242 JOURNAL OF VLSI AND COMPUTER SYSTEMS, VOLUME |, NUMBER 3

Computation of the Singular Value
Decomposition Using Mesh-Connected
Processors

RICHARD P. BRENT,* FRANKLIN T. LUK,t
and CHARLES VAN LOAN#%

Abstract—A cyclic Jacobi method for computing the singular value decompeosition of an m X
n matrix (m = n) using systolic arrays is proposed. The algorithm requires O(n?) processors and
O(m + n log n) units of time.

Key words and phrases: Systolic arrays, singular value decompasition, cyclic Jacobl method,
real-time computation, VLSI.

1. INTRODUCTION

A singular value decomposition (SVD) of a matrix A € C™*" is given by
A = ULVH, (1.1)

where U € C™* and V € C"*" are unitary matrices and £ € R™*” is a real
non-negative ‘“‘diagonal’ matrix. Since A¥ = VLTU#H, we may assume m =
n without loss of generality. Let

U= lups - Uyl L = diag(oy, ..., 0,) and
(1.2)
V=1_[v, ..., v].

We refer to o; as the /-th singular values of A, u; and v; as the corresponding
left and right singular vectors. The singular values may be arranged in any

*Centre for Mathematical Analysis, Australian National University, Canberra, A.C.T. 2601,
Australia.

tSchool of Electrical Engineering, Cornell University, Ithaca, New York 14853.

$Department of Computer Science, Cornell University, Ithaca, New York 14853.

BRENT, ET. AL.: COMPUTATION OF THE SINGULAR VALUE 243

order, for if Pe R"*” and Q € R"*" are permutation matrices such that PLQ
remains “‘diagonal,” then

A = (UPTYPZQ)QTVH)

is also an SVD. It is customary to choose P and Q so that the singular values
are arranged in non-increasing order:

o= =20,>0 o4 = =g =0, (1.3)

with r = rank(A4). If A is real, then the unitary matrices U and V are real and
hence orthogonal. To simplify the presentation, we shall assume that the ma-
trix A is real. The algorithms presented in this paper can be readily extended
to handle the complex case.

The standard method for computing (1.1) is the Golub-Kahan-Reinsch
SVD algorithm ([9] and [11]) that is implemented in both EISPACK [7] and
LINPACK [4]. It requires time O(mn?). However, the advent of massively
parallel computer architectures has aroused much interest in parallel SVD
procedures, e.g., [1], [S], [13], [16], [18], [21], and [22]. Such architectures
may turn out to be indispensable in settings where real-time computation of
the SVD is required (cf. [24] and [25]). Speiser and Whitehouse [24] survey
parallel processing architectures and conclude that systolic architectures of-
fer the best combination of characteristics for utilizing VLSI/VHSIC technol-
ogy to do real-time signal processing (see also [15] and [25]). On a linear sys-
tolic array, the most efficient SVD algorithm is the Jacobi-like algorithm
given by Brent and Luk [1]; it requires O(mn) time and O(n) processors. This
is not surprising because Jacobi-type procedures are very amenable to parallel
computations (cf. [1], [18], [20], and [21]).

In this paper we present a modification of the two-sided Jacobi SVD
method for square matrices detailed in Forsythe and Henrici [6] and show
how it can be implemented on a quadratic systolic array. The array is very
similar to the one proposed in Brent and Luk [1] that uses O(n?2) processors to
solve n-by-n symmetric eigenproblems in O(n log n) time. However, to handle
m-by-n SVD problems, our algorithm requires a “‘pre-processing” step in
which the QR-factorization A = QR is computed. This can be done in O(m)
time using the systolic array described in [8]. Our modified Brent-Luk array
then computes the SVD of R in O(n log n) time. O(n?) processors are required
for the overall algorithm. For an extension of this work, see the paper [2] by
the authors on computing the generalized SVD of two given matrices.

The paper is organized as follows. In Section 2, basic concepts and calcula-
tions are discussed by reviewing the Jacobi algorithm for the symmetric eigen-
problem. Our modified Forsythe-Henrici scheme is then presented in Sec-

244 JOURNAL OF VLSI AND COMPUTER SYSTEMS

tions 3 and 4 where we discuss two-by-two SVD problems and ‘“‘parallel
orderings,”’ respectively. In Section S, we describe a systolic array for imple-
menting the scheme. Section 6 discusses how this array can be used to solve
rectangular SVD problems. We also describe in that final section a block Ja-
cobi method that might be of interest when our array is too small to handle a
given SVD problem.

2. BACKGROUND

The classical method of Jacobi uses a sequence of plane rotations to
diagonalize a symmetric matrix A € R"*". We denote a Jacobi rotation of an
angle 6 in the (p, q) plane by J(p, g, 8) = J, where p < g. The matrix J is the
same as the identity matrix except for four strategic elements:

Jop = 6, Jpg = 8,

Il

J,., = —s, J

ap aqg — ©»

where ¢ = cos(f) and s = sin(6). Letting B = JTAJ, we get
bop bpg| | € S apg|[¢ s

\:bqp bqq:| B |:_5 c:! [aqp aqj|:—s ‘J'
If we choose the cosine-sine pair (¢, s) such that

by, = by, = apylc? — s2) + (a,, — agg)es = 0, (2.1)
then B becomes ‘‘more diagonal’” than A in the sense that

off(B) = off(4) — 2a},,

where

off(C)Er_Ej ci for C = (c;) e Rm*n,

Assuming that a,, # 0, we have from equation (2.1) that

— 2 2
Qgg —Qpp _ C s

2a g 2cs

p = = ctn(20), (2.2)

BRENT, ET. AL.: COMPUTATION OF THE SINGULAR VALUE 245

and that ¢t = tan(6) satisfies
t2 4+ 20t — 1 =0.

By solving this quadratic equation and using a little trigonometry, we find two
possible solutions to (2.1):

1
t = —signlp) [lo| + V1 +p%], = T ST (23)

and

sign(p) _ 1

t = 1 c T
lo| + V1 + p? V1 + 12

ct. (2.4)

The angle 6 associated with (2.4) is the smaller of the two possible rotation
angles and satisfies 0 < || < #/4.

By systematically ‘‘zeroing” off-diagonal entries, A can be effectively
diagonalized. To be specific, consider the iteration:

Algorithm Jacobi
do until off(4) < ¢
forp=1,...,n—1
forg=p+1,...,n
begin

Determine ¢ and s via (2.2) and (2.4);
A:=J(p,q, 0T Al(p, q, 6)
end.

The parameter { is some small machine-dependent number. Each pass
through the “until’”” loop is called a “sweep.” In this scheme a sweep consists
of zeroing the off-diagonal elements according to the ““row ordering” [6]. This
ordering is amply illustrated by the » = 4 case:

(p,) =(1,2),(1,3),(1,4),(2,3), (2,4, 3, 4).

It is well known that Algorithm Jacobi always converges [6] and that the
asymptotic convergence rate is quadratic [26]. The rigorous proof of these
results requires that (2.4) rather than (2.3) be used. Brent and Luk [1] conjec-
ture that O(log n) sweeps are required by Algorithm Jacobi for typical values

246 JOURNAL OF VLSI AND COMPUTER SYSTEMS

of {, e.g., { = 10712 off (A,), where A denotes the original matrix. For most
problems this usually means about six to ten sweeps (cf. [1] and [19]).

The practical computation of ¢ and s requires that we guard against over-
flow. If e denotes the machine precision, then this can usually be accom-
plished as follows:

Algorithm CS

Rii= Qg ™ Gpp;
Ky - 2apq;

if | o] = €[p| then

begin
c:=1;
s:=10
end
else
begin
=
ua
‘e sign(p)
PN
J— 1 .
T iy e
s :=ct
end.

Jacobi methods for the symmetric eigenproblem are of interest because
they lend themselves to parallel computation (see, e.g., [1] and [20]). Of par-
ticular interest to us is the “‘parallel ordering’ described in [1] and illustrated
in the n = 8 case by

(p, @) =(1,2),3,4), (5, 6),(7,8),
(1, 4), (2, 6), 3, 8), (5, 7),
(1, 6), (4, 8), (2, 7N, (3, 5),
(1, 8),(6,7), (4,5, (2, 3),
(1, 7), (8,3), (6, 3), (4, 2),
(1, 5), (7, 3), (8, 2), (6, 4),
(1, 3), (5, 2), (7, 4), (8, 6).

BRENT, ET. AL.. COMPUTATION OF THE SINGULAR VALUE 247

Note that the rotation pairs associated with each “row” of the above can be
calculated concurrently. Brent and Luk [1] have developed a systolic array
that exploits this concurrency to such an extent that a sweep with the parallel
ordering can be executed in O(n) time. Our aim is to extend their work to the
SVD problem.

At first glance this seems unnecessary, since software (or hardware) for the
symmetric eigenvalue problem can in principle be used to solve the SVD
problem. For example, we may compute the eigenvalue decomposition

VT(ATA)V = diag(s?, ..., o),

where V = [vy, ..., v,] is orthogonal and the o; satisfies

o= """ =20,>04 =" =g, =0,

with r = rank(A). We next calculate the vectors

Av; .
u; = — G=1,...,r), (2.5)
g;
and then determine the vectors u,.,, ..., u,, so that the matrix

U = [uy, ..., u,) is orthogonal. The factorization UTAV = diag(oy, ...,
a,) gives the SVD of A. Thus, one can theoretically compute an SVD of A via
an eigenvalue decomposition of AZA. Unfortunately, well-known numerical
difficulties are associated with the explicit formation of A7A.

A way around this difficulty is to apply the Jacobi method implicitly. This is
the gist of the ‘‘one-sided”” Hestenes approach in which the matrix V'is deter-
mined so that the columns of A V are mutually orthogonal [14]. Implementa-
tions are discussed in Luk [18] and in Brent and Luk [1]. In the latter refer-
ence, a systolic array is developed that is tailored to the method. However,
inner products of m-vectors are required for each (c, s) computation. Because
of this, the speed of their parallel algorithm is O(mn log n) for a linear array
of processors, and O(n log m log n) for a two-dimensional array of O(mn)
processors with some special interconnection patterns for inner-product com-
putations. Another drawback of the one-sided Jacobi method is that it does
not directly generate the vectors u,4y, ..., u,,. This is an inconvenience in
the systolic array setting since one would need a special architecture to carry
out the matrix-vector multiplications in (2.5). It should be pointed out, how-
ever, that these vectors are not necessary for solving the least squares problem
|Ax — bj» = min.

248 JOURNAL OF VLSI AND COMPUTER SYSTEMS

Yet another approach to the SVD problem is to compute the eigenvalue
decomposition of the (m + n) X (m + n) symmetric matrix

0O A
C = :
AT 0

L ol

then ATAv = o?v and AATu = o2u. Thus, the eigenvectors of C are “made
up’’ of the singular vectors of A. It can also be shown that the spectrum of C'is
given by

Note that if

NC) = {*0y, ..., +0,,0, ..., 0}

The disadvantages of this approach to the SVD are that C has expanded di-
mension and that recovering the singular vectors may be a difficult numerical
task (Golub and Kahan [9]). In addition, the case rank(A4) < n requires extra
work to generate vy, ..., v,.

To summarize, it is preferable from several different points of view not to
approach the SVD problem as a symmetric eigenvalue problem.

3. THE TWO-BY-TWO SVD PROBLEM

Forsythe and Henrici [6] extend the Jacobi eigenvalue algorithm to the
computation of an SVD of a square matrix A € R**". They effectively
diagonalize A via a sequence of two-by-two SVDs. In this section, we discuss
how to compute cosine-sine pairs (cy, s;) and (¢3, s,) such that

c; s 17w x[2 s d, 0
= , (3.1)
—8 Cy y z —82 Cp 0 dz]
w X
A=
Z

where

BRENT, ET. AL.: COMPUTATION OF THE SINGULAR VALUE 249

is given. It is always possible to choose the above rotations such that ld;| =
|d3|; however, since det(4) = d,d,, it may not be possible to achieve d; =
d; = 0. Consequently, we refer to (3.1) as an “unnormalized”’ SVD. To gen-
erate a genuine, “‘normalized” SVD, it may be necessary to use reflections as
well as rotations. We shall return to this detail at the end of this section.

The following approach is suggested in [6] for computing (3.1). Let 6, and
6, be the angles generating the cosine-sine pairs (c;, s,) and (2, 57), respec-
tively. Then 6, and @, are solutions to the equations:

+ ——
tan(@) + 0,) = L tan(—6, + 6y = 2%

z— w z+w

We may use the following procedure to determine the cosine-sine pairs:

Algorithm FHSVD

Kl 1= Z2 — w,
pr:=y + x;

6
[Find X = cos(ﬁ%&) and o = sin(e—';—g&)}

if |p2| < € |py| then
begin
X1 =1
g, :=0
end
else
begin
W
Pi—=—;
2
sign(p;)

lp1] + V1 + p2’

Ty 1=

X ¢

0= X1y
end;

250 JOURNAL OF VLSI AND COMPUTER SYSTEMS

B =z + ow;
1=y — X,

—6, + —6, + 6
[Find X2 = cos(—-—JT-gi> and o, = sin(*bmlz—z)}

if |pa| = € |p| then
begin
X2 = 1
gy :=10
end
else
begin
= P,
P2 = =]
K2
sign (p,)

T2 !)
| pa| + V1 + p3

1
AN

02 ' = X272
end;

Il

{Find (cy, s1) and (cy, 55) }

¢ = x1x2 T 0,03
Sp = 01X2 T X102,
€= X1X2 — 0103,
52 1= 01x2 + X102

(1]

An alternative method for computing (3.1) is to first symmetrize A:

[— Sﬂ: x]ZE q} 62

and then diagonalize the result:

[Cz Sz]T[P 9j||:02 32:1_ d, 0
—38y € q r —8 €3 0 dz '

BRENT, ET. AL.. COMPUTATION OF THE SINGULAR VALUE 251
Equation (3.1) holds by setting
Cy 87 Tr ¢ s1T Cq 81 T
= ; (3.3)
—8& O -—s C —8; Cy

C| = €€ — 8,55,

that is,

51 = §,¢ + c¢ys.
The formulas for ¢ and s are easily derived. From (3.2) we have
cx — sz = sw + cy.
Thus, if x # y, then we have

w Ttz s = sign(p) c=s
x—y’ i+ 02 o

p = ctn(f) =

For reasons that will be explained in Section 6, it is necessary that our two-
by-two SVD algorithm handles the special casesx =z = 0andy =z = 0 as

follows:
C A r w 0 1 0 dl 0
I Y O
85 y 0 0 1 0 0
1 07w x\[¢ & d 0
DR Y A
0 1J LO O0lL—s; o 0 0

In other words, 6, should be zero if x = z = 0, and 6, should be zero ify =
z = 0. Our scheme as described already produces (3.4). However, (3.5) is only

achieved if [w| > |x|. To rectify this, we apply our algorithm to the transpose
problem and obtain

N [N

and

252 JOURNAL OF VLS| AND COMPUTER SYSTEMS

We then set ¢c; = ¢y, s = 53, ¢; = 1, and s; = 0. Let us present the overall
scheme:

Algorithm USVD

flag := 0;

ify=0 and z =0 then
begin

y:i=x; x:= 0 flag:= 1
end;

L= w+ z;

P2 =X T,

if | py| = € |py] then

begin
c:=1; s:=0
end
else
begin
R
pi=—;
B2
. sign(p) _
- r—l + p2!
c:=sp
end;
pyi=s(x +y) +elz —w); {=r—p}
py = 2ex — sz); {= 2q}
if |u2] < €| then
begin
¢y = 1; s3:=0
end
else
begin
= M
P2 =
2%
_ sign(p2)
Iy ’

" eg| + VI F A2

BRENT, ET. AL.: COMPUTATION OF THE SINGULAR VALUE 253

1
Ccy e ———————N
V1 + 3
8§y 1= 0ty
end;

€| 1= €yC — 555

Sy = §55¢ T ©5s;

dy 1= cy(wey — x59) — 51(yc; — zs3);
d, = si(ws, + xc;5) + ¢((ys; + zcy);

if flag = 1 then

begin

cy 1= ¢y Sy 1= S8y;
¢ = 1; s1:=0
end.

If a “normalized” SVD is required, then further computations must be
performed. The diagonal elements must be sorted by modulus and then (if
necessary) premultiplied by -1, as shown in the following algorithm.

Algorithm NSVD
Apply Algorithm USVD;

if |dy| > |d,| then
begin
TI=Cy; cy:= —sy; $1 1= T
Ti= €y Cy = T8y $I= T
T:=d; d, := d»; dy:= 71
end;

k:=1:

if d, < 0 then
begin
dl = ’“d];
Ccy.
Sy
K= —K
end;

if d; < 0 then
begin
d; 1= —d»;
K:= —K
end.

254 JOURNAL OF VLSI AND COMPUTER SYSTEMS

The “normalized” SVD is given by

C SiK Trw x Cy h) dt 0
= . (3.6)
=S k| |y z||l—$s o 0 d;
Note that if «k = —1 then the left transformation is a “‘reflection,” i.e., a two-
by-two orthogonal matrix of the form

cos(f;) —sin(8;)
{—sin(ﬁ,) —cos(@l):|.

We denote the corresponding 7- by-n orthogonal transformation by I p, q,
81, k) =J, wherep < g. The matrix J is the same as the identity except for the
four elements:

-

Jpp = cos(8), J,, = «sin(8;),
fqp = —sin(6,), Joq = Kcos (),

and it is a reflection whenever xk = —1.

4. SOME TWO-SIDED JACOBI SVD PROCEDURES

By solving an appropriate sequence of two-by-two SVD problems, we may
compute the SVD of a general » X n matrix A. Analogous to Algorithm Ja-
cobi for the symmetric eigenvalue problem, we propose the following routine:

Algorithm JSVD

do until off(4A) < ¢
for each (p, g) in accordance with the chosen ordering

begin
Setw = a,,, X = ap,,
Y = gp, Z = Qgq;

Compute (cy, s,), (¢, 55) and ke{ —1, 1} so that
theA(p, q) and (g, p) entries
of J(p, q, 8,,)T AJ(p, g, 6,, k) are zero;

A = j(p, gi 6]; K)TAﬁp! q} 92& K)
end.

BRENT, ET. AL.: COMPUTATION OF THE SINGULAR VALUE 255

We have experimentally compared the three-angle formulas FHSVD,
USVD, and NSVD. The convergence of Algorithm JSVD in conjunction with
any one of these formulas and with any ordering has not been rigorously
proved. However, there are some important theoretical observations that can
be made.

Let 8, and 6, be the angles generating the cosine-sine pairs (c;, s;) and
(c,, 57), respectively, and suppose that —b < 6,, 8, < b. Although Forsythe
and Henrici [6] prove that JSVD with the “‘row ordering’’ always converges if
b < w/2, they also demonstrate that this condition may fail to hold. As a
remedy, they suggest an under- or over-rotation variant of FHSVD and prove
its convergence. However, we do not favor this variant, believing that it will
eliminate the empirically observed quadratic convergence of Algorithm
JSVD. One can show that the bound b equals (i) 7/2 for FHSVD, (ii) 3#/4
for USVD, and (iii) Sw/4 for NSVD even if no reflection is involved. We con-
jecture that the smaller the rotation angles are the faster the procedure
JSVD will converge. Our experimental results agree with the conjecture (see
Table 1).

We also point out that the computed diagonal matrix in JSVD may not
have sorted diagonal entries even if the “‘normalized” SVD of each two-by-
two submatrix is calculated. To obtain the ‘“‘normalized”” SVD of A we must
sort the diagonal entries and permute the columns of U and V accordingly.

It is quite obvious that the “‘row ordering’ is not amenable to parallel
processing. A new ‘‘parallel ordering’ has been introduced in [1] for doing
| n/2] rotations simultaneously. For the symmetric eigenvalue problem, the
latter ordering has been found to be superior to the former both empirically
[1] and theoretically (see [1] and [12]), even on a single-processor machine.
Our consideration of systolic array implementation necessitates the use of the
““parallel ordering” in this paper.

Table 1. Average and maximum number (in parentheses) of sweeps using
the “parallel ordering”

n Trials FHSVD USvVD NSVD

4 1000 2.97(3.67) 2.97(4.00) 2.97(4.33)

6 1000 3.73(4.80) 3.76(4.87) 4.17(5.40)

8 1000 4.19(5.07) 4.21(5.14) 4.76(5.96)
10 1000 4.51(5.38) 4.55(5.44) S5.18(6.40)
20 100 5.50(6.13) 5.54(6.01) 6.44(7.44)
30 100 6.03(6.52) 6.09(6.80) 7.30(7.98)
40 100 6.36(6.98) 6.40(6.98) 7.94(8.50)
50 100 6.66(7.11) 6.72(7.34) 8.51(9.00)

256 JOURNAL OF VLSI AND COMPUTER SYSTEMS

We have applied each of the three-angle formulas with the “parallel order-
ing” to random n X n matrices A, whose elements were uniformly and inde-
pendently distributed in [—1, 1]. The stopping criterion was that off(A) was
reduced to 107 !2 times its original value. Table 1 gives our simulation results.
We conclude that our ““‘unnormalized” SVD method USVD performs just as
well as the more complicated Forsythe-Henrici scheme FHSVD and margin-
ally faster than the “normalized” SVD method NSVD.

We have also compared the “row’” and “parallel” orderings for the method
USVD. The test data and convergence criterion are as described in the last
paragraph. Our simulation results are presented in Table 2. The convergence
rates for the two orderings appear to be about the same.

Table 2. Average and maximum number (in parentheses) of sweeps using
the USVD method

n Trials Row ordering Parallel ordering
4 1000 3.22(4.17) 2.97(4.00)
6 1000 4.00(5.13) 3.76(4.87)
8 1000 4.52(5.50) 4.21(5.14)
10 1000 4.83(6.02) 4.55(5.44)
20 100 5.81(6.59) 5.54(6.01)
30 100 6.26(6.79) 6.09(6.80)
40 100 6.60(7.00) 6.40(6.98)
50 100 6.78(7.62) 6.72(7.34)
80 30 7.31(7.81) 7.30(7.79)
100 10 7.46(7.79) 7.56(8.00)
120 S 7.69(7.90) 7.73(7.98)
150 3 7.76(7.80) 7.73(8.03)
170 2 7.86(7.92) 8.02(8.02)
200 1 7.90(7.90) 8.10(8.10)
230 1 8.35(8.35) 8.43(8.43)

In the remainder of the paper, we will focus our attention exclusively on the
USVD method for solving two-by-two SVD problems.

5. A SYSTOLIC ARRAY

We now describe a systolic array for implementing the Jacobi SVD method
JSVD for ann X n real matrix A. Our array is very similar to the one detailed
in [1]. For pedagogic purposes, we first idealize the array so that it has the
ability to broadcast the rotation parameters in constant time.

BRENT, ET. AL.: COMPUTATION OF THE SINGULAR VALUE 257

Assume that n is even and that we have a square array of n/2 by n/2 proces-
sors, each containing a 2 X 2 submatrix of A. Initially, processor P;; contains

[ﬂzi—l.zj—l ﬂzsﬂl.zj}
az 2—1 az 2
(i,j =1, ..., n/2). Processor P; is connected to its “‘diagonally” nearest

neighbors P; 4 ;+; (1 < i j < n/2). For the boundary processors and for
a complete picture, see Figures 1 and 2. In general, Pj; contains four real

numbers
r:} 5:::‘]
Yi O

The diagonal processors P; (i = 1, ..., n/2) act differently from the off-
diagonal processors P;(i # j, 1 < i, j < n/2). At each time step, the diagonal
processors P; compute rotation pairs (cF, sF) and (R, sR) to annihilate their
off-diagonal elements §8; and +y;; (cf. Algorithm USVD):

cf P [ew Bi|[& s a; 0
_Sf: c{r Yii 5:'!' _S;R C;'q 0 6:: -

na oul B

oula

ny 18

7 |

outy n

\:W

Figure 1. Diagonal input and output lines for processors.

258 JOURNAL OF VLS| AND COMPUTER SYSTEMS

OF D ¥ D
P P2 P13 Pia
Pa Poo Pos3 P4
s P3p P33 Paq4
Fa Paz Fa3 Paa
g 9,

Figure 2. “Diagonal” connections, n = 8. (here « stands for &)

To complete the rotations that annihilate 8; and v;({ = 1, ..., n/2), the off-
diagonal processors P;(i # j) must perform the transformations

[“U ﬁ::f] [aé‘ 35}
A r
Yi O Yi O
! ! R
[%‘ 5@:] [‘-‘f S%Trfj 51[‘3 Sfi]
Yi O =st o) Ly &ll=s <

We assume that the diagonal processor P;; broadcasts the rotation parameters
(ck, sF) to other processors on the i-th row, and (cR, sR®) to other processors on
the i-th column in constant time, so that the off-diagonal processor Py; has
access to the parameters (cf, s§) and (¢}, s¥) when required.

To complete a step, columns and corresponding rows are interchanged be-

tween adjacent processors so that a new set of n off-diagonal elements is ready
to be annihilated by the diagonal processors during the next time step. We

where

BRENT, ET. AL.: COMPUTATION OF THE SINGULAR VALUE 259

have assumed diagonal connections for convenience. They can easily be simu-
lated if only horizontal and vertical connections are available (cf. [1]). The
diagonal outputs and inputs are illustrated in Figure 1, where the subscripts
(i,7) are omitted. They are connected in the obvious way, as shown in Figure
2. For example,

in ’}','_lu,'+’ if >]., j < n/2
inoipy if =1, J<n/2

out (3; is connected to
E?I 6,'__1’_',' if I > 1, j - n/Z
I.II,B,J, if (= 1, j=n/2

Formally, we can specify the diagonal interchanges performed by processor
P;; as follows.

Algorithm Interchange

(out a «~ a; out 3 < f3;]
if i=1 and j=1 then

Lout y < v; out & < 6; |

[out o + f3; out 3 < a;]
elseif i =1 then

| out vy < §; out 6 < vy; |

[out a « +; out 3 « §;]
elseif j =1 then

out y < «aj out 6 + f3; |

[out o + 6, out 3 « v;]
else

Lout y < f3; out 6 < o |

{wait for outputs to propagate to inputs of adjacent processors }

ino+ o inf < B;
iny < ¥y; iné + 6.

It is clear that a diagonal processor P; might omit rotations if its off-diago-
nal elements 8; and v;; were sufficiently small. All that is required is to broad-
cast (cf, s5) = (1, 0)and (cR, s®) = (1, 0) along processor row and column i,

respectively. As is well known (cf. [1]), a suitable threshold strategy guaran-

260 JOURNAL OF VLSI AND COMPUTER SYSTEMS

tees convergence, although we do not know any example for which our al-
gorithm fails to give convergence even without a threshold strategy.

If singular vectors are required, the matrices U and V of singular vectors
can be accumulated at the same time that A4 is being diagonalized. To com-
pute U, each systolic processor P; (1 =< i, j < n/2) needs four additional

memory cells
Kij Vi
(T,;,' T,_}:
During each step it updates

L L
[Ffj ”J} r; V;} { ¢j 51]
4_ -

— oL L

Oy Tij Oij Tj S ¢

Each processor transmits its
IR
c 7

values to its adjacent processors in the same way as the
a p
v 6

values (see Algorithm Interchange). Initially we set pi=vi=0;=71;=0(

#j), and p; = 7; = 1, 0;; = v; = 0. After a sufficiently large and integral
number of sweeps, we have U defined by

|:”2i— 1.2j—1 H2i—1 .2;} |:#:'j 3‘1
U2i2i—1 Ui 2j 05 Tj
The matrix V can be computed in an identical manner, but the rotation

i sf e sf
is replaced by .
—sk oL —sR R
i Y J

J

BRENT, ET. AL.: COMPUTATION OF THE SINGULAR VALUE 261

If the dimension n is odd, we either modify the algorithm for processors Py;
and P, (i = 1, ..., |n/2]) in a manner analogous to that used in [1], or
simply border A by a zero row and column. The details of handling problems
where n is larger or smaller than the effective dimension of the array are pre-
sented in the next section.

Instead of broadcasting the parameter pairs (¢, sf) and (cR, s%), it may be
preferable to broadcast only the corresponding tangent values tt and ¢t and
let each off-diagonal processor P;; compute (ck, sF) and (cJR, sf) from ¢¥ and
r_f (cf. (2.4)). Communication costs are thus reduced at the expense of requir-
ing off-diagonal processors to compute two square roots per time step. This is
not significant since the diagonal processors must compute three square roots
per step in any case. In what follows a “‘rotation parameter” may mean either
t; or the pair (¢;, s;) (superscripts omitted).

Let us show how we may avoid the idealization that the rotation parameters
are broadcast along processor rows and columns in constant time. We can
retain time O(n) per sweep for our algorithm by merely transmitting rotation
parameters at constant speed between adjacent processors.

Let A; = |i — j| denote the distance of processor P; from the diagonal.
The operation of processor P; will be delayed by A; time units relative to the
operation of the diagonal processors, in order to allow time for the rotation
parameters to be propagated at unit speed along each row and column of the
processor array.

A processor cannot commence a rotation until data from earlier rotations
are available on all its input lines. Thus, processor P; needs data from its four
neighbors P;+ j+; (1 < {,j < n/2). For the other cases, see Figure 2. Since

1"—\-:3' - A:‘il.jiil = 2,

it is sufficient for processor P to be idle for two time steps while waiting for
the processors P; 4+ ;+ to complete their (possibly delayed) steps. Thus, the
price paid to avoid broadcasting is that each processor is active for only one-
third of the total computation. This is a special case of the general technique
of Leiserson and Saxe [17], and is illustrated in Figure 3. A similar ineffi-
ciency occurs with many other systolic algorithms, see, e.g., [1] and [15]. The
fraction can be increased to almost unity if the rotation parameters are propa-
gated at greater than unit speed, or if multiple problems are interleaved.

A typical processor P;(1 < j =< i < n/2) has input and output lines as
shown in Figure 4 (with subscripts (¢, /) or (i, {) omitted). Figure 4 differs from
Figure 1 in that it shows the horizontal and vertical lines inht, outht, invt,
outvt for transmitting the rotation parameters. Processors interconnect as
shown in Figure 5.

262 JOURNAL OF VLSI AND COMPUTER SYSTEMS

ODOo00o00 onOoooo ocaomaoo
O0O0000 00000 ooom”aoad
oot t—-mduodamb
OO00OQL00O0 Cono0ooO0o Ooomooon
o000 0d oo bomaad
ooooogtod oododoma [:IDDEI}DEI
ODOoORO0O0 OCO0OCO0O 00000
O00RRO0 U000 OROOO
BOoO0C0OEBO--0RUOEOO—O0O0EO000
OROOC0OE 0O O mooEao
O0O0O000 00O ODOoOO@O
ODO00ORO0O D000 0O0 oOodod@
[EDEH%E]D O30O00EO OOE3OOE
D000 80800 0O00OD®O0
OO0 0d00E—-030E00-00030
ROOGO0O0O D000 0800006
ORO0080 RO0O0GEOGE OO bOod
O0R0006 00030 0000

Figure 3. An example (n = 12) showing how the computations are staggered to avoid
broadcasting. The value inside each box indicates the iteration number.

Suppose that the matrix A is available in the systolic array at time T = 0.
Then the operation of processor P; proceeds as described in Algorithm Proc-
essor. We also assume that each time step has non-overlapping read and write
phases; the result of a write at step T should be available at the read phase of
stepT+ 1, T + 2, and T + 3 in a neighboring processor, but should not
interfere with a read at step T in a neighboring processor. The first time steps
at which data are available on various processors’ input lines are indicated in
Figure 5.

BRENT, ET. AL.: COMPUTATION OF THE SINGULAR VALUE 263

Subdiagonal (1< j< i< n/2) Diagonal (1< F<n/2)

ina v ina outv outB

outa \\ l /’V{;fﬁhﬂ outa ‘\\ T /)f/ inB

outht <— P ~— inht outht —— P — outht

iny / l ‘Q\oura f'nr/l/ l Q‘ outd

out nd y
L4 outve ouly outv! inpB

Figure 4. Input and output lines for typical subdiagonal and diagonal processors.

2y 3 3 4 4 5 5 6
3
Al N 2| “i3 3| Fia
A=0 A= A=x2 A=3
3 3 2 11 a 3 2F 5 a4 31 5
30y 2 3 3 4 4 5 5
Fai | P22 | Fes 2| Foa
a=1 [A=0 Az " oA=2
4 4 3 3 2 It a4 3 2 4
4 2y 3 4 1) 2 3 3 4 a4
Pai |2 Pzp | I P33 1| Pag
A=2 A=l A=0 1A=
5 5 4 4 3 3 2 11 3
5 3| 4 5 2| 3 4 1] 2 3 3
Par |3 Pap | 2 Paz || Paq
A=3 A=2 A=1 [A=0
e (U 55 4 4 3 3 2

Figure 5. Interprocessor connections (n = 8). (The first times at which inputs are available
are indicated.)

264 JOURNAL OF VLS| AND COMPUTER SYSTEMS

Algorithm Processor

if (T = A)and (T — A = 0 (mod 3)) then
begin

a B ina inf
if T # A then — ;
¥y o iny iné

if A = 0 then {diagonal processor}

o f a’ 0
Use (3.5) to determine ¢£, t® and -
v 5 0 &

else { off-diagonal processor }
begin
tL — inht; tR « invt;
Use (2.4) to recover (cL, s£) and (c®, sR);

a B cl st T[oe B:l[cR sR
Lf 5] [—S’* C’J y &]L —sR CR}
end;

outht < tL; outvt « tR,

if { > j then set out (as in Algorithm Interchange;
if i < j then set out v as in Algorithm Interchange
end

else if (T = A)and (T — A = 1 (mod 3)) then
begin
if (= 1) or (j = 1) then set out « as in Algorithm Interchange;
if ({ = n/2) or (j = n/2) then set out § as in Algorithm Interchange
end

else if (T = A)and (T — A = 2 (mod 3)) then
begin
if ((> 1) and (j > 1) then set out « as in Algorithm Interchange;
if i < j then set out (8 as in Algorithm Interchange;
if / = j then set out v as in Algorithm Interchange;
if ((< n/2)and (j < n/2) then set out § as in Algorithm Interchange
end

else
Do nothing this time step.

BRENT, ET. AL.: COMPUTATION OF THE SINGULAR VALUE 265

Algorithm Processor does not compute singular vectors, but may easily be
modified to do so. We have also omitted a termination criterion. The simplest
is to perform a fixed number § (say conservatively, 10) sweeps; then processor
P halts when T = 35(n — 1) + A; + 3, since a sweep takes 3(n — 1) time
steps. A more sophisticated criterion is to stop when no nontrivial rotations
were performed during the previous sweep. This requires communication
along the diagonal, that can be done in n/2 time steps.

6. HANDLING RECTANGULAR, UNDERSIZED, AND
OVERSIZED PROBLEMS

In the previous two sections we assume that the matrix A is square. If A has
more rows than columns, then one of two strategies can be adopted.
One approach is to apply our “‘square” algorithm to the matrix
A =[4, 0] = @, e Rm*m,

Note that in the SVD problem:

[¢ s,:lT|:ﬁ'pp Hpq][o 32] B lidl O}
—8 € Eqp qu —83 C 0 d2
(5]) 1 0
8 €3 0 1

whenever ¢ > n, because the symmetrization step (3.2) will diagonalize the

two-by-two matrix (see equation (3.4)). Thus, the sparsity structure of 4 will
be preserved during the iteration, and we will emerge with the factorization:

we will have

vV 0
UT[A 0] = diag(agy, ..., 0,,0, ..., 0),
0 I
from which we get
UTAV = diag(oy, ..., 0,)

as the desired SVD. A drawback with this approach is the expanded dimen-
sion of A, especially painful if m >> n. On the other hand, no additional

266 JOURNAL OF VLSI AND COMPUTER SYSTEMS

hardware is required so long as the array of Section S can handle m-by-m
problems.

In contrast, the second approach to handling rectangular SVD problems is
more efficient but entails the interfacing of an SVD array with a QR array.
The idea is to compute first the QR factorization of A:

)

where R € R"*” is upper triangular, and then compute the square SVD:

WITRV = L = diag(oy, ..., 0,).
Defining
W 0
U= ,
0 I
we get
UTAV = diag(ay, ..., 0,).

Actually, in the conventional one-processor setting, it is advisable to compute
the QR factorization first anyway, especially if m > n. See Chan [3].

We have not looked into the details of the interface between the QR and the
SVD arrays. It would be preferable to have a single array with enough gener-
ality to carry out both phases of the computation. For example, perhaps the
QR factorization could be obtained as A is *“loaded” into the combination
QR-SVD array.

We conclude with some remarks about the handling of SVD problems
whose dimension differs from the effective dimension of the systolic array of
Section 5. To fix the discussion, suppose that A is an n-by-n matrix whose
SVD we want and that our array can handle SVD problems with maximum
dimension N.

If n < N, then it is natural to have the array compute the SVD of

{1

BRENT, ET. AL.: COMPUTATION OF THE SINGULAR VALUE 267

i.e.,
UTAV = diag(oy, ..., ,,0, ..., 0).

Our method of computing this SVD (based on JSVD) ensures that

— Uu 0 _ vV 0
U= and V = ,
0 I 0 I

whence UTAV = diag(ay, ..., 0,). This follows because of (3.4) and (3.5).

(Whenever a two-by-two SVD involves an index greater than n, the special
form of the orthogonal update guarantees that A’s block structure is pre-
served.) Let us point out that an SVD procedure need not . produce a U anda
V matrix with the above block structure in the case rank (A) = rank (A) < n.

For example, if N = 3and A = [1 ;], then one of the infinitely many SVD’s of
A is

p p* P21 1 O1[p p? p? V2 0 0
p —p* —p* |1 1 0lip —p* —p*[=|0 0 0|
0O —p p 0 0 0JI0 —p p 0 0 O

where p = 1//2. Thus, further computations are necessary before the SVD
of A can be obtained.

Lastly, we discuss how oversized SVD problems might be handled. Parti-
tion the matrix A € R**” so that

An o Ag

A " Ak
where each A; is N/2-by-N/2. (Assume that N, the dimension of the systolic
array, is even so that n = kN/2.) One way to compute the SVD of 4 might be
a block Jacobi scheme. See also Schreiber [23]. In this scheme we repeatedly

pick (p, g) satisfying 1 = p < ¢ < kand use the array of Section 5 to com-
pute the N-by-N SVD:

[Upp qu]T|:App qui| |:Vpp qu} _ [Dp 0]
Up Ugel L Agp AgglL Vap Vyq 0 D,

268 JOURNAL OF VLS| AND COMPUTER SYSTEMS

Next, we construct the n-by-n orthogonal matrix U so that it is equal to the
identity matrix except for the four strategic blocks in the (p, p), (p, ¢), (g, p)
and (g, g) positions. Those blocks assume the values as given by (6.1). The
n-by-n orthogonal matrix V is constructed in an identical manner. Then the
matrix B = UTAV will have the property that

off (B) = off (A) = 2| Ap I} — aff (A,p) — 0ff(Ay,).

The indices (p, g) can be chosen according to the “row’” or the “parallel”
ordering. In the latter case, we could exploit a block systolic array (see Fig-
ure 6).

The diagonal arrays are SVD arrays. The off-diagonal arrays are matrix-
multiply arrays. In this scheme, the blocks move around this array of arrays
in exactly the same fashion as the a; do in the array of Section 5. Obviously,

AL A Az Aia Ais Al A7 ‘g
Ay Agp Aoz Aog Arg Aog Az7 Aog
Az Azp Azz Azq Azg Azg Azp Aag
Agl As2 443444 Ags Age Aa7 Aag
Ag| Asp Asz Asg Ass Ase As7 Asg
Agl 462 As3 464 Ags 466 As7 Ag8
A7 A72 A73A74 Az5 Az6 A77 A1g
Ag “g2 Agz Ag4 Ags ‘g6 Ag7 “gg

Figure 6. Interarray connections (k = 8). (The initial state is illustrated.)

BRENT, ET. AL.: COMPUTATION OF THE SINGULAR VALUE 269

the success of this technique will depend upon the nature of the interconnec-
tions, and a host of other unexamined issues.

7. REFERENCES

[1] R.P. Brent and F. T. Luk, The solution of singular-value and symmetric eigenvalue prob-
lems on multiprocessor arrays, STAM J. Sci Statist. Comput. 6 (1985), pp. 69-84.

[2] R. P. Brent, F. T. Luk, and C. Van Loan, Computation of the generalized singular value
decomposition using mesh-connected processors, Proc. SPIE, Vol. 431, Real Time Signal
Processing VI, 1983, pp. 66-71.

[3] T.F. Chan, An improved algorithm for computing the singular value decomposition, ACM
Trans. Math. Softw. 8, 1982, pp. 72-83.

[4] 1. J. Dongarra, C. B. Moler, J. R. Bunch, and G. W. Stewart, LINPAK Users' Guide,
SIAM, Philadelphia, 1979.

[5] A. M. Finn, F. T. Luk, and C. Pottle, Systolic array computation of the singular value
decomposition, Proc. SPIE, Vol. 341, Real-Time Signal Processing V, 1982, pp. 34-43.

[6] G.E. Forsythe and P. Henrici, The cyclic Jacobi method for computing the principal values
of a complex matrix, Trans. Amer. Math. Soc. 94, 1960, pp. 1-23.

[7] B. S. Garbow, J. M. Boyle, J. J. Dongarra, and C. B. Moler, Matrix Eigensystem Rou-
tines—EISPACK Guide Extension, Springer-Verlag, Berlin, 1977.

(8] W. M. Gentleman and H. T. Kung, Matrix triangularization by systolic arrays, Proc.
SPIE, Vol. 298, Real-Time Signal Processing IV, 1981, pp. 19-26.

[9] G. H. Golub and W. Kahan, Calculating the singular values and pseudo-inverse of a ma-
trix, J. SIAM Ser. B: Numer. Anal. 2, 1965, pp. 205-224.

[10] G. H. Golub and F. T. Luk, Singular value decomposition: applications and computations,
Trans. 22nd Conf. Army Mathematicians, ARO Report 77-1, 1977, pp. 577-605.

[11] G. H. Golub and C. Reinsch, Singular value decomposition and least squares solutions, in
[27], pp. 134-151.

[12] E. R. Hansen, On cyclic Jacobi methods, J. Soc. Indus. Appl. Math 11,1963, pp. 448-459.

[13] D. E. Heller and I. C. F. Ipsen, Systolic networks for orthogonal equivalence transforma-
tions and their applications, Proc. 1982 Conf. on Advanced Research in VSLI, MIT, Cam-
bridge, Massachusetts, 1982, pp. 113-122,

[14] M. R. Hestenes, Inversion of matrices by biorthogonalization and related results, J. Soc.
Indust. Appl. Math 6, 1958, pp. 51-90.

[1S] H. T. Kung, Why systolic architectures?, IEEE Computer 15, 1982, pp. 37-46.

[16] S. Y. Kung and R. J. Gal-Ezer, Linear or square array for eigenvalue and singular value
decompositions?, Proc. USC Workshop on VLSI and Modern Signal Processing, Los
Angeles, California, November 1982, pp. 89-98.

[17] C. E. Leiserson and J. B. Saxe, Optimizing synchronous systems, J. VLSI Computer Sys-
tems 1, 1983, pp. 41-67.

[18] F. T. Luk, Computing the singular-value decomposition of the ILLIAC 1V, ACM Trans.
Math. Softw. 6, 1980, pp. 524-539.

[19] H. Rutishauser, The Jacobi method for real symmetric matrices, in [27], pp. 202-211.

[20] A. H. Sameh, On Jacobi and Jacobi-like algorithms for a parallel computer, Math. Com-
put. 25, 1971, pp. 579-590.

[21] A.H. Sameh, Solving the linear least squares problem on a linear array of processors, Proc.
Purdue Workshop on Algorithmically-specialized Computer Organizations, 1982,

[22] R. Schreiber, A systolic architecture for singular value decomposition, Proc. Ist Internat.
Coll. on Vector and Parallel Computing in Scientific Applications, Paris, France, March
1983.

[23] R. Schreiber, On the systolic arrays of Brent, Luk, and Van Loan, Proc. SPIE, Vol. 431,
Real Time Signal Processing VI, 1983, pp. 72-76.

270 JOURNAL OF VLS| AND COMPUTER SYSTEMS

[24] J. M. Speiser and H. J. Whitehouse, Architectures for real-time matrix operations, Proc.
1980 Government Microcircuits Applications Conf., Houston, Texas, November 1980.

[25] H.J. Whitehouse, J. M. Speiser, and K. Bromley, Signal processing applications of systolic
array technology, Proc. USC Workshop on VLSI and Modern Signal Processing, Los
Angeles, California, November 1982, pp. 5-10.

[26] . H. Wilkinson, Note on the quadratic convergence of the cyclic Jacobi process, Numer.
Math 4, 1962, pp. 296-300.

[27] J. H. Wilkinson and C. Reinsch, eds., Handbook for Automatic Computation, Vol. 2 (Lin-
ear Algebra), Springer-Verlag, New York, 1971.

