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Abstract

This note comcerns the computation of the Cholesky factorization of a
symmetric and positive definite matrix on a systolic array. We use the
special properties of the matrix to simplify the algorithm and the corres-
ponding architecture given by Kung and Leiserson.

1. Introduction

In (4] Kung and Leiserson present a systolic architecture for computing
the LU factorization of a square matrix by Gaussian elimination without
pivoting. They remark that their architecture is applicable to matrices
that are symmetric and positive definite. In this note we show how one may
use these special matrix properties to simplify their presentation. We
shall discuss both the Cholesky factorization and its square-root-free
variant.

The QR factorization of matrices which are not necessarily positive
definite may also be performed on a systolic array, as shown in [1, 2, 31.

2. Architectures

The Cholesky factorization of a symmetric and positive definite matrix
A, viz. A =LL' , may be evaluated according to the following recurrences.
We access only the lower triangular elements of A and so i 23 .
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aij aij .
(1) _ (k) -
aij aij - zik zjk , for k=1,2,...,3-1,
V) &) . - 3
. ) aij if 1=3,
ij

(3) p-1 . .
a3 £jj if 1> 3.
We use the same idea as Kung and Leiserson [4] to pipeline these recurrences
on a hex-connected processor array. It is assumed that A 1is a band matrix.
We present a global view of this pipelined computation in Figure 2 for a
heptadiagonal matrix. The processor array is constructed as follows. The
hexagonal processors below the upper boundary are the standard type Imner
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product step processors (cf. Figure 1(a) and [4]). The processor at the
top, denoted by a half-circle, computes the square root of its input and
passes (i) the result northwards and (ii) the reciprocal of the result in
the southwest direction (cf. Figure 1(c)). The other processors on the
upper boundary are again immer product step processors, but they have been
rotated clockwise by 120 degrees. The operations performed by the
pentagonal processors on the right side boundary are depicted in Figure
1(b). All the remarks made in [4] are applicable to this architecture,
but the number of processors required is almost halved because we take
advantage of symmetry. The bottleneck of this array is the top processor
which computes a square root and a reciprocal.

It is therefore worthwhile to avoid the square roots. We give here
the recurrences (where i 2 j ) for computing the LDLT-factorization of A:

aiéj = 3,
For k= 1,2,...,3-1 , ail;.ﬂ) i ai‘z - ai(z)iik | £ 1>9,
ajy = (A" 4y if 1=3,
TR
4y = oay

A corresponding systolic architecture can be constructed. The principal
ideas are illustrated in Figures 4-6. The price we pay is a slightly higher
communication requirement between processors along the right boundary
(compare Figures 2 and 5).

A quite different algorithm, the "hyperbolic Cholesky" algorithm, -is
also suitable for implementation om a systolic array [l]. The hyperbolic
Cholesky implementation requires more arithmetic operations than the methods
discussed above, but might be preferred because of its different communic-
ations requirements.
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Operations of the
processors.

Figure 1.

A processor array

Figure 2.

Cholesky factorization
of a heptadiagonal

for pipelining the
matrix.
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Figure 3. Four steps during the Cholesky factorizatiom shown in Figure 2.
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Figure 4. Operations of the processors.
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pipelining the LDLT-factorization

of a heptadiagonal matrix.

Figure 5. A processor array for
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Figure 6. Four steps during the LDLT-factorizatiou shown in Figure 5.
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Figure 6. Continued
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