VLSI 83

F. Anceau and E.J, Aas (eds.)

Elsevier Science Publishers B.V, {North-Holland) 145
2 IFIP, 1983

SYSTOLLIC VLSI ARRAYS FOR LINEAR-TIME GCD COMPUTATION

R.F. Erent H.T. Kung
Department of Computer Science Deparrment of Computer Science
Australian National University Carnegie-Mellon University

Canberra, A.C.T. 2601 Pitrsburgh, Pennsylvania 15213
Australia U.5.A.

The problem of finding a greatest common divisor (GCD) of any

two nonzero polynomials is fundamental to algebraic and

symbolic computations, as well as to the decoder implementatrion
for a variety of error-correcting codes. This paper describes
new systolic arrays that can lead ro efficient hardware
solutions to both the GCD problem and the extended GCD problem.
The systelic arrays have been implementced on the CMU programmable
systolic chip (PSC) to demonstrate its application to the decoder
implementation for Reed-Solomon codes. The integer GCD problem
is also considered, and it is shown thar a linear systolic array
of O{n) cells can compute the GCD of two n-bit integers in time O{n).

1. INTRODUCTION

The polynomial GCD problem is to compute a greatest common divisor of any two non-
zero polynomials. The problem is fundamental to algebraic and symbolic computa-
tions (see, e.g. [7]} , and to the decoder implementation for a variecy of error-
correcting codes (see, e.g. [10, 11]. Many algorithms for solving the GCDproblems
are known in the literature. In faect, the Euclidean alporithm and its wvariants
for solving the problem are among the most well-known and well-studied computer
algorichms (see [1, 7]). However, for direcr hardware implementacion, these
previously known algorithms are all too irregular or/and too complex to be useful.
For example the Euclidean algorithm involves a sequence of complicatced '
divisions of polynemials whose sizes can be only determined during the computation.
This paper describes some simple and regular systolic structures that can lead to
efficient hardware solutions to the GCD problem and some of its variants. For
instance, we describe a systolic array ef m + n + 1 cells rhat can find a GCD of
any two polynomials of total degree no more than m + n, Figure 1-1 illustrates
tﬁat the systnli% array inmputs the coefficients of the given polynomials,

Ei_o2sxi and I byxl , at the left-most cell, and outputs the coefficients of
their GCD at the rEghtumust cell. More precisely, if a unit of time is the cell
cycle time {which as we shall see later is basically the time to perform a
division, or both a multiplication and an addirion}, then at 2{m + n + 1) rime
units after the a, and by entering the left-most cell, the coefficients of the GCD
will start coming out from the right-most cell at the rate of one coefficient every
time unit.

—— i+ N+] CELLE iy

a a a
_'a'.‘.,.. ?L-. " B . _h_n_.. I e . 4 s e [l GCD
—_— e | » I e v . —

Figure 1-1: Systolic GCD Array.

146 R P, Brent and H. T, Kung

Like many other systolic designs (see, e.g. [9]), the systolic GCD arrays of this
paper are suitable for VLSL implementation and can achieve high throughputs. These
systelic GCD arrays were actually designed for the purpose of implementing the
decoder for Reed-Solomon error-correcting codes (and BCH and Goppa codes in
general) with the PSC chip [6]. The wost difficult step in the decoder implement-
ation was to solve a version of the extended GCD problem; results of this paper
helped solve this problem (see Sections 5 and 7).

The integer GCD problem is anmalogous te the polynomial GCD problem, but is more
complicated because of the problem of carries., WNevertheless, in Section 6 we out-
line how systolic arrays can be used to solve the integer GCD problem.

It may not be easy to understand some of the more complicated systolic arrays of
this paper. We shall start with the basic ideas and describe some simpler designs
first. Hopefully informal arguments we give will convince the reader that our
designs are correct. Formal correctness proofs for our designs would be very
interesting, but they are beyond the scope of this paper. MNevertheless, every
design mentioned in this paper has been coded in either PASCAL or LISF, and
thoroughly tested by simulation.

2. GCD-PRESERVING TEANSFORMATIONS

All of the known algorithms for solving the GCD problem are based on the general
technique of reducing the degrees of the two given polynomials by "GCD-preserving
transformations". A GCD-preserving transformation transforms a pair of poly-
nomials A and B into another pair A and B, with the property that a GCD of A and
B is also a GCD of A and E, and vice versa. When one of the two polynomials is
reduced to the zero polynomial by a sequence of such transformatioms, the other
polynemial will be a GCD of the original two polynomials.

Methods of this paper are alsc based on the general technique outlined above. We
assume throughout that coefficients of the polynomials belong te a finite fileld F.
This assumption is appropriate for applications to the decoder implementation for
error—-correcting codes; in [3] we point out that with straightforward modifica-
tions our designs will work over any unigue factorization domain and thus require
no divisions. Throughout the paper polynomials are represented by upper-case
letters and their coefficients by corresponding lower-case letters. In the
following we define rwo GCD-preserving transformations, R‘.L and RB. Let

i
A= a;x L alx + 30

and

B=!ij+...+-bx-kb

1 0

be the two polynomials to be transformed, where aj # 0 and b; # 0. Depending on
the value of i-j, one of the following two transformations is applied to A and B.

Transformation Rﬂ (for the case i - j = 0):

A - 9x9B

Nl
1

where d = i-j and q = aifbj.

Systolic VLSI Arrays for Lincar-Time GCD Computation 147

Transformation RB (for the case 1 - j < Q):

= ————

[— R }-p A = A

B h——hl 8 —* B =8 - qxfa
I

where d = j-1 and q = hjfai.

It is obvicus that both the transformations are GCD-preserving. Furthermore, note
that Ry reduces the degree of A by at least one, i.e.,

deg A £ deg A - 1,
and Rp reduces the degree of B by at least one, i.e.
deg B = deg B - 1.

For notational convenience, we assume that the degree of rthe zero polynomial is
—1. Thus, if both A and B are polynomials of degree zero, i.e., they are nonzero
constants in the underlying Eield F, then transformation Ry reduces A to the zero
polynomial, which has degree -1.

3. TRANSFORMATION SEQUENCE FOR THE GCD COMPUTATION

Suppose that we want to compute a GCD of two given polynomials An and Bg of
degrees n and m. Then as the preceding section shows, we can apply a sequence of
GCD-preserving transformations, each one being either Ry or Ry, to the two poly-
nomials until one of cthem becomes the zero polynomial; at this point a GCD of A
and By is the other (nonzero) polynomial. We call this sequence of rransformations
the transformation sequence for the GCD computation for An and Bp, and denote ic
by (Ty1,Ty,-..,Ty) for some k, where Ti,1lsisk, iz either transformation R, or Ry
Hote cthat the transformation sequence is uniquely defined for given Ap and By.

An Instructive way to view the Function of the transformation sequence is to
imagine that polynomials Ay and By move through the transformation “stages",
T1+T2s+54,T), in the left-to-right direction, and get transformed at each stage
accordingly; when they move out from the last stage Ty, one of them will be the
zere polynomial and the other the GCD of Ag and Bp that we want to compute. This
wiew is illustrated in Figure 3-1.

Suppose that, for each i = 1,...,k, transformatcion Ty reduces the degree of Ap or
By by i, where 8; is some positive integer. Then we call &; the reduction value
of Tj. Since the total degree of Ap and Bg 2t the beginning of the GCDcomputation

r.._.____..l I__....___I l__.____l
Ag— ¢ T, T i
1 . | [3

Figure 3-1: Function of the transformation sequence,

is n + m, thg suk of vedustion values over i = 1,...,k obeys the important
relation: Ei=:|_ Bi =ntm+ L.

4. BSYSTOLIC GCD ARRAY
In this section we specify a systelic array of n + m + 1 cells that can compute a

GCD of any two nonzero polynomials Ag and By of degrees no more than n and m,
respectively.

148 R.P. Brent and HT. Kung

Consider the transformation sequence (Ty,Tg,...,T) for the GCD computation for 4p
and Bp. We shall show that fer each i = 1,...,k, transformation Tj can be real-
iEEd by a subarray of §{ cells where &; is the reduction value of T{. Since

E'=l 5§ =n+m+ 1, the systolic array with n + m + 1 cells can realize all the
t%ansfnrmatinns, and as a result it ecan compute a GCD of Ap and Bp. This is
illustrated in Figure 4-1.

E]=2 52—3 63=2
F——=-=-" 1 r-==-== I r—===- I
(a) ‘;ea T, Ty T, T,
—_— — — "
R B (- I
i - e I
) el » e > > e o M
—b » :h > » = > -{—h
- - - - — — .- __—_ __-__ - - - - - - =
¢ CELLS FOR ‘FI 3 CELLS FOR T2 2 CELLS FOR T4

Figure 4-1: {a) Transformation sequence, and (b} its realization by three concatenated systolic subarrays.

4.1 The basic idea (for realizing a single transformation)

Let T be any transformation in the transformation sequence (T1,T9,...,Tg), and &
its reduction value. We illustrate how a subarray with d§ cells can realize T,
assuming that by some other methods (see, for example, Section 4.2 below) we know
which one of Bpy and Rp transformation T is.

Here we consider only the case that T is Rp; the case that T is Rg can be treated
similarly. Without loss of generality, assume T is defined as follows:

re-T | - 4
A > R i_..,n,:ﬁ-ﬂxﬂ
a——-'i A —»=B =8
______ i
where
i
E—aix“i'... +31K+aﬂj (aii!u)r
_ h|
bjx + .o Fbyix o+ by, (bjaﬁm,
=a,/b.,
q iP5
and
d=41i-j = 0.
Mote that either & = 0, or
- - i-4 - =
A= ay_g¥ + ...+ alx + aﬂ’

where 845 # 0. The sysrolic subarray, together wirh the operations performed by
each of its cells at every cycle, for realizing T is described in Figure 4-2.

Systolic VLST Arrays for Linear-Time GCD Computation 149

- & CELLS -
a a a []
a
= O O S O
0 b b
e 2o B [O - — (O
1 1] q —— —— -
T RERTE o I W I N o R .
9
a . a
in II' out
b b
in [:::] out
start, - . star
——'% Tstart! |-t'““"
if start then
bagin
g:= ajnfbin; -
2gut = 0 {* pad in zerces for vanizhing terms in A4 *)
and
8158 Bout = &in - 9*bin:
bout:® B; b := byg; {* it takes 2 cycles for gach b to pass a cell *}
startgur = start; start := starti,

Figure 4-2: Systolic subarray and its cell definition for realizing a transformation & 4

Terms in A and B move through the subarray im a serial manner, high degree terms
first. The nonzero leading terms of A and B are lined up so that they enter the
left-most cell at the same cvecle. Figure 4-2 assumes that 1 = j + 1 te illustrate
the point that when 1 > j as many as i - j zeros should he added to the left of bp.
Besides the systelic data paths for a and b, there is another l-bit wide systolic
control path, denoted by start; a true value on this path signals to a cell the
beginning of a new GCD computation in the follewing cycle. In Figure 4-2 (and
ather Figures below} l-bit wide systoelic contrel paths and the associated latches .
are shown by dotted arrows and boxes.

It is easy to see that the left-most cell performs q := ajyfbj in the first cycle
and computes terms of A in subsequent cycles. The gq's computed by other cells,
however, are always zeros, since terms of A that have degrees higher than n - &
vanish. The only funection of these cells is to shift the a's Faster than the b's -
notice that each b stays at each cell it passes for an extra cycle. Through these
"shifting"™ cells the nonzero leading term &j_g of A will depart from the right-most
cell at the same cycle as hj, the nonzero leading term of B. Thus a;_; and hj are
ready to enter another subarray of cells to the right for realizing whatever trans-
formation follows T.

There is no need to keep track of the § value in the systolic subarray., If A is
nonzera, the realization of the transformation following T starts automatically at
the first cell that sees a nongero input, i.e., @j-§, appearing at its input line
denoted by ajn. If A is the zero polynomial, then T must be the last transform-
ation Tg. In this case, the b's will continue being shifted to the right to be

150 R.P. Brent and H. T, Kung

output from the right-most cell, and they will form terms in the GCD that we wish

to compute.

4.2 Design using difference of degrees

We have seen that a gsystolie gubarray with its cells defined by Figure 4-2 can
realize any transformation T, if it is known which one of the transformations Ry

and Rﬁ transformation T is. Let
d = deg A - deg B,

where A and B are the polynomials to be transformed by T.
in Section 2, T is R, if d 2 0, otherwise T is By

Then by the definition

The cell design in Figure 4-3

keeps track of the value of d, and consequently is able to determine on-the-fly

L9]

a a
in EI gut
—
bia EI Bayt
start, —— — o |Starityy:
- lstart! b
din dout

initial: {wait Eor the beginning of a GCD computation}

begin
aout := a; bout := b; dout := d; startout := start;
if start then
begin
if {ain = 0) or {{bin <> 0} and (din »>=0)} then
begin
state := reduced;
if bin = 0 then q := 0 else g := ain/bin; a := 0;
b := bin; d = din -1
end
else
begin
state := reduceB; q := binfain; b := 0;
a t= ain: d = din 4+ 1
end
end;
start := startin
end
reduced: [transform A and shift a's faster than b's}
begin
dout := d; startout := start;

if startin then state := initial;
aout := ain - g*bin; bout := b; b
start := startin; d := din

end

:= bing

reduceB: {transform B and shift b's Faster than a"s}

begin

dout := d; startout := start:

if startin then state = Initial;

aput := a; a := ain; bout := bin - g*ain;
start := starcin; d := din

end;

Flgure 4-3: Cell definition for the desipn using difference of degrees.

Systolic VLS Arrays for Linear-Time GCD Computation 151

which transformacion to perform. To cope with the increased complexity in the
cell definition, we specify the cell in terms of a finite state machine. There
are a total of three states; operations performed by each cell during a cycle
depend on the state that the cell iIs in. Initially, ewvery cell is In stcate
initial. Triggered by the start signal ic will go to one of the other two states
- reduceA or reduceB, and eventually return to state initial.

To illustrate what the code does, consider once more the systolic subarray in
Figure 4=2. Suppose that d = i - j = 0 and b; # 0. Marching to the right
together with b; is the current wvalue of d. Each cell uwpon receiving a true value
from the syﬁtclic control path start will go to state reduced (since d z 0). When
Aj_5(£0) and b, are output from the right-most cell of the subarray, chey will
encer the cell” to the right in the following cycle with state reducepd 1f d = 0 or
reducel if d = (.

With m + n + 1 ¢ells a systolic array based on this design can compute a GCD of
any two polynomials of total degree less than m + n + 1. Moreover, immediately
after the input of one pair of polynomials, a new pair of polynomials can enter
the systolic array. That is, the systolic array can compute GCDs for multiple

pairs of polynomials simultaneously, as they are being pumped through the array.

We assume thar none of the given pairs of polynomials have % as their common fact-
or, so their GCDs have nonzero constant terms. (A commeon factor x of two poly-
nomials can be Facrored out from the polynomials before the computation). With
this assumption, o¢ne can easily tell what the GCD is from the ocutput emerging from
the right-most end of the array. More precisely, the constant term of che GCD is
the last nonzerc term coming out from the array before output of the next bateh of
pelynomials starts emerging, and the high degree terms of the GCD are those Cerms
that are output earlier on the same output line. When it is inconvenient to
agssume that the GCDs have nonzero constant terms, one can either keep the degrees
explicitly {instead of just their difference) or have a "stop" bit to indicate
where a, and bﬂ are.

5. SYSTOLIC ARRAY FOR THE EXTEMDED GCD PROBLEM

The GCD problem can be extended to find not only a greatest common diviser, GCD
(AG,EG}, of Ap and By, but also polynemials U and V such that

UAy + VB, = GCD(A,,B).
More generally, for n = deg Ap = deg By, we want to find polynomials U, V and W
such that

UAy + VBy = W,

where deg V = n - k, deg W < k, and k(=n) is some given integer greater than the
degree of GCD(AQ,Bpl. We call this new problem the extended GCD problem. It is
important for many applications including the decoder implementation for a variety
of error-correcting codes. TFor example, finding the error location polynomial for
Reed-Solomon decoding calls for solving the extended GCD problem in the general
sense, with Ap = x32, Bg being a given (syndrome} polynomial of degree 31, and
k=16 [11]. This is the most difficult step in the decoder implementatrion, since
all other steps basically invelve only polynomial evaluations, which can be
efficiently carried out in bardware using Hormer's rule [8].

The extended GCD problem is uesnally anlwad by the so-called extended Euclidean
algorithm (see, e.g., [L]). Based on a similar principle, we notice that U, V and
W can be computed by the same transformation sequence as for the GOD computation
for AD and Bg. Observe that the following eguations hold when & = Ap, B = Bp,
L=1, M=0, R=0 and 5 = 1:

LA. + RE, = A
0 0 * {1}
Mip + SBp = B.

152 R.P Brentand HT, Kung

Replacing the first equation with a difference gives:
(L - qxdﬁlha + (R - qde}ED = A - qde,
MA. -+ 5B, = B.

Thus equations in (1} ase invgriant under the "extended" transformation Ry:

A= A - qxdﬂ, L := L - qde, R:i=F% = qxdﬂ . (2}
Similarly, they are invariant under "excended" transformation Rp:

B := § = qxdﬁ, M =M - qde, § 1= 5§ = qde . {3

Therefore, we can apply a sequence of these extended GCD-preserving transform-
ations te A(=Ap) and B(=By) until 4 (or B) becomes GCD(4g,Bg) or, for the general
case, a polynomial W of degree less than k; at this time L and B {or M and 5)
will be the U and V that we want to compute.

From the discussion aboeve, we see that each cell of the systolie array should per-
form the extended transformation R, defined by (2) or Ry defined by (3). Consider
the case when the extended transformation Ry is to be performed. At first glance,
one might think that terms in L and R could be computed exactly the same way as
those in A, since they are defined by the same transformation (see (2)). This
method does nor work, however, because degrees of L and R are increased by the
transformation, whereas that of A is decreased. It is therefore important to
"leave room", in front of the current leading terms of L and R te accommodate
those higher degree terms to be acquired in the future. This means that in the
systoliec array terms in L and R should travel more slowly than those in A. Based
on this observation, a cell design feor the extended GCD computation is given in

[31.

Many variants of the designs presented above are mentioned in [3]. For example,
we can avelid explicitly using the difference of degrees, we can aveid divisions,

and we can insist that the GCD always emerges on the aout line of the right-mest
cell.

6. A SYSTODLIC ABRRAY FOR INTECER GCD COMPUTATION

Consider now the problem of computing the greatest commeon divisor GCD {a, b) of
two positive integers a4 and b, assumed to be given in the usual binary represent-
ation. Our aim is to compute GCD (a, b} in time O(n} on a linear systolic array,
where n is the number of bits required to represent a and b (say a < 20, b < 20},
The significant difference between integer and polynomial GCD computations is that'
carries have to be propagated in the former, but not in the latter.

The classical Euclidean algorithm [7] may be written as:

a] b
while b # 0 do 1= ; GCD := a.
b J amod b

This iz simple, but not attractive for a systolic Implementation because the
division in the inner loop takes time R{n). More attractive is the less familiar
"binary" Euclidean algorithm [2, 7] which uses only additions, shifts and compar-
isons:
{assume a, b odd for simplicity)
£ = |a - h|;
while t # 0 do
begin
repeat £ = t div 2 until odd{(t);
if a =2 b then a := £ else b = t;
t := |a - b
end;
GCD == a.

Systolic VLEI Arravs for Linear-Time GCD Computation 153

However, i1f we try to implement the binary Euclidean algorithm on a systolic array
we encounter a serious difficuley: the test "if a =z b ..." may require knowledge
of all bits of a and b, so again the inner loop takes time Q(n} In the worst case,

6.1 Algorithm PM

Algorichm PM {(for “plus-minus"), like the classical and binary Euclidean algor-
irhms, finds the GCD of two n-bit Integers a and b In Of{n) irterations, but we shall
see that it can be implemented in a pipelined fashion {least significant bits
first) on a systolic array. Before defining Algorithm PM we consider the "pre-
curser” algorithm defined in Figure 7-1. Using the assertions contained inbraces,
it is easy to prove that the algorithm terminates in at most 2n + 1 iterations
{since o + B strictly decreases at each iteration of the repeat block except

{assume a odd and b # 0, |a| = 2, 6| = 2™
o :=n; B = n;
repeat
while even{b} de be%in b :=b div 2; B8 := B - 1 end;
{now b odd, |b] s 2P}
if @« =z @ then begin swap (a, b); swap {z, B} end; ("swap'has ocbvious

meaning |
fnow & = B, la| = 2%, [b] £ 27, a odd, b odd)
if {{a + b} mod &) = G then b := {a + b) div 2 else b := {a - b} div 2:
{now b even, |b| =z 2F}
until b = 03
GCp := |a].

Figure 6-1: Frecursor to Algorithm PM

possibly the First). Moreowver, =ince all transformaticons on a and b are GCD-
preserving, the GCD is computed correctly.

It is not necessary to maintain o and g: all we need is thedr difFerence
6 = na = g (analogous to the difference of degrees in Section 4.2). This observ-
ation leads to Algorithm PM, which is defined in Figure 6-2.

{assume a odd, b # 0}
d = 0y
repeat
while even{b) do begin b := b div 2; 4§ := § 4+ 1 end;
if § = 0 then begin swap {a, b); 4§ := —-§ end;
if {({a + b) mod &4) = 0 then b := {a + b} div 2 else b := (a — b} div 2
until b = 03

Figure £-2: Algorithm PM
6.2 Implementation of Algorithm PM on a systolie array

For implementation on a systolic array, algorithm PM has a great advantage over
the classical or binary Euclidean algorithms: the tests in the inmer loop involve
only the two least-significant bits of a and b. Hence, a cell can perform these
tests before the high-order bits of a and b reach it via eells to its left. (The
termination criterion "until b = 0" is not a problem.}

We have to consider implementation of operations on 6 in algorichm PM. The only
operations required are "§ = & 4+ 1", "§ := =&", and "if § = 0 ...". Rather than
represent § in binary, we choose a "sipgn and magnitude unary" representation, i.e.
keep sign (6) and |§| separate, and represent ¢ = |8| in unary as the distance
between l-bits and two streams of bits. With this representation all required
operations on & can be pipelined.

154 R.P. Brenrand H.T. Kung

After some optimisations and modificarions to permit even inputs, we obtain a
systolic integer GCD cell with six input peorts (each one bit wide), six output
ports, and twelve internal state bits., If ac least 3,1106n such cells are
connected together, chey can compute + GCD (a, b) for any n-bit inputs a and b.
Further details, including the cell definition, mav be found in [4, 5].

7. IMPLEMENTATION OF A REED-SO0LOMON DECODER

The P3C chip [0] has been fabricated in nMOS and is functionally working at a 4MHEz
clock rate. We estimate that Reed-Scolomon decoding [10, 11] can be performed with
a throughput of B million bits per second using a linear array of 112 PSCs (ass-
uming that each codeword has 224 information bytes and 32 check bytes, so errors
involving no more than 16 symbols can be corrected). The fastest existing deccder
known to us uses about 500 chips but achieves a throughput of ne more than one
million bits per second. The better performance of our design 1s largely due to
our use of systolic arvays for the extended GCD problem as described in Section 5.

ACKNOWLEDGEMENT

The research was supported in part by the Office of Waval Research under Contracts
NOQOL4~T76-C=0370, WR 044-422 and HOO0014-80-C-0236, NR 0483-65Y, in part by the
Wational Science Foundation under Grant MCS 78-236-76, and in part by the Defense
Advanced Research Projects Agency (DOD), ARFA Order Meo. 3597, monitored by the

Air Force Avionics Laboratory under Contract F33615-81-K-1339.

REFERENCES

[1] Aho, A.¥., Hoperoft, J,.E. and Ullman, J.D., The Design and Analvsis of
Computer Algorithms {Addison-Weslev, Reading, Mass., 1974).

[2] Brent, R.P., Analysis of the binary Euclidean algorithm, in: Traub, J.F.
(ed.), New Directions and Recent Results in Algorithms and Complexity
{Academic Press, New York, 1976).

[3] Brent, R.P., and Kung, H.T., Systolic VLSI Arrays for Polynomial GCD
Computation, Report CMU-C5-82-118, Dept. of Comp. Sc., Carnegie-Mellon Univ,
{May 1982).

[4] Brent, R.P. and Eung, H.T., A Systolic VLSI Array for Integer GCD Computation,
Report TR-C5-82-11, Dept. of Comp. Sc., Australian Hational Univ. (Dec, 1982).

[5] Brent, R.P., Kung, H.T. and Luk, F.T., Some linear-time algorithms Ffor
systolie arrays, in: Mason, R.E.A. {ed), Information Processing 83 (North-
Holland, Amsterdam, 1983}, to appear.

[6] Fisher, A.L., Hung, H.T., Monier, L.M., Walker, H. and Dohi, Y., Design of the
PSC: A programmable systolie ehip, Proc. Third Caltech Conference on VLSI,
Computer Science Press {March 1983), 287-302.

(7] HKouth, D.E., The Art of Computer Programming, Vol. 2: Seminumerical
Algorithms, 2Znd edirion (Addison-Wesley, Reading, Mass., 1981).

[8] Kung, H,T., Special-purpese devices for signal and image processing: an
opportunity in VLSI, Proc. of the SPIE, Vol. 241, Real-Time Signal Frocessing

III, pp 76-84, The Society of Photo-Optical Instrumentation Engineers (July
1980).

w3
—

Kung, H.T., Why systolic architectures, IEEE Computer 15, 1 (Jan. 1982},
37=46.

[10] MacWilliams, F.J. and Sloane, WN.J., The Theory of Error Correcting Codes,
(North-Holland, Amsterdam, 1977).

[11] McEliece, R.J., Encyclopedia of Mathematics and Its Applications, Volume 2:
The Theory of Information and Coding (Addison-Wesley, Reading, Mass, 1977).

