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ABSTRACT
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[ntroduction

Two of the most important ways to decompose a given matrix A e R™** (m>n) are the
Q-R factorization:

A=@QR, (1)
where @ ¢ R™*" has orthonormal columns and B ¢ R*** is upper triangular, and the singular
value decomposition (SVD}):

A=ULVT, (2)
where U ¢ R™*™ and V ¢ R®*" are orthogomal, and I ¢ R™*" = diagloy, .. .,0,), with
(220,30, = =0,=0ad r = rank(4). See Golub and Van Loan ! and Dongarra

et al.2 for details.

The systolic array computation of these decompositions has recently attracted a great deal
of attention. QR-arrays are discussed in Bojanczyk, Brent and Kung 1 Gentleman and Kung 1
and Heller and Ipsen %; SVD arrays in Brent and Luk ¢ Brent, Luk and Van Loan 7, Finn, Luk
and Pottle ® Heller and Ipsen ? and Schreiber 19 In this paper we discuss the systolic array com-
putation of the generalized singular value decomposition {(GSVD). It has been suggested ( see
Speiser and Whitehouse ! ) that real-time computation of this decomposition is important in

modern signal processing.

The GSVD amounts to a simultaneous diagonalization of a pair of matrices

A eR™** (m>n)and B e R**":

b o)

where U eR™ ™ and VeR’** are orthogonal, X ¢ R*** is  nonsingular,
D, = diag(ay, . . . ,&,) 2 0, Dp = diag(fy, ..., 8) = 0and ¢ = min{p,n}. We call (a;,8;)
a singular value pair of A and B. Note that when B is square and nonsingular, the singular
values of AB™' are o; /B, for i =1, - - - ,n, and when B = I, these ratios are just the singular
values of A. For a general B, we may refer to a; f 8; as the generalized singular values of 4 with

respect to B, although some of these values may be infinite or undefined. The use of singular
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value pairs, however, avoids the distinction between A and B. The GSVD was first introduced by
Van Loan !2 and further discussed in Paige and Saunders *. The decomposition is useful for cer-

tain constrained and generalized least squares problems ( see Golub and Van Loan .

\We briefly discuss the computation of the GSVD. Suppose that the null spaces of 4 and B

intersect trivially, i.e., N[A)MV(B) = {0}. Let

A
E= [B] . (4)

E=¢R.

and compute its QR-factorization:

By assumption, the matrix R is nonsingular. Partition @ in the form

&
QE er r
such that @, e R™** and @, ¢RP**. Then we can find orthogonal matrices U e RM=m,

V e RP*P and W ¢ RR"*" such that

AN )

where € = diagley, ..., ca) 2 0, §=diaglsy, ...,8) =0 and CTC + 8§78 =1,. The
decomposition (5) is referred to as the CS-decompaosition. It says that the SVD's of the blocks in
a partitioned orthonormal matrix are related. The CS-decomposition first appears im Stewart "

15 Vap Loan ! shows how

where it iz pointed out that the result is implicit in Davis and Kahan
this decomposition can be used to anmalyze certain important problems involving orthogonal
matrices. If we set

Dy=C,Dg=5and X =R"'W,
we obtain a GSVD of A and B.

If the null spaces of A and B intersect nontrivially, or nearly so, then it is advisable to com-

pute an SVI} of the matrix E:

.-1_ ol n @u}{E, 0){21
B-Quz =@ 0z)l0 0f\Z])-
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Here, T, = dingley, . .., o} ER™*", @y ¢ R™%7, Q. ¢ R?*7, Z, e R"™" and r = raok(E).

Let

be o CS-decompesition of @y, and &, Then

. (wTz, o

and

~_ [(wTg, o
B = Qu5,Z] = V(5,0) 2T,
r

0 fn_
TW o ]

A GSVD results by setting Dy = (€0}, Dg =(§0)and X =2| 4 [ |
m-r

From the above discussion, we see that the key problem confronting us is the systolic array

calculation of the CS-decomposition.



ewart's aleorit

We desire a C5-decomposition of a partitioned orthonormal matrix

¢h
o-[g).
where @, e R™"" (mZn)and @y ¢ RP*". First, an SVD of @, may be determined via standard
techniques:
vTogwW=7cC.
Since

QI+ @IQ=1,

the nonnull columns of the matrix
§2 = QW
are orthogonal. Suppose that @, has rank = r and that jts first r columns are nonzero. These

columns can be normalized to yield

5
Q'z = {Fi-u](n } :

where V, ¢ RP*" is orthonormal and $, = diag(sy, . .. ,8,) = 0. Let V={(V,V;)eR"™? be

an orthogonal matrix. Then we have

3
VT sz = ﬂ = S ]
an 5VD of Q..

Unfortunately, the preceding procedure is numerically unscund. Troubles may arise when
some columns of @ have euclidean lengtha less than €2 where ¢ denotes the machine precision.
Numerical examples are given in Stewart 1718 Ty simplify our presentation, let us assume [rom
here on that Q; has full column rank, i.e.,

rank(@:)=n = p . (6)

Stewart 1718 presents the following cleanup procedure:
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1. Determine an orthogonal matrix J such that the columns of @,/ can be normalized

to give a3 matrix ¥V whose columns are then erthogonal to working accuracy.
9. Determine an orthogonal matrix X such that K7 CJ is diagonal.

if we replace W by WJ and U/ by UK, and normalize the columns of @47 to get V', we obtain

ure, KTC
vig) W T vTg)
Since KT CJ and VT @, are diagonal, we have computed a CS-decomposition of Q.

Stewart chooses J and A by working with the matrix
F = 521.52 i
and using the Jacobi method, as implemented by Rutizshauser 20 to determine J such that JTFJ
is diagonal. Stewart then shows why we may take K = J, so leng as certain unnecessary rota-
tions are not performed in the Jacobi method. Specifically, a Jacobi rotation R,; in the (i,j)

plane will be suppressed if

¢ + = "‘:_: T,
where ¢; and ¢; are the i-th and j-th diagonal elements of ¢ and r is some preset tolerance. A

value of r = 0.7 is proposed, for il

g+ ¢; =07,
then the error made in accepting R,—_’;CR,-J- a3 a diagonal matrix i3 roughly equal to the error made
in accepting the i-th and j-th columns of Q> as orthogonal. Finally, Stewart proves that,
because of the suppression, the diagonal entries of ¢ are effectively unchanged in the passage to

JTed.



Linear arrays

Brent and Luk ® present a systolic array of O(n) linearly-connected processors for comput-
ing an SVD of an [Xn matrix, say M. Their array implements a one-sided orthogonalization
method due to Hestenes . The idea is to determine an orthogonal matrix V' such that the noo-
null columnps of AV are mutually orthogonal. These columas are normalized to give a matrix ]

with orthonormal columns and a nonpegative diagonal matrix . We have thus determined an

SVD of M:

M=0zvT.
The orthogonal transformation V is constructed as a sequence of plane rotations; the rotations are
generated to orthogenalize column pairs of M. Heoce the Hestenes method is mathematically
equivalent to the serial Jacobi procedure for finding an eigenvalue decomposition of MTM. For
the sake of parallel computing, Brent and Luk discard the classical scheme of rotating column

pairs in the order:

(L,20(13), - - ., (Le)(23), - . .. (2n)(3.4), . ... (3n), .. . (n-Ln),

in preference for a new ordering that allows |_n‘.|" 2] simultaneous rotations. Their new ordering is

amply illustrated by the n = 8 case:

(p,7) = (1,2),(3.4), (5,6),(7.8),
(14), (26), (3,8), (5.7)
(16), {48}, (2,7),(3.3),
(1,8), {6,7), (4.5) . (2.3),
(1,7), (8,5), (6.3) , (4.2},
(L5), (7,3), {82}, (6,4),
(1,3}, (5,2) . (7.4) , (8,8) .

MNote that the rotation pairs associated with each "row” of the above can be caleulated con-
currently. Brent and Luk 2 conjecture that this Jacobi approach would require Oflogn) sweeps
for convergence. Their algorithm for computing an SVD of an [Xn matrix thus requires

O(nilogn) time.

We may compute the GSVD using the linear systolic array of Brent and Luk ? as follows:



1. Compute ao 5VD of

2. Compute an 3VD of

Q= UewT,

and apply the appropriate transformations to get

Q= Q. W.
3. Initiate Stewart's algorithm. ( We note that the Jacobi procedure applied to F is

equivalent to the Hestenes method applied to . )

Our procedure requires time O((m+ p)nlogn}.



Quadratic arravs

An array for computing an SVD of an {%! matrix is proposed in Brent, Luk and Van
Loan 7. It requires O[I%) processors and O{ilog!) time to execute. The array implements a two-
sided Jacobi procedure that is detailed in Forsythe and Henrici *. In essence, the off-diagonal ele-
ments of the given matrix are reduced to zero by a sequence of plane rotations that are deter-
mined by solving carefully chosen two-by-two SVD's. The algorithm is very similar to the classi-
cal Jacobi algorithm for the symmetrie eigenvalue problem, for which a systolic array has been
proposed by Brent and Luk **. Briefly, the new ordering of Brent and Luk ® illustrated in the
previous section, is extended in an obvious manner to allow the simultapecus computations of
li ‘.’EJ two-by-two 5VD's. In addition, a staggering of computations allows the execution of the
equivalence transformations without requiring that the rotation parameters be broadcasted. For

details see Brent et al. 7%

It we want an SVD of a matrix M ¢ R™*", where m,n < {, we feed the matrix

M_Mu Rlx[
=lo o

into the array of Brent, Luk and Van Loan 7. An SVD:

w- e b 5

will emerge, and we see that M = UZ VT, as desired.

Let us point out how we can compute a nonsquare CS-decomposition using a "square™ {-by-

| hardware. Suppose that @, e R™**, @, ¢ R**", @@, + Q{Q: =1, and { 2 m,np. If

. E;]lu Tl A @Eﬂ 1wl
Ql= 0 0 e B'* and @2= 0 0 eR'™ 1

then

. e In
QrQ, + Q{'Q'E:{U ul-

It is not hard to show that there exist orthogonal matrices of the form



- 10 -

. v, 0 . Uy 0 . W o
L1= 0 -‘rj'_m 1 U2= 0 Il_p 3|].d W = 0 ‘r;_ﬂ '

PP €0 s s 50
L-'E-Qin.r == (U D] . U-{Q:IF = [ﬂ n] Eﬂ.d CTG =+ EI'S =3 Iﬂ B

auch that

Thus, applying Stewart's algorithm to Ql and Qz will produce a CS-decomposition of ¢,
ﬂﬂd Qz .
We now outline how we may compute a GSVD of A4 and B using a QR-array, a matrix-

matrix multiply array ( see, e.g., Kung and Leiserson ** ) and an SVD array:

1. Compute a QR-decomposition of

A &
B = \@.)®
Compute T = @7 Q;.

. ¢, 0 @2 0 . TO
3. Set@i=ly o %=1 o2dT =10 of

so that they are all { X! matrices.

b2

4,  Compute an 5VD of @, and apply the appropriate transformations to @, and T.
5. Initiate Stewart's procedure.

The complete procedure requires time O(llogn).
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