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Abstract—The solution of an (n-+1) X (n+ 1) Toeplitz system of linear equations on a one-
dimensional systolic architecture is studied. Our implementation of an alporithm of Bareiss is
shown to require only 0(n1) time and ((n) storage, i.e. constant storape per systolic processor,
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1. INTRODUCTION

Toceplitz systems of lincar equations arise in many scientific and engineering
applications, for some of which (e.g., signal processing) real-time solution is
essential (cf. [25]). Recently, Bitmead and Anderson [3], and Brent, Gustav-
son, and Yun [4] proposed procedures which, when applied to order-(sn+1) sys-
tems, require only O(n logn) time and 0(x) space. The well known algorithms
of Levinson [19], Durbin [10], Trench [28], Zohar [29], and Bareiss [2]. all
require time O(n?) and space O(n) or O(n?). These algorithms are based on
recursions due to Schur [23] and Szegts [27). Sce also 16,8,9, 11, 12,13,
14,18,20]. Unfortunately. the O(zlog’n)-time algorithms are quite compli-
cated and may be slower than the 0¢1%)-time methods if 1 is not suffi iently
large (c¢f. Sexton |24]).

In this paper we study the efficient solution of Toeplitz systems on a systolic
array of O(n) processors. We present an implementation of the Bareiss algo-
rithm that requires O(n) time. Related work has recently been done indepen-
dently by S.Y. Kung and Hu [16] (see also |17, 22]) and Ahmed. Delosme. and
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Morf |1]. However, our results are more desirable in two respects: we do not
assume that the Toeplitz matrix is symmetric (although we can take advantage
of this), and our storage requirements are O(n ) instead of 0(n?). This saving in
storage is significant because large Toeplitz systems often arise in filtering and
signal processing applications |10, 19, 25, 26]: values of n greater than 1000 are
common. Kung and Hu use a slightly different procedure. the so-called sym-
metric Bareiss algorithm (see 2]). In Section 7 we show how it is also possible
to implement the symmetric Bareiss method using only 001) storage, except in
a certain degenerate case, but the unsymmetric Bareiss method may still be pre-
ferred for reasons of numerical stability. Ahmed, Delosme, and Morf [ 1] use the
HC algorithm [21] which requires the matrix to be positive definite.

2. THE BAREISS ALGORITHM

Let us describe the Bareiss algorithm [2] for the solution of
Tx = b, (2.1)

where T is a Toeplitz matrix of order (1 +1) and b a column vector:

Iy l I oy .&:
I Iy [ BT b
f.» 1. Iy SR P x._m
T = , b= (2.2)
r- n lnii Foyi2 T r&:

For convenience we let the row and column indices run from 0 to » in this
paper. The idea of Bareiss is to transform (2.1) successively into

X = —-:_.qm.‘..u_x = P! .m_. .—ABK — —aﬁuy_ (2.3)

‘1 i _u.h — —w. ..__..u. ‘u,__:_un . —u__:_.

so that the final matrices T' " and T are upper and lower triangular, respec-
tively. We introduce the shift matrices

=AM =0, 0 ) and Z, = 8 =G5 400, (24)
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where & is the Kronecker delta, and let T = T, b™ = b. The following
recurrences then define the transformations on T and b:

:—AI: = uml_l._;.__ - m_; Nl_ﬂ 1—4:.[:. with m._; = _,
_uﬁl_: — —HAJ. ) m_, Ni__ 7:.-:.

T = TD — , Z, VD, with m; = ——, (2.5)

b = b — g Z b

In (2.5) the effect of premultiplication by Z_; is to downshift the matrix TV ™"
by i rows and to replace its first i rows by zeros. Similarly, Z; upshifts T by i
rows and replaces its last i rows by zeros. Suppose that the matrix TV~ ") (resp.
T has (i —1) null subdiagonals (resp. superdiagonals). The operations
described by (2.5) will annihilate the i-th subdiagonal (resp. superdiagonal)
without disturbing those already null elements. It follows that the matrix T
(resp. T ) will be upper (resp. lower) triangular.

i rows upper triangular, not Toeplitz

nt1- rows, upper triangular, Toeplitz=f}

Lt N |_
n—irows, I zero diagonals

lower triangular, Toeplitz=a

1 ;
n—i rows, upper triangular, Toeplitz=d

Ti=

i zero diagonals

-[-I-.{\-l}.!lll\
lower triangular, top n+1—i rows Toeplitz=y

bottam i rows not Toeplitz

T and TV inthe Bareiss aly

Fipure 1. ture ¢
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The Bareiss method will not fail as long as all the leading principal subma-
trices of the given matrix T are nonsingular. An LU-factorization, with L unil
lower triangular, of T is then given by (¢ f. Sweet [26])

T = LU,
where L= Fﬁ._,:_ He, (2.6)
Ly
U=T ....:.

and the superscript *“T2"" denotes matrix transpose about the main antidiagonal.
The Bareiss method, thus, has the same numerical properties as Gaussian elimi-
nation without pivoting. In many applications T is either diagonally dominant or
positive definite. so the lack of pivoting may not be too severe a handicap.

Sweet |26] shows that the Bareiss and the Trench-Zohar algorithms are
closely related, but the Bareiss algorithm appears to be more amenable to paral-
lel computation. For further comments on the numerical properties of these
algorithms, see Sweet [26] and Cybenko [7]. In Section 7 we shall briefly dis-
cuss a symmetric variant of the Bareiss alogrithm that can be more efficient
when T is symmetric.

3. ASYSTOLIC ARRAY FOR FACTORIZING T

We present here a one-dimensional systolic array for computing the two tri-
angular matrices TC " and T, The array consists of 2n — 1 processors P_, , ,
Poyiavoo oo Poy Py Py Py, arranged from left to right. All proces-
sors are identical except for the middle one P, . For simplicity we first assume
that Py can broadcast a scalar quantity to all other processors in constant time.
This assumption will soon be dropped. The processor Py has four registers
Uo- . Uyyw Dy, and Dy, and each remaining processor Py(k # 0) has two
registers Uy and Dy . We denote the content of register R by [R]. Each proces-
sor has two output lines outu, and outdy, and two input lines inu; and ind,
The output line outwy is connected to the input line inug -, for k=1,2, ...,
n—1. The output line outd ; is connected to the input line ind_ ,,, for
k=12,....n—1.
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Before iterating, we feed data into the array so that

[Up-l = 1q, Woel = 1y,
- _ (3.1
Dol = 1.4, Do+l = 1y,
and
Uyl = (s Ul = s, 32)
Dyl = 14, (Dl = o
for k=1,2, ..., n—1. We now consider one iteration, say the i-th one. Each

iteration consists of three steps. At step one the processor Py computes the mul-
tiplier
[Dy-]

m.; = ——. (3.3)
" [Up-]

This value is broadcast to all processors. Processor Py, all k&, now computes
(1) = [Dy] — m_;|Ug]. (3.4)

The quantity [Dy ], for k =0, is sent out on the output line outd; , and the result
(i) is stored in register Dy . At step two, the processor Py computes the multiplier

[Uo:]
e o 3.5
"= Do, | 2-2)

and broadcasts this number. The processor Py, for all k, then computes

(i) = [Uy] — m;[Dy]. (3.6)

The quantity [Uy ], for k <0, is output on line out; , and the register U, receives
the value of (ii). At the third step, we do data transfer. The content of register
Dy, for k=—1, is sent to processor Py ;| on line outd;. The incoming data for
Py 4y is stored in register D, ;. The content of register D, is lost. At the same
time, the content of register Uy, for k =1, is sent to processor Py, on line
outu. The incoming data for Py _y is stored in register Uy _, and the content of
register Uy, is lost. We now disable processors P, ; and P,, ;. This completes
one iteration of the Barceiss algorithm.
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Since we disable the two end processors after each iteration, our method must
terminate after n iterations. Let us denote the output on line outd, at the i-th
iteration by d,'" and the corresponding output on outy; by ", The two desired
matrices T'""’ and T" are given by

Iy 1y 1 I3 T Iy
.wbw__ DJC_ h__m: e Q.::‘”_"
m..._._m_ Nm_nu_ e l:.nwum
T = ag - d!?; |, and (3.7)
0
, af
3\
" ny
w0 0
) -3
TR ud'
T™ = . . ) ) . (3.8)
| 1
u .-._..w by U __:_ t2 U ! __w by ﬁ:w
\ .__I__.. _m..______ ____-z_w _: _____x

By transforming the right-hand vector b simultaneously (see Section 4), we
obtain an upper triangular system TV""'x = b'"™") 1o solve. So T can be dis-
carded. Since T is not Toeplitz, the Bareiss algorithm appears to require
0(n?) storage. However. at the expense of some extra computation, we can
avoid using more than O(n ) storage (the details are presented in Sections 5
and 6). This important point is not observed in [1, 2, 16].

We show now that broadcasting is not needed if each processor Py (resp.
P_;), k>0, can pass a scalar quantity to its outer neighbor Py (resp. P4 )
and if P, can pass a number to both P and P_|. Let us describe how the i-th
iteration (say) proceeds. The middle processor Py reads the inputs on lines inug
and indy, and stores the numbers in registers Uy, and Dy, respectively. The
computing starts with P calculating the multiplicr m _; and passes the value to
its two neighbors P, and Py. The processor Py now performs the second step of
the iteration by computing the multiplier »; and again passes its value to pro-
cessors Py and Py. The processor Py (resp. P-y), on receiving i, will do the
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computation (3.4) and pass the multiplier to the neighbor P (resp. P 5). Then
Py (resp. P ) will receive the multiplier m; . The operations described in (3.6)
arc now performed and the value of m; will be passed o processor P (resp.
P 1), The processor Py (resp. P ) completes its share of the iteration by send-
ing the content of register Uy (resp. D) leftward (resp. rightward) to processor
’0- The processors Py and I 5, on receiving the multipliers m_; and then
will perform the necessary computations, the passing on of the multipliers and
finally the shilting of the necessary information toward the middle processor.
This process expands outward until the two end processors P, ; and P_,, ,;
have done their tasks, ending the iteration. An important observation here is
that the (7 +1)-st iteration can start as soon as processor Py receives the data
from its two neighbors. Our technigue for avoiding broadceast is quite common
15, 15]: processors are active only on alternate time steps (1. P
=03 o and Poy Py o0 attime 7=2,4, ), and the operations of pro-
cessors Py are delayed by & time steps relative to the operation of processor I,

Suppose that the given matrix T is banded with half-bandwidth w. We can, of
course, disregard this special structure and still use 2n —1 processors. But as
processors Pue gy Pasy oo Py, -py work only with null data, we may per-
form the elimination using only 2w —3 processors if the input lines inu,,. ; and
ind .., ; always carry the number zero. We will disable the processors P, _; and

P, ; atthe end of the i-th iteration, for i =n —w 42,0 —w+3. ... .n—1.

at time

Example L. (Bareiss (2, p. 415]).

1 2 3 4 5
21 2 3 4
T = 120 321 2 3
4 3 2 1 2
5 4 3 2 1
4.1 shift « 120)
42 my - u.,._: - .*.. 120 0
KR 12
13 144 120 M4
V2m, - L 144 2 o |
wn 10
21 shidt « 180 150 120 3 ol
22 m an ! 150 150 120 0 W o)
- : 0 R
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1.3 shift « 200 160 120 A
240 2
1.2 m, = w3 200 160) 120 0
i) 240) 1200 240
48() RICH] 2400 120
240
=2 . —1 0 -360
1L m_, 120 2 240 120
1.3 shift — SA60 -240 0 |—120 -3
—-120
= —— = - - 160 - R 0 - 320
20 m 120 1 16 R 2
23 shilt — - 160 -8R0 320
- B0 2
=== - -6 o0 -0 |-
Iom 120 3 o
i3 shift — -6 =300 |-
Bl . | ]
4.0 m_4 = 0 - 3 0 -288
4.3 shift — -2RR
Poa Py P
Hence
120 240 360
= 360 —480
T = ~320
0
and
120
144 120
T = 180 150 120
240 200} 164)
o) 480 o)

R0

40

RIEY]

240

4R0

-4R0)

400

400

- 3)

RILT]

9
120
80120
a0 60
ki) 480
— O =720
(AN} =720
~480
480
P, P,
480 600
-600 =720
-400  ~480
300 =360
-288
0
120
240 120
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Note that T = LU, where U = TV 4nd

(8]
—

_
L=— ("= |3
20

Wl W

n
[ o)
k=2

ofu

4. MODIFYING THE RIGHT-HAND VECTOR

We want to find the vector b' ™ that satisfies
.._J. =n) X = uuf __:,

We determine this vector from b using the recurrences (2.5). We, thus, need
only the multipliers generated in the factorization phase and not the lower tri-
angular matrix TV,

The structure and the operations of the systolic array are very similar to the
right-half of the systolic architecture of the previous section. The array here
consists of the n processors Qq, Qy, .. ., Q, —y. All the processors are identical.

outd
"

c:_n_.

outd, ind, outd,

1=4),

ire 3. Systolic Array for Finding b'

BRENT AND LUK: A SYSTOLIC ARRAY 1"

Each Q; has two registers U, and I, one output line outd; and one input line
ind;. The lines ind; and outd; ;| are connected (for k=01, ..., n —2). We¢
also assume temporarily that all processors can receive the broadcast of a scalar
quantity.

Before iteration starts, data are fed into the processors so that, for
k=0,1,...,n—1,

(Uil = by
[Del = by oy,

(4.1)

where b = (bg, by, ..., b,)". Let us consider the i-th iteration, where i =1. An
iteration consists of three steps, same as in the previous section. At the first
step, the multiplier m _; arrives at processor Qg , which then computes

=Dy — m - |U;] . 4.2)

and stores (iii) in register Dy. The second step begins when Q receives the
multiplier m; . It computes

(iv)=|Ug ] — m; (D], 4.3)

and stores the result in U;. The third step is now initiated. It involves a transfer
of the content of register Dy from processor Oy to processor Qy -y, for k=1,
The content of Dy is sent out on outdy, and register Dy, for k& =0, receives the
content of register Dy, |. The completion of the data transfer ends the i-th itera-
tion and processor Q,, ; is disabled. If we denote the output on line outd,, after

=
the i-th iteration by d§*’ —

, then the vector b ™" is given by
}_.
n&n_v___

._
Z.nnvs_

b (4.4)

«.m.ﬂ______ !

7/

Since the algorithms in this and the previous sections are very similar, we can
argue using the same reasonings as before that broadeusting is unnecessary if
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each processor Q; can pass the multiplier to its right neighbor Q; ,; and if the
operation of processor Q is delayed by k time steps relative to the operation of

processor Q.

Example 2. (Bareiss {2, p. 415)]

30
22
b =120 18
20
30
42 my = ~-L 120
12
l
32 = —— 2
s 10 120 384
22 my = |m_ 240 390 840
2
1.2 m, = -3 560 560 880 1600
3600 2640 2160 2400
2640 2160 2400 3600
1.1 m_; =2 —=4560 —3120 =1920 = 1200
1.3 shift e —=4560 —3120 - 1920 - 1200
2.1 m_, = —| —2560 = 1360 -320
2.3 shift < =2560  —1360 —320
2
31 m.y= \W —1200 —60
3.3 shift «— =1200 —-60
|
4.1 g = =
m_y > 0
4.3 shift « 0
Qo Q Q; Qs
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3600

—4560)

b =]-2560
—1200

0

5. REGENERATING T!"" USING 0(n) STORAGE

We consider the regeneration of the upper triangular matrix T' " using only
its last column and the 2n multipliers m .;. Our key idea is to run the elimina-
tion algorithm in Section 3 backwards:

™0 =T 4+ mZ T

TEOD = 0 4o 7 D (5.1

=i =y J

fori=n, n—1,..., 1. (Observe that rows 0 to i for T' """ are equal to rows 0 (o

i of T°')) So our systolic array consists of n identical processors By, B, ...,
B,, - 1. Each processor By has two registers U, and Dy . Initially,

(Ul =0, and

(D] (5.2)

N
_r_“. |h»...__ '
for k=0, 1,..., n—1. We again assume for a moment that there is a broadcast-
ing mechanism. Each processor B, has two output lines outu, and outd; and
one input line inu; . The lines outuy and inuy | | are connected, for & =0).

mulliplier

||||| N H e L B
|
4 oulu, m_:_.* outu, inu, ¥ outu, inu, ¥
'l L
Co - u, e U, = Cd
B, B, B, B,
D, D, D, D,
outd, ould, outd,

Figure 4.

A systolic armay Tor generating ‘T "V (g =4)
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Only one processor, By, is active for the initial iteration. At the end of the i-th
iteration, i =1, processor B; is activated for subsequent computations so that
the (7 +1) processors By, By. ..., B; are active during the (i +1)-st iteration.
Each iteration consists of three steps. Let us describe the i-th iteration. At the
firststep, the multiplier m, ,, ,; is broadcast to all the processors and the
following computation is done:

Ml

(v) _C__.._ + My gy ——Hﬂ_ ' (5.3)
for k=0, 1,....i—1. The result (v) is stored in register U;. The second step
starts when the multiplier m _, _,,; is broadcast to all processors. Processor
By (0=k =i —1) then computes

A_c_: = __.v__.,_ + [ _C__.._. Am<n:

outputs the result (vi) on outd, and also stores the number in register Dy.. The
third step is but a shifting of the content of register U, to register Uy . for
k=0, I....,i—1. Register U, will contain the number zero. The complete
procedure stops afler n iterations.

If we denote the output on line outd, at the i-th iteration by d,*?, the desired
matrix T """ is given by

5
Q___H_: ] :. H_,.__ 1 R :_.._:__ __ r_-.ﬂ_: ]
mm_fz -1 &_::..._. N 1} :,.h_z )
AA..:_ — . . . Amwv
2 2 (=n)
_.\?ML d “L Toon
1 )
: ﬁ\_f ! h__m .___“ "
Uy
B /

As before, we can argue that broadcasting is unnecessary as long as cach pro-
cessor can pass a scalar quantity to its right neighbor.

Since our primary concern is the solution of T""'x = b "' on a linear Sys-
tolic array, it is interesting to note that we have regenerated the elements of
T in the exact order as required by the Kung-Leiserson algorithm for back
substitution | 15]. The details are given in the next section.
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ixample 3. (See Example 1).

15

4.3 shift — 0 240. 360 480
4.1 m, = IW 240 360 480 600
3.3 shift— 0 40 80 120
3.Lom,y = IW 40 80 120
2.3 shift— 0 30 60
|
= —-— 30 60
2.1 m;y 10
[.3 shift — 0 24
1
1.1 = —— 24
ny B
0 0 0 0
—288 —360 —480 =720
|
1. 2m_4 = Y =300
2
22 m_y = IW =320 —400
32m.y=—I =360 —480 —600
42 m_ =2 120 240 360 480
By By By By
We get
120 240 360 480 600
—360 —480 —600 -—720
™" = =320 —400 —480
0 =300 -360
—288
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6. A COMPLETE ARCHITECTURE

We can construct one systolic array that solves the given equations Tx = b.
Because of the similarities in their operations, processors P, and Q; (k =0) are
combined into one super-processor Sy (k 20). We then program Sy (& =0) to do
the regeneration of T'""" and the solution of TV""'x = b™),

Let us describe our linear array of n +1 super-processors S, Sy, ..., S,.
(The last processor S,, is needed for the back substitution.) In the Bareiss algo-
rithm four triangular Toeplitz matrices

o 0 Bo My ~ Yo 0 dg dy
~

a=|a, / . p= //P R P / , and d= //&

ey ag 0 B O vo 0 4

arc updated (see Figure I). Now each processor S; has registers to store o, 3,
Yi. and &;. (When describing processor S; we shall omit the subscripts and
simply refer to registers a, (3, -y, and 8.) Processor S; requires four additional
registers: A, for a multiplier m_;, p for a multiplier m;, and &; and m
which are associated with the right-hand side vector b and the solution x.

Data flows in both directions between adjacent processors, as shown in Fig-
ure 5. Hence, each processor needs five input and five output data paths denoted
by inL1, inL2, inR1, inR2, inR3, outLl, outl.2, outL3, outR1, and outR2 (see

Figure 6).

Phase 1 (LU decomposition by the Bareiss algorithm)

A u ] A
Sy
a, d. ¢ a, d. t

wr 1 m_:,_

Phase 2 (Back substitution to solve triangular system)

— d. d, & -
Sy Svnn

Lopn Apon

I
Y
Y

Figure 5. Data flow for systolic Toeplitz solver.
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inL1 ——» = outR1

inL2  —a —»= outR2
outLl --— — inR1
outl? -=—| . -— inR2
outld -=— lt-—  inAR3

Figure 6. Systolic processor for Toeplitz systems.

Initialization is as follows: o = 1 gy Br 1= 0o Ye =140 & 1= s
N =00y i= 00 & c= by iy 1= by, 45 all for 0k <n (we assume that
I ognany = Lyey = by = 010 cover end-conditions). Clearly this can be done in
time O(n ) if T and b are available at either end of the systolic array.

We present the program executed by processor S; (0=k =n) at time step 7
I=t=4dn) in Figure 7. The final solution x is given by x, =§;, where & is
stored in register £ of processor Sy after step 4n. What follows are some obser-
vations concerning the program:

I. Processor Sy is active only if k <t<\2n —k (Phasc 1) or 2n +k sv=dn -k
(Phase 2). It is assumed that S; knows its index & and the current value of 7
(though this could be avoided by the use of 1-bit systolic control paths).

2. Pairs of adjacent processors could be combined, since only one processor of
each pair is active at each time step. This would increase the mean processor
utilization from 25% to 50% (see observation 1 above).

3. Processor §, performs floating-point divisions, other processors perform
only additions and multiplications. A time step has to be long enough for six
floating-point additions and multiplications, plus data transfers, during Phase |
(less during Phase 2).

4. The Bareiss algorithm requires 4 - Sn? multiplications as given, but a sim-
ple modification (transmitting 1+X ) will give time 4 if we have Tm_ proces-
sors (see observation 2), each with six multiply-add units. The corresponding
figures for the symmetric Bareiss algorithm for symmelric matrices (sce
Section 7) are 4n*, 4n, and 5.

5. Analternative for Phase 2 is the use of the Gohberg-Semencul formula | 1],
But the formula is more expensive in terms of both operations and time, and it
also fails to take advantage of the possible band structure of the matrix.
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6. Processor S; typically reads its input lines inLl, . ... inR3, does some
floating-point computations, and writes to its output lines outL1, . . ., outR2.
Hence, pairs of input and output lines could be combined into single bidirec-

tional lines (e.g. inL1 and outL] could be combined).

{program for processor k at time step 7, 0<k =n, | <T<4n}
if odd (1+k) and (v>k) and (v<<2n —k) then {Phase 1-LU factorization}
begin
if 7>k +1 then {accept inputs from processor & + 1}
begin o := inR1; 8 := inR2; £ := inR3 end;
if k = 0 then {compute multiplier} A := a / y else
begin {accept multipliers from processor k — 1}
A:=inLl; n:=inL2;
o= a—AFY
end;
B:= B—A*d; m:=mn—A*
if k = 0 then {compute multiplier} p:= &/ else

begin
Y=y g
& 1= d—pHp;
£ 1= E—pam
end;
outl.l := a; outl.2 := §; outl.3 := £; {ignore owtL1-3 if k = 0}
outR1:= \; oulR2 ;= p {ignore outR1-2 if k = n}
end
else if even (7+k) and (7=2n +k) and (T<4n —k) then {Phase 2-back substitution}
begin

if T>2ir +k then begin A := inR1; p := inR2; n := inR3 end;
if K =0 then begin & := n/B; & := p*p end else
begin
£:=inLl;5:=inL2;
7= 71— P*E; 8= 6+ P
end;
B = B+A=5,
outL.! := A; outl.2 := p; outl3 := 7; {ignore if k = 0}
outR1:=¢; outR2 := 5 {ignore if k
end.

Il

Fipure 7. Systolic processor for Toeplitz equation solver.
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7. SYMMETRIC TOEPLITZ MATRICES

For a symmetric matrix T we may use a symmetric version of the Bareiss
algorithm [2]. This symmetric algorithm is the same in its LU-factorization
phase as the procedure proposed by S. Y. Kung and Hu ([16], [17]). The sym-
metric Bareiss algorithm is same as (2.5) except that

(1=i)
m = ||I“_.=H
-i = T
§io"
i 1)
1y
m; = e (7.1)
ﬁ:.:

™ = T Dz, T

By symmetry, we get a=5, B=vy and A=p (cf. [2] and [26]), and so we save
some storage and communication cost, The penalty is that Phase 2 of the algo-
rithm becomes trickier and involves division by (1—A?), which may be undesir-
able from a numerical point of view.

With the initialization:

i if 0=k <n,
%= |0 if k=n
Eh =1, 0=k =,
.7» = _: "
P =0 "

by k- if 0=k =n .
&= 1o if k=n
w==b, 4 Ok =<n,

We present a program for processor Sy in Figure 8.
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{program for processor k at time step 7, 0=k =n, 1<7<4n}

if odd (7+k) and (=k) and (<21 —k) then {Phase | - LU factorization}

begin
if 7>k + 1 then {accept inputs from processor k + 1}
begin
a :=inRIl.&:=inR2
end: o
if k = 0 then {compute multiplier}
begin
A= a/BiBi=R-hsac = oA
end
clse .
begin {accept multiplier from processor k —1}
A :=inLl:

{IT is temporarily local to processor k}
IT:=a: o= a—A=p .
B:=B—A=lL{i.e. B:= B(1-A)—Aa}
IT:=1:m:=n—A=E

£ = E—axl1
end:
outL] := «: owL2 := &: {ignore if k=0}
owRl 1= A {ignore if k =n}
o_“dw._ﬂ even (7+4) and (=20 +k) and (v=dn —k) then {Phase 2 - back substitution}
begin
if7>2n =k then
begin
A:=inRl:m:=inR2
end:
if k =0 then
begin
E=n/Bia:=0
end
else
begin
Eo=inLliac=inl2im = n—3=E
cnd:
o= (AR (U =N)=CTHA) )
B:=pR+N s

outlLl := X outL2:=n:
outRl := &1 0ulR2 1=«
end.

Figure 8. Svstolic processor for symmetric Toeplitz equation solver.
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