

All designs presented in this paper assume that high degree
terms enter a systolic array first. Actually, a set of dual
designs exists where low degree terms enter a systolic array
first. This can be convenient in applications where GCD
computations are linked to other computations which operate
on polynomials with lower degrees terms first. A related
result concerns systolic arrays for computing integer GCD's
which (must) operate on low-order bits first. The systolic
integer GCD algorithm will find the GCD of two n-bit binary
integers with at most 4n systolic cells, which are just simple
finite-state machines operating on single bits [2], [4].

Finally, we note that the systolic GCD array described in
Section IV-B can be modified to perform polynomial di-
vision. The modified array simply performs the beginning
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portion of the Euclidean algorithm until variable d changes its
sign for the first time. With this scheme, terms in the divi-
dend, divisor, and remainder all move, but terms in the quo-
tient stay, one term in each cell. This is in contrast to another
systolic design for polynomial division [9], where terms in
the divisor stay whereas terms in the dividend, quotient, and
remainder all move.
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