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THE FIRST 200,000,001 ZEROS OF RIEMANN’s ZETA FUNCTION

by

R.P. BRENT, J. VAN DE LUNE, H.J.J. TE RIELE & D.T. WINTER

1. INTRODUCTION

This paper contains a description of extensive computations carried out
by Brent at the Department of Computer Science of the Australian National
University (Canberra) and by van de Lune, te Riele and Winter at the Mathe-
matical Centre (Amsterdam, The Netherlands). The main results will appear in
1982 in Mathematics of Computation. The details of the computations by
van de Lune, te Riele and Winter have been described in the Mathematical
Centre Report NW 113/81 [12],

Riemann's zeta function is the meromorphic function z: C\{1} + €, which,
for Re(s) > 1, may be represented explicitly by

r(s) = E;:l n % (s = o+it).
It is well-known (see TITCHMARSH [17, Chapters II and X]) that
s

£(s) i= ds(s=17 T (s)
is an entire function of order 1, satisfying the functional equation

E(s) = E(l-s)s
so that

E(z) := EG%+ iz), (z € C),

being an even entire function of order 1, has an infinity of zeres. The

Riemann Hypothesis is the statement that all zeros of Z(z) are real, or,

equivalently, that all non-real zeros of r(s) lie on the "ecritical" line

g = % Since £(s) = z(s) we may restrict ourselves to the half plane t > 0.

To this day, Riemann's Hypothesis has neither been proved nor disproved.
Numerical investigations related to this unsolved problem were initiat-

ed by Riemann himself and later on continued more systematically by the
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writers listed below (including their progress).

Investigator Year The first n complex zeros of Z(s)

are simple and lie on ¢ = }

GRAM [6] 1903 n=15
BACKLUND [1] 1914 n=79
HUTCHINSON [7] 1925 n = 138
TITCHMARSH [16]  1935/6 = 1,041

Those listed above utilized the Euler-Maclaurin summation formula and per-
formed their computations by hand or desk calculator whereas those listed
below applied the Riemann-Siegel formula in conjunction with electronic

computing devices.

LEHMER [10,11] 1956 n = 25,000
MELLER [13] 1958 n = 35,337
LEHMAN [9] 1966 n = 250,000
ROSSER, YOHE &

SCHOENFELD [15] 1968 n = 3,500,000
BRENT [2] 1979 n = 81,000,001

An excellent explanatory account of most of these computations may be
found in EDWARDS [4].

In this paper (which presupposes the knowledge of BRENT [2]) we report
on extensive computations by which the first named author has extended his
former result to n = 156,800,001 and by which the remaining three authors
(LR & W, for short) have extended this bound to n = 200,000,001, Independ-
ently of Brent, LR & W have also checked the range EgB],OUU,GDO’
£120,000,000° °

In practice, the numerical verification of the Riemann hypothesis in a
given range consists of separating the zeros of the well-known real function
7(t) (see formula (2.6) of BRENT [2] or formula (3.1) in Section 3 of this
paper), or, equivalently, of finding sufficiently many sign changes of Z(t).
Our programs (aiming at a fast separation of these zeros) are based, essen-
tially, on the modification of LEHMER's [11] method introduced by ROSSER
et al. [15]. However, LR & W have developed a more efficient strategy of
searching for sign changes of Z(t) in Gram blocks of length L = 2. Brent's

average number of Z-evaluations, needed to separate a zero from its
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predecessor, amounts to about 1.4] (compare BRENT [2]) whereas LR & W have
brought this figure down to about 1.21. It may be noted here that in the

most recent version of the program of LR & W this figure has been reduced
further to about 1.185. From the statistics in Section 4 it follows that in
the range [3156,800,000’ gZOD,ODU,OOO) this average number of Z-evaluations
could not have been reduced below 1.135 by any program which evaluated Z(t)

at all Gram points. We also note that about 98 percent of the running time

of the LR & W - program was spent on evaluating Z(t). This program was exe-
cuted on a CDC CYBER 175 computer and ran about ten times as fast as the
UNIVAC 1100/42 program of Brent. This is roughly what could be expected, given

the relative speeds of the different machines.
2. THE STRATEGY FOR FINDING SUFFICIENTLY MANY STGN CHANGES OF Z(t)

We recall some definitions. Let 8(t) be the real continuous function
defined by

(2.1) o(t) = arg[w_iitFQ%1~% it)], 8(0) = 0.

The j—-th Gram point gj is defined as the unique number satisfying B(gj) =jm
(j =-1,0,1,2,...). A Gram point g; is called good if (—1)12(35) > 0 and
bad otherwise. A Gram block of length L (= 1) is an interval Bj = [gj,gj+L)

are good Gram points and

such that gj and g, are bad Gram

j+L
points. An interval [gj,g

8341777 285411
j+l} is called a Gram interval. A Gram block Bj of
length L is said to satisfy "Rosser's rule" if Z(t) has at least L zeros in
B..

! The strategy of Brent for finding the required number of sign changes

of Z(t) is based on this rule. LR & W refined this strategy in order to re—
duce the number of Z-evaluations as much as they could. This will be de-
scribed here in some detail.

In order to reduce the number of Z-evaluations as much as possible, we
first observe that after having determined a Gram block Bj of length L = 2,
we already have implicitly detected L-2 sign changes of Z(t). Hence, the
problem reduces to finding the "missing two" sign changes. Next we observe
that these missing two (if existing) must both lie in one and the same Gram
interval of the block Bj. Some preliminary experiments with the LR & W-program
revealed that in the majority of cases the missing two are situated in one

)

of the outer Gram intervals of Bj. Therefore, we first search in (gj,gj+]
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or (gj+L—l’gj+L) according to which of abs(z(gj)-+z(gj+1)) and abs(z(gj+L_])+
Z{gj+L)) is the smallest. In the selected interval an efficient parabolic
interpolation search routine is invoked. (Here is the main improvement over
Brent's method, which used random search rather than parabolic interpola-
tion.) If this routine terminates without having found the missing two sign
changes, the other outer Gram interval of the block is treated in the same
manner. In case the missing two are still not found, another search routine
jr-

If L = 2, the interval (gj,gj+2) is scanned again, and if L > 2 we con-

is called, depending on the length L of the block Bj = Egj,g

tinue to search in the interval (gj+l,g ). In both cases, the search is

performed by means of a refinement of ajgzaich routine described by LEHMAN
[9]. For more details we refer the reader to the source text of the LR & W -
program in [12].

If at some instant one of the search routines has detected the missing
two, a new Gram block is set up and we continue as described above. In the
opposite case (which occurs very rarely) the program prints a message and a
"plot" of Z(t) corresponding to the whole Gram block under investigation and
proceeds by pretending (!) that the missing two were found indeed. These
plots of Z(t) were inspected afterwards (if necessary) "by hand". So far,
the missing two were always easily found either inm the Gram block under con-
sideration or in an adjacent Gram block (compare BRENT [2, Section 41).

After having covered the range Engﬁ,BOO,DUO’ 3200,000,000) we ran the
computation a little further, and found 4 Gram blocks in [gZUD,DUU,OOO’
3200,090,004), all of them satisfying Rosser's rule. By applying Theorem 3.2
of BRENT [2] we completed the proof of our claim that the first
n = 200,000,001 zeros of z(s) are simple and lie on o = % .

3. COMPUTATION OF Z(t) AND ERROR ANALYSIS
3.0. Introduction

In principle, Brent and LR & W's methods of computing Z(t) and error
analysis are exactly as described in Section 5 of BRENT [2]. We will only
mention here some details of LR & W's computations and error analysis. The
full details are given in [12].

The unambiguous determination of the sign of Z(t) requires a rigorous

bound for the error, committed when one actually computes Z(t) on a computer.
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In our program we actually used two methods (A and B) for evaluating
Z(t).
Method A is a very fast and efficient method which usually gives the correct
sign of Z(t).
Method B is a comparitively slow, but very accurate method which is invoked
when |Z(t)| is too small for method A.
We used the well-known Riemann-Siegel formula (with two correction terms in

either case):

v -3 m-1 =1 ] -j/2
(3-]) z(t} = 2 X k CDS[t.ﬂn(k)—ﬁ}(t)]+ (-—-]) T 4 E "E’-(Z)T J +‘R] (t),
k=1 j=0 J
where m = LT%J, T=t/(2r), z=1- 2(1%-m),
(3.2) p(t) = arg[nH%itrﬁéi”% it)]l, @(t) continuous and 8(0) = 0,

(3.3) 85(2) = coslm(4z"43)/8]/cos(nz) =: | {02, 1<,
k=0
3 o]
a 2. (1) 2k+1
(3.4) ¢](z) = ~—§-¢0(z)f(12ﬁ ) =: E Cok+1% .
dz k=0

The last temmRI(thill be dropped in our actual computation. GABCKE [5] and
BRENT & SCHOENFELD [4] have given bounds on Rn(t) (here, n+] denotes the num-
ber of terms in the second sum in (3.1), hence n = | in our situation). We
used the bound (GABCKE [5])

(3.5) IR ()] < 0,053t 7% < 0.0054:75/%,  for ¢ = 200.
1

The floating point machine approximations of Z by means of methods A and B
will be denoted by EA and 2B’ respectively. Throughout this section, the re-
sult of the floating point machine approximation of some quantity q will be
denoted by E.

We present an error analysis which accounts for all possible errors in

E, for any t (resp. 1) in the range,
7 8 6 7
(3.6) 3.5x 100 <t < 3.72x% 10 (resp. 5.5%x 10 < 1 < 5.92x 10").

This covers the range of zero #81,000,001 till zero #1,000,000,000 of z(s)
in the critical strip, which we had originally planned to investigate

~ 35,018,261, 166 ~ 371,870,203.837).

(rg1,000,001 > ¥1,000,000,000
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The computations were carried out on a CDC CYBER 175 computer having a
60-bit word, and single-precision (SP) and double-precision (DP) floating-

point arithmetic using 48- and 96—~ bit binary fractions, respectively. In

the sequel we will frequently work with the unit roundoffs €g = 2_4? and
=95
2 .

=
H

€a

3.1. Computation of Z(t)

At the start of the program four tables are precomputed:

(i)  #£n(k) for 1 =k = my in DP, where m, is large enough to cover the

0
range of the current job;
(ii) k_% for 1 = k = my in DP, truncated to SP;

(iii) cos(mk.2™") for 0 < k < 2'34 1 in DP, truncated to SP;

(iv) cos(Zﬂ(k+!)2_]3) - cos(Zwk2_|3) for 0 < k < 213 in DP, truncated to

SP.
Methods A and B run essentially as follows.

Method A. Given a T as a DP floating point number, t = 277 and 8(t) are com-

f(]) 1= Erac{e(t)(Zw)-E} is computed in DP, and truncated to SP.

puted in DP;
Next, the main loop (corresponding to the first sum in (3.1)) is executed.
This loop has been written in COMPASS (machine language of the CYBER) and
optimized using the specific properties of the CYBER's central processing

units. One cycle of the loop executes in about 2.1 1 sec, f(z)

frac{t fn(k)} (where £€n(k) is looked up in the precomputed table) is computed
as follows: the DP product of 71 and £n(k) is decreased with the integer part
of the SP product of 1 and £n(k) and the result is truncated to SP. This pro-
gramming ''trick" saves a considerable amount of time in the main loop. x =
ahs(f(l)—f(Z)} is computed in SP, and cos(2mx) is approximated by linear in-
terpolation in the precomputed cosine-table, using the precomputed cosine-
difference table. The result is multiplied by the precomputed k—i and the
product is accumulated in an SP sum. End of the main loop. Next, the two
terms in the asymptotic expansion of the Riemann-Siegel formula (3.1) are
approximated using the truncated Taylor series expansions

N

1
(1)  2k+l
and ¢ (z) = ) Copy 412 .
] k=0 2k+1

(O)ZEk

Ny
(3.7) d. (z) c
0 kzo 2k

z

For the values of Ny and N, actually used, see Section 3.4. The total cor-
rection is computed and added to 2 times the sum obtained in the main loop.

The computations after the main loop are carried out in SP.
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Method B. The same as Method A, with all computations in DP. The value of cos (27x)

is computed using the available standard FORTRAN DP library function DCOS.

3.2. Error analysis

In our error analysis we assume that T is exactly representable as a
floating point number. The positive integer m (= LTij) is ewactly computed
from T by testing the inequalities m2 =T < (m+1)2 and by ‘correcting the

machine-computed value, if necessary. Now let
m

(3.8) s(t) :=2 ) k *cos[t.fn(k)- 8(e)], (t = 2u7).
k=1

By s(t) we denote the computed value of s(t), where errors may be made in
_1
the computation of t, £n(k), 6(t), t.fn(k) - 6(t), cos(.), k ? and the final

inner product. The following lemma accounts for all these errors.

LEMMA 3.1. Suppose that |t-t| < 8ots 1€n(k) = En() | < §, n(k) for k =

1,2, 0um, and 18(w) =8| s 8,0(u); let £ := frac{rln(k) - 8(D) (2m) ™"}
and suppose that Ifk—¥k| <84 for k = 1,2,...,m. Moreover, suppose that ;
lcos (x) - cos (x) ] < 8, for 0<xs<2n+h, where h is f'z':r:ed*), Ik_%-f{_%t < 651;_‘
for k = 1,2,...,m, and that the inmner product of the two vectors with com-
ponents ﬂh; and EEE(ank), respectively, (lsksm) 28 computed with a rela-
tive error in the basic arithmetic operations (+,-,* and /) bounded by e.
Then we have

Is(t) - 5(0) | < mﬁ”en(r)[zaow’(uao) +5,] +
(3.9)

1
+ 4T4[2ﬁ63+5&+ (a+54){55+ (|+55)<(1+g)‘“~|)}1.

This lemma is similar to Lemma 5.3 of BRENT [2], the difference being
that we explicitly account for all possible errors in the computation of s(t).
The proof is routine and uses the technique of backward error analysis (cf.
WILKINSON [18]) for the inner product computation (cf. PARLETT (14, pp. 30-
32]) and for the other basic arithmetic operations.

Let

(3.10) x(t) := (—l)m_lrm£[$0{z) + T_5¢](Z)j.

*) The reason for the occurrence of this (small) number h in this lemma will
be clarified in Section 3.3.
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By ;(1) we denote the computed value of ¥(r) where errors may be made in the
b

computation of T2, 1 ¢, 2, Go(z), ¢I(z), and in the other arithmetic opera-

tions. The following lemma accounts for all these errors.

LEMMA 3.2. Let € be as in Lemma 3.1 and let the velative error in the square
root computation be bounded by ae. Moreover, suppose that |z-z| < 8¢ and

- 3 Yo 70y L2k
that &g (z) and ¢(z) are approximated by ¢D(z) = I 2o S’ 2 and
N ——

1 (1) 2Zk+l
k=0 “2k+1 ’

1c(]) - D) | < &,. Then
2k+1 2k+1° © 77

gl(z} = L respectively, where 1c{0) - cég)l < 5? and

2k

+1

- _ N
[x(t) =x(0)! < %[256+25?(N0+')'*TEB%TTT(%J 0 +(5N0+2a+a)s]+

(3.11)

~3/41 Ny+3/2 | Ny
+ T [156+257(N]+|)*”g TﬁT:TTTQE) +(5Ni+33+7)5]-

In the proof of this lemma, which we omit, use is made of the inequali-
ties |¢0(z)| <1, E¢}(z)i < 1, I¢6(2}| < 1| and E¢;(z}l < %—for lz] = 1 (see
GABCKE [5, Theorem !, p. 601) and of the bounds given in GABCKE [5, Theorem
2, p. 62] on the error induced by truncating the infinite series in (3.3)

and (3.4).

3.3, Estimates for GO,...,é? for methods A and B

Because of the programming "trick" mentioned in 3.1 we must take into

(2)

account the possibility that the computed value of £ may be (slightly)

larger than 1 by an amount which is bounded by Z.SESTEn(k). In the t-range

(2)

(3.6) this excess is bounded by 10_5. Instead of correcting £ by subtract-

ing 1, which is needed only very rarely, we use one extra element in the co-
sine interpolation table beyond cos(2m), viz. cos(2mw+h), where h = 2ﬁ.2_13 S
N 7.7x 107 > 107°).

In [12] we have given an account of our computation of the values of

60,...,5?. The results are summarized in Table 3.1.
Table 3.1.
Values of 60,...,5? for methods A and B
me thod 80 ﬁl 52 63 5¢ 65 66 6?
A 11 0110728] 5. 1610729 3. 651072 [5x1071 |7.36x1078]7.22107"% | 7.2¢107"% 521071
5 11.01x10728]5. 1510729 3. 6x10727 | 1. 2x107 7 | 1. 510727 [ 1.01x107%8 |2, 0x10724 | 510728
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3.4. The error bounds on E for methods A and B

Tc complete the error analysis we apply Lemmas 3.1 and 3.2 with &

0,

...,6? as given in Table 3.1, ¢ = €y = 2-4?, a =10, NO = 16 and N] = 17 for
method A, and € = eq = 2_95, a =10, NO = NI = 29 for method B; including
the inherent error (3.5) this yields
(3.13) 120 -7, s 3x1077/4
and
(3.14) |Z(t) —EB("E)| < 5.4x 10 3 L3 1k 1071014

+ 4.1 x 10—241_]f4+ 5 x 10"2615f4£n(1),

for any t (= 2mt) in the interwval (3.5 x IO?, 3.72 % 108}. In this interwval,
safe upper bounds for the errors are 2.7 x 10_5 and 2.0 = ]0_11, respectively.
In the LR & W- program (see [12]) the extremely conservative fixed bounds

€, = 10_4 and e, = 2.5><10_6 were used, respectively. In case iEA(E}! was
less than €5 @ few rather small shifts with t were tried. If still no
"clear" value was found with method A, method B was invoked. Until now not
a single t occurred for which method B could not determine the sign of Z(t)

rigorously.
4, STATISTICS

The LR & W~ program was organized in such a way that in case the value
of Z(t), obtained with method A, was too small for a rigorous sign determin-
ation, a few small shifts of the argument were tried before method B was in-
voked. Therefore, the LR & W~ program uses, in relatively few cases, an ap-
proximation of the Gram point 8; instead of 8 itself. (In a run of 2,500,000
zeros, with error bound ]0-& for method A, the total number of shifts was
always less than 370. Most of them were made when separating the zeros in—
side the Gram blocks. Only a few of them were made in Gram points. Also see
the text introducing Table 4.3.) Consequently, the statistics found by LR&W
cannot, strictly speaking, be accumulated to those, found by Brent. Never-—
theless, just for convenience, we have put together all results. This should

be kept in mind when reading the tables.
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In Table 4.1 we present a list of 104 exceptions to Rosser's rule up to

£200,000,000
75,000,000

are given in parentheses, followed by the
BRENT [2]) near B . It is possible that for n

found by Brent and LR & W, including the 15 exceptions up to

from [2], for completeness. Moreover, the types (see Table 4.2)

=

program has not detected all exceptions to Rosser's rule, due to

Table 4.1

(extension of Table 3 of BRENT [2])
. ) .
104 exceptions to Rosser's rule up to 8200,000,000

Notation: n (type) extreme S(t)

where n is the index of the Gram block B containing no zeros.

local extreme values of S(t) (see
156,800,000 the LR & W -

13,999,525(1)
30,783,329(1)
30,930,927 (2)
37,592,215(1)
40,870,156 (1)
43,628,107 (1)
46,082, 042(1)
46,875,667 (1)

50,799,238(1)
55,221,454(2)
56,948, 780 (2)
60,515,663 (1)
61,331,766(3)
69,784,844 (2)

79,652,248(2)

85,348,958(1)

86,513,820(1)

88,600,095(1)

93,681,183(1)
100,316,552 (2)

75,052,114 (1)
79,545,241(2) 2.
L0066
83,088,043(1) —-2.1328
83,689,523(2) 2.
. 0095
L0154
87,947,597(2) 2.
L1394
.0165
.0233

L0041
.0026
L0506
L0764
L0038
L0242
L0311
L0046
49,624 ,541(2) 2.
.0288
L0242

0018

2,0177

L0081
L0543
L0637
.0045

0113

0775

0523

100,788,444 (1)
106,236,172(1)
106,941,328(2)
107,287,955(1)
107,532,017(2)
110,571,044(1)
111,885,254(2)
113,239,783(1)
120,159,903(1)
121,424,392(2)
121,692,932(2)
121,934,171(2)
122,612,849(2)
126,116,567(1)
127,936,513(1)
128,710,278(2)
129,398,903(2)
130,461,097 (2)
131,331,948(2)
137,334,072(2)
137,832,603(1)
138,799,472(2)
139,027,791 (1)
141,617,806(1)
V44, 654,931(1)
145,402, 380(2)

.0230
L0184
. 1559
.0786
L0728
L0458
L0247
L0306
.0589
L0515
L0616
L1719
.0072
L0106
L1105
L0444
L0431
.0963
L0047
.0239
L0134
L0135
L0031
L1253
.0380
.0012

146,130,246 (2)
147,059,770(1)
147,896 ,100(2)
151,097, 113(1)
152,539,438(1)
152,863,169(2)
153,522,727(2)
155,171,525(2)
155,366,607 (1)
157,260, 687(2)
157,269,224 (1)
157,755,123(1)
158,298,485(2)
160,369,051 (2)
162,962,787(1)
163,724,709 (1)
164,198, 114(2)
164,689,301 (1)
164,880,229 (2)
166,201,932(1)
168,573,836(1)
169,750,763(1)
170,375,507 (1)
170,704, 880(2)
172,000,993(2)
173,289,941(1)

L0005
L0498
.0391
.0043
.0026
L0459

2.0027

.0437
0277
.0363
L0329
.0205
.0273
L0071
L0115
L0163
.0235
L1579
.0308
L0024
.0159
. 1036
.0009
.0249
L0608
L0378

173,737,614(2)
174,102,513(1)
174,284,990 (1)
174,500,513(1)
175,710,609 (1)
176,870,844 (2)
177,332,733(2)
177,902,862(2)
179,979,095(1)
181,233,727(2)
181,625,435(1)
182,105,257(6)
182,223,560(2)
191,116,405(2)
191,165,600 (2)
191,297,535(5)
192,485,616 (1)
193,264,636 (6)
194, 696,968(1)
195,876,805(1)
195,916, 549(2)
196,395,161(2)
196,676,303(1)
197,889,883(2)
198,014,122(1)
199,235,289(1)

-2

-2

.0221
-2,
-2.
L0125
-2,
L0125
L0146
.0223
-2,
L1018
L0401
L0084
L0156
L0195
.0283
. 1490
L0416
.0055
L0664
L0143
L0546
L0326
L0135
L0034
.0333
.0205

0180
0181

0193

0182
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possible shifts in Gram points. For instance, an exception of type 2 (see
Table 4.2) may have been detected as a Gram block of length 3 with "2 1 Q"
zero-pattern. It may be noted, however, that in the range [gBI,DOD,OGG’
3120,000’000) LR & W have found exactly the same exceptions to Rosser's rule
as Brent.

In addition to the types 1, 2 and 3 introduced by BRENT [2] we have de-
fined the types 4, 5 and 6, the meaning of which should be clear from Table
4.2, This table also gives the frequencies of the occurrences of the various
types in [g_], 2200,000,000)' Note that an exception of type 4 has not yet
been found, so that at the time of writing we still know only one Gram inter-

val with four zeros, viz. found by BRENT [2].

C61,331,768°

Table 4.2
Various types of ewceptions to Rosser's rule and their frequencies
™ L8_15>8500, 000,000’ *
Gram block of
length 2 with-
out any zeros type frequency
Bn-2 Bn-1 &y En+l En+2 Bn+3 En+d
Y Y Y o \ 0 1 3 r ! I 53
3 0 0 2 47
0 0 4 0 3 1
0 4 0 0 4 0
0 0 2 2 5 1
2 2 0 0 6 2

Very recently, KARKOSCHKA and WERNER [ 8] have developed a method for
detecting exceptions to Rosser's rule with relatively small computational
effort, i.e., by searching in certain selected small ranges of a given t-
interval. A comparison of their results with Table 4.1 shows the power of
their method: in [33,500,000’ 350,000,000) they found all 9 exceptions to
Rosser's rule, and in EglOO,OOO,DOO’ 3120,000’000) they found 6 of the 9
exceptions.

Table 4.3 is a continuation of Table 1 of BRENT [2]. Six Gram blocks
of length 8 were found. The average block length up to n = 200,000,000 is
1.1951. We have compared the results of LR & W with those of Brent in the
range [3110’000’000, 3120’000’002). Brent's program counted 7,011,482 Cram
blocks of length 1, 1,055,511 of length 2 and 230,234 of length 3. The
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corresponding figures obtained by LR & W were 7,011,494, 1,055,508 and
230,232, respectively. The numbers of Gram blocks of length > 4 were the

same for both programs.

Table 4.3
(continuation of Table 1 of BRENT [2])
Number of Gram blocks of given length

n J(1,n) J{(2,n) J(3,n) J(4,n) J(5,n) J(6,n) J(7,n) J(8,n)
80,000,000 56,942,025 8,386,072 1,714,271 260,637 18,807 1,033 34
90,000,000 63,977,026 9,439,917 1,941,455 299,932 22 257 1,240 46

100,000,000 71,004,697 10,493,487 2,169,610 340,360 25,813 1,436 54
110,000,000 78,023,506 11,547,936 2,399,154 381,216 29,601 1,644 bl
120,000,000 85,034,988 12,603,447 2,629,388 422,721 33,500 1,841 74
130,000,000 92,041,326 13,659,032 2,860,087 464,955 37,495 2,070 92
140,000,000 99,041,526 14,713,754 3,092,451 507,686 41,631 2,332 102
150,000,000 106,038,874 15,768,532 3,325,400 550,630 45,795 2,591 114
156,800,000 110,793,769 16,486,479 3,484,026 579,999 48,731 2,780 120
200,000,000 140,956,084 21,047,520 4,497,856 771,607 68,631 4,031 213

Table 4.4 is a continuation of Table 2 of BRENT [2]. The percentages

of the numbers of Gram intervals up to n

Table 4.4
(continuation of Table 2 of BRENT [21)

Number of Gram intervals containing exactly m zeros

200,000,000 containing exactly

m zeros are 13.4, 73.4, 13.0 and 0.2 for m = 0, 1, 2 and 3, respectively.

m= 0

m= |

m= 2

n m= 3 m
80,000,000 10,513,316 59,105,832 10,248,390 132,461
90,000, D00 11,854,362 66,440,792 11,555,331 149,514

100, 000, 000 13,197,331 73,771,910 12,864,188 166,570

110,000,000 14,543,760 81,096,629 14,175,463 184,147

120,000,000 15,892,224 88,416,806 15,489,718 201,251

130,000,000 17,242,449 95,733,829 16,804,996 218,725

140,000,000 18,594,089 103,047,955 18,121,824 236,131

150,000,000 19,946,624 110,360,313 19,439,504 253,558

156,800,000 20,867,682 115,330,181 20,336,593 265,543

200,000,000 26,731,720 146,878,417 26,048,007 341,855
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Table 4.5 continues Table 4 of BRENT [2]. As yet, no Gram block of type
(7,1) was found. Due to the shifts, we may have missed earlier occurrences
of blocks of types (7,7), (8,3) and (8,7), although we consider this unlike-
ly.

Table 4.5
(continuation of Table 4 of BRENT [2])

First oceurrences of Gram blocks of various types

J k n

7 7 195,610,937 (LR & W)
8 2 112,154,948 (BRENT)
8 3 175,330,804 (LR & W)
8 ] 145,659,810 (BRENT)
8 7 165,152,519 (LR & W)

In Table 4.6 we list the number of Gram blocks of type (j,k), 1 < j < 8,
] £k £ j, in the interval {3156,800,000’ 8200,000,000)’ as they were actual-
ly counted by the LR & W-program. On the line with j = 2 we also mention the
numbers of Gram blocks of length 2 with zero-pattern "0 0" and those with
pattern "2 2" which could, of course, neither be classified as type (2,1)
nor as (2,2). The 43 blocks with "0 0"-pattern correspond to the exceptions
to Rosser's rule in [gISG,BOD,OOO’ 2200,000,000) and the 3 blocks with "2 2"-
pattern correspond to the exceptions of types 5 and 6 (cf. Table 4.2). The
entries in parentheses give the approximate percentages with respect to the
total number of blocks of length j, given in the final column.

Our main purpose of presenting this table is to render support to the
LR & W-strategy of dealing with Gram blocks of length j = 2. The table shows
that this strategy is successful for 2 < j < 5, However, for j = 6 the miss-

)

ing two zeros in Bn show an increasing tendency to lie either in (gn+],gn+2

or in (gn+j—2’ gn+j—])' Only one of the 93 blocks of length j = 7 has its

missing two zeros in one of the outer Gram intervals!
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Table 4.6
Number of Gram blocks of type (j,k), 1 <3 <8, 1 <k < j, in the interval

'8} 56,800,000 8200,000,000

k>

¥ 1 2 3 4 5 6 .7 8 total

130,162,315 30,162,315

2 2,279,942 2,281,053 43 blocks with 0 0 zZero-pattern 4,561,041
(50) (50) 3 blocks with 2 2 =zero-pattern

3 479,720 53,497 480,613 1,013,830
(47) (5) (47)

4 87,367 8,592 8,499 87,150 191,608
(46) (4) (4) (45)

5 7,581 1,811 948 1,882 7,678 19,900
(38) (9 (5) (9) (39)

6 156 337 119 126 366 147 1,251
(12) (27) (10) (10) (29) (12)

7 0 29 17 3 17 26 1 93

8 0 0 1*) 0 0 1*) 1*) o 3

*) viz. B, for n = 175,330,804, 181,390,731 and 165,152,519,
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Added in Proof. In the meanwhile VAN DE LUNE & TE RIELE have extended the

computations so far that we can now (December 1982) say that the first

307000 000 non-trivial zeros of f(s) are all simple and lie on o = %n



