SEAM L SCL STAT. COMPUT. 19485 Suciery for Industrial snd Applcd Mathemaics
Wl 6 Nea, 1, Jamary 19RS m?

THE SOLUTION OF SINGULAR-VALUE AND SYMMETRIC
EIGENVALUE PROBLEMS ON MULTIPROCESSOR ARRAYS*

RICHARD P, BRENTY anvp FRANKLIN T. LUKZ

Adbstract. Parallel Jacobi-like algorithms are presented for computing a singular-value decomposition
of an m > n matrix (m = n) and an eigenvalue decomposition of an x % # symmetric matrix. A linear array
of O(n) processors is proposed for the singular-value problem; the associated algorithm requires time
OfmnS). where § is the number of sweeps (typically §= 10). A square array of On?) processors with
nearest-neighber communication is proposed for the eigenvalue problem; the associated algorithm requires
time O(n5).

Key words. multiprocessor arrays, systolic arrays, singular-value decomposition, eigenvalue decomposi-
tion. real symmetric matrices, Hestenes methed, Jacobi method, VLSI, real-time computation. parallel
algorithms

1. Introduction. A singular-value decomposition (SVD) of a real mxn (m=n)
matrix A is its factorization into the product of three matrices:

(1.1} A=UEV'

where U is an m X n matrix with orthonormal columns, 2 is an nXn nonnegative
diagonal matrix and the nXn matrix V' is orthogonal. This decomposition has many
important scientific and engineering applications (cf. [11, [11]. [26]. [27]). If the matrix
A is square (i.e., m = n) and symmetric, we may adjust the sign of the elements of =
so that U = V. We then obtain an eigenvalue decomposition:

(1.2) A=UDUT,

wnere U is orthogonal and D diagonal. The advent of massively parallel computer
architectures has aroused much interest in parallel singular-value and eigenvalue
procedures, e.g. [2], [4], [5], [6], (7], [9], [13], [14], [16], [19], [20], [22], [23], [24],
[25]. Such architectures may turn out to be indispensable in settings where real-time
computation of the decompositions is required [26], [27]. Speiser and Whitchouse [26]
survey parallel processing architectures and conclude that systolic arrays offer the best
combination of characteristics for utilizing VLSI/VHSIC technology to do real-time
signal processing. (See also [17], [27].)

[n this paper we present an array of O(n) linearly-connected processors which
computes an SVD in time O(mnS). Here S is a slowly growing function of # which
is conjectured to be O(log n): for practical purposes $ may be regarded as a constant
(see [21] and the Appendix). Our array implements a one-sided orthogonalization
method due to Hestenes [15]. His method is essentially the serial Jacobi procedure
for finding an eigenvalue decomposition of the matrix ATA, and has been used by
Luk [20] on the ILLIAC [V computer. We also describe how one may implement a
Jacobi method on a two-dimensional array of processors to compute an eigenvalue

* Received by the editors November 12, 1982, and in revised form August 9, 1983.

¥ Centre for Mathematical Analysis. Australian National University, GPO Box 4. Canberra, ACT 2601,
Australia,

 Department of Computer Science, Cornell University, lthaca, New York 14853, The research of this
author was supported in part by the U.S. Army Research Office under grant DAAG 29-79-C0124 and
the National Science Foundation under grant MCS-8213718, and in part by the Mathematical Sciences
Research Centre and the Centre for Mathematical Analysis, Australian National University.

Ao

70 RICEHIARD P BRENT AMD FRANKLIN I LUK

decompasition of a symmetric matrix, Qur array reguires O1n°) processors and O(nS)
units of time. Assuming that §= O(log n), this time requirement is within a factor
Oflog n) of that necessary [or the solution of # linear equations in 7 unknowns on a
systolic array [2], [3]. [17]. [18].

Results similar to ours have been reported in the literature. For computing the
SVD, Sumeh [23] describes an implementation of Hestenes' method on a ring of O(n)
processors. Suppose n is even (the result is similar for an odd). Ateach orthogonaliz-
ation step n/2 column rotations are performed. Sameh’s permutation scheme requires
3n—2 steps to ensure the execution of every possible pairwise rotation at least once:
our permutation scheme (presented in § 3) requires only n= 1 steps.

Parallel Jacobi methods for computing eigenvalues are given in [7], [16]. [22].
However, the procedure of Sameh [22] mav be unsuitable for multiprocessor arrays.
For simplicity. assume again that n is even, so n/2 off-diagonal elements can be set
to zero at each elimination step. Let us compare the number of permutations necessary
for the annihilation of each ofi-diagonal element at least once. Our procedure (see
§§ 3 and 6) requires n — | permutations, which is optimal; that of Chen and Irani [7]
requires n permutations. The scheme of Kuck and Sameh [16] is worse. Their basic
scheme appears to cycle every 2n—2 steps and to miss some off-diagonal elements.
A modification (“the second row and column are shifted to the nth position after
every {n— 1) orthogonal transformations’’} can be made to overcome this problem,
but the modified scheme requires (n—1)” permutations [7].

Let us generalize the notion of a “sweep™ and use it to denote a minimum-length
sequence of rotations that eliminates each off-diagonal element at least once [7]. It is
probably fair to assume that the Jacobi proceduresin [7], [16]and in this paper require
an equal number (say S) of sweeps for convergence. For the algorithms presented in
this paper a sweep always consists of n(n—1)/2 rotations (the minimal number
possible), but this is not the case for the Chen and Irani or Kuck and Sameh algorithms
mentioned above. The architecture proposed in [7]is a linear array of O(n) processors;
the associated Jacobi method requires time O(n”S). The architecture described in [16]
is a square array of O(n) processors, with boundary wraparounds and a broadcast
unit. The associated algorithm requires time O{n’S). In comparison, our procedure
requires Q{n”) processors and O(nS) units of time.

The principal results of this paper were first reported in [4]. [5]. A related
(generalized) SVD algorithm is presented by the authors and Van Loan in [6]. It
requires O(n*) processors and O(nS) time to compute the (generalized) singular
values of n X n matrices.

This paper is organized as follows. Sections 2-4 are devoted to the singular-value
problem and §§ 5-8 to the eigenvalue problem. Hestenes' method is reviewed in § 2.
The new ordering is described in § 3 and the corresponding SVD algorithm in § 4.
The serial Jacobi method is outlined in § 5. Details are filled in and some variations
and extensions of the basic algorithm are given in §§ 7 and 8. The results of some
numerical simulations are presented in the Appendix.

The SVD algorithm described in §§ 3-4 below is being implemented on an
experimental 64-processor systolic array by Speiser at the Naval Ocean Systems Center
(San Diego).

2. Hestenes’ method. We wish to compute an SVD of an m X n matrix A, where
m = n. An idea is to generate an orthogonal matrix V' such that the transformed matrix
AV = W has orthogonal columns. Normalizing the Euclidean length of each nonnull
column to unity, we get the relation

(2.1) w=[Is,

SINGULAR-VALUE AND SYMMETRIC EIGENVALUE PROBLEMS 71

where (7 is a matrix whose nonnull columns form an orthonormal set of vectors and
¥ is a nonnegative diagonal matrix. An SVD of A is given by

(1.1 A=0zvT"

As a null column of U is always associated with a zero diagonal element of X, there
1s no essential difference between {1.1) and (1.17).

Hestenes [15] uses plane rotations to construct V. He generates a sequence of
matrices {A,} using the relation

Axar = A0,
where A, =A and Q, is a plane rotation. Let A, =(a}*,--- a'*") and Q, ={g'"),
and suppose), represents a rotation in the (4, j) plane, with i<}, i.e.
(29) g =cos 8, g =sin 8,
' g\ =—sin 8, g} =cos 6.

We note that postmultiplication by Q, affects only two columns:

(2-3} {a(rk-r”‘ aik+”}=(35k!‘a:kl)(C‘OSB 51N B)L
—sin f# cos @

The rotation angle @ is chosen so that the two new columns are orthogonal. Adopting
the formulas of Rutishauser [21], we let

(2.4) a=[al*|3, g=la"|3 y=al"Ta}"

We set #=0if y=0; otherwise we compute
B—a sign (£) 1
, | =——————, (05 8= y
2y |£]+1+ &2 J1+2

(2.5) &=

sin 8 =1+ cos 8.

The rotation angle always satisfies

(2.6) o= 2
=

However, there remains the problem of choosing (i, j), which is usually done according
to some fixed cycle. An objective is to go through all column pairs exactly once in any
sequence (a sweep) of n{n—1)/2 rotations. A simple sweep consists of a cyclic-by-rows
ordering:

(2.7) (1,2),01,3),- -+, (1, n),(2,3), -+ -, (2,n),(3,4),-- -, (n =1, n).

Forsythe and Henrici [10] prove that, subject to (2.6}, the cyclic-by-rows Jacobi method
always converges. Convergence of the cyclic-by-rows Hestenes method thus follows.

Unfortunately, the cyclic-by-rows scheme is apparently not amenable to parallel
processing. In §3 we present an ordering that enables us to do |n/2] rotations
simultaneously. The (theoretical) price we pay is the loss of guaranteed convergence.
Hansen [12] discusses the convergence properties associated with various orderings
for the serial Jacobi method. He defines a certain “preference factor™ for comparing
different ordering schemes. Our new ordering is in fact quite desirable, for it asymptoti-
cally optimizes the preference factor as n - o, Thus, although the convergence proof

72 RICHARD P. BRENT AND FRANKLIN T, LUK

of [10] does not apply, we expect convergence in practice to be faster than for the
cyclic-by-rows ordering. Simulation results (presented in the Appendix) support this
conclusion.

To enforce convergence, we may choose a threshold approach (29, pp. 277-278].
That is, we associate with each sweep a threshold value, and when making the
transformations of that sweep, we omit any rotation based on a normalized inner
product

airk_l?'zjlkk
(Eha RUEV P
which is below the threshold value. Although such a strategy guarantees convergence,
we do not know any example for which our new ordering fails to give convergence
even without using thresholds. Our method, like the cyclic-by-rows method, is ulti-
mately quadratically convergent [28].
The plane rotations are accumulated if the matrix V is desired. We compute

Vi = Vi,

with V| = [Denoting the rth column of V, (respectively V,.,) by yit (respectively
vi**!' we may update both A, and V, simultaneously:

atttoaltty (a',“ a)" cos @ sin @
(2.8) (vi““ vj"”]) S\ v}“)(—sin 6 cos H)'

3. Generation of all pairs (i, j). In this section we show how O(n) linearly-
connected processors can generate all pairs (i,j), 1=i<j=n, in O(n) steps. The
application to the computation of the SVD and of the symmetric eigenvalue decomposi-
tion is described in § 4 and in §§ 6-8, respectively.

First, suppose n is even. We use n/2 processors Py, - -+, P, -, where P, and P, _,
communicate (k =1,2,- -, n/2—1). Each processor P, hasregisters L, and R,, output
lines out L, and out Ry, and input lines in L, and in Ry, except that out L,, in L,
out R,;; and in R, ,; are omitted. The output out R, is connected to the input in L, .,
as shown in Fig. 1.

out B in L, out B, in L, out By inlL,

L L

m R, out L, n R, out Ly n Ry ol

" il

Fic. 1. Imter-processor connections for n = 8.

Initially L, =2k -1 and R, =2k At each time step processor P, executes the
following program:

if Ly <R, then process (L;, R,} else process (Ry, Li);
if k=1 then out R, « R,
else if k<n/2 then out R, « L,;
if k=1 then out L, « R,;
{wait for outputs to propagate to inputs of adjacent processors}
if k<n/2then Ry+in R else R, « L,
if k>1 then Lk‘-ln Lk:

SINGULAR-VALUE AND SYMMETRIC EIGENVALUE PROBLEMS 73

Here “process (i, /)" means perform whatever operations are required on the pair
(i, /). 1=i<j=n The operation of the systolic array is illustrated in Fig. 2.

We see that the index | stays in the register L, of processor P,. Indices 2, - - - 1
travel through a cycle of length n-1 consisting of the registers
Ly Ly,r -, Ly2, Ray2 Royzoin -+ Ry During any n— 1 consecutive steps a pair (i, f)

or (/, i) can appear in a register pair {L,, R,) at most once. A parity argument shows
that (i) and (., i) cannot both occur (see Fig. 2). Since there are n/2 register pairs
at each of n—1 time steps, each possible pair (i, /), 1= i<j=n, is processed exactly
once during a cycle of n—1 consecutive steps.

step 0 12, 34 5., B
-~ .- = ie
b \. P ~ CEE B
» a = - 1
b . ~ - - E
I bl LY - = L)
: % pid »1 k
bl Ea - .
1 '_p’ | L~ * - S 0
step | 1 4- 2. 67 "3 8 5 7
1 L £ P
rd ¥ -, * .
: A . .. L . e °
' A ~ . - -)
. B . = '
N . . L . L 4
O - - -\ O
3 . -
step 2 1 & 4. 8 2T 3.5
[l r i1 e
' . . . PR FEY
¥ b " B b - 1
. . - -
] Y o i u
V PR Fhps . 1
- - b - Y . T v
. - = -
step 3 1 8. B T 4.5 2 .3
L L2, Fame ¥
H T -7 e P .. LA
- N e - - Al
' . o P |
! - ~ - L L
T o - = - L
- - o #]
step 4 17 8.5 H, 3 4 2
#y L 1¢
H ""- l‘ s e - o
; Y s - .. - Y
' S bE 37 [
o .
™ - - = - -
IIEPS‘ 1 35 a 7..3 8. .2] 14
i w £ 5 L]
v . - . L Ll
[- - - - H
H \\z-..' Yool ‘N-u g ‘\
H PR 1"‘_‘ P [
T - - 4 S 0
’F" [- M. - ~
step 6 13 5 2 7 4 8 6

Fia. 2. Full cycle of the sysiolic array for n = 8.

If nis odd, we use [n/2] processors but initialize L, =2k -2, Re=2k~1 for
k=1,---,[n/2] and omit any “‘process” calls from processor P,.

It is interesting to note that similar permutations are “well known" for use in
chess and bridge tournaments, but have apparently not been applied to parallel
computation.

4. A one-dimensional systolic array for SVD computation. Assume that n is even
(else we can add a zero column to A or modify the algorithm as described at the end
of § 3). We use n/2 processors Py, -, P,,», as described in § 3, except that L, and
R, are now local memaries large enough to store a column of A (i.e., L, and R, each
has at least m floating-point words). Shift registers or other sequential access memories
are sufficient as we do not need random access to the elements of each column.

Suppose processor Py contains column af in L, and column a; in Ry. It is clear
that Py can implement the column orthogonalization scheme in time O(m) by making
one pass through aj and a; to compute the inner products (2.4), and another pass to

74 RICHARD P. BRENMT AND FRANKLIN T. LUK

perform the transformations (2.3) or (2.8). Adjacent processors can then exchange
columns in the same way that the processors of § 3 exchange indices. This takes time
O{m) if the bandwidth between adjacent processors is one floating-point ward.
(Alternatively, exchanges can be combined with the transformations {2.3) or (2.8).)

Consequently, we see that n/2 processors can perform a full sweep of the Hestenes
method in n—1 steps of time O(m} each, ie., in total time O(mn). Initialization
requires that the (2k —1)th and 2kth columns of A be stored in the local memory of
processor P, for k=1, -+, n/2; clearly this can also be performed in time O(mn).

The process is iterative. Suppose S sweeps are required to orthogonalize the
columns to full machine accuracy. We then have a systolic array of n/2 processors
which computes the SVD in time O(mnS). By comparison, the serial Hestenes
algorithm takes time Q(mn*S). Our simulation results suggest that S is O(log n),
although for practical purposes we can regard S as a constant in the range six to
ten [21].

After an integral number of sweeps the columns of the matrix W= AV (see (2.1))
will be stored in the systolic array (two per processor). If V is required, it can be
accumulated at the same time that W is accumulated, at the expense of increasing
each processor’s local memory (but the computation time remains O{mnS)); see (2.8).

5. Serial Jacobi method. We now consider the related problem of diagonalizing
a given nXn symmetric A=.A4,. The serial Jacobi method generates a sequence of
symmetric matrices {A,} via the relation

Ao = OE—ARO.‘U

where O, is a plane rotation, Let A, =(a'{’) and suppose Q, represents a rotation
through angle @ in the (7, /) plane, with i <} (see (2 2)). We choose the rotation angle
to annihilate the (i, /) element of A,. If at =0, we do not rotate, i.e., 8 =0. Otherwise
we use the formulas in [21] to compute sin 8 and cos 8:

[k} ath
f——": cos = :
200 V144
(5.1) i
=%=tan9, sin # =1 cos 8.
|£]+v1+ &

Note that the rotation angle # may be chosen to satisfy

;argf

The new matrix A, differs from A, only in rows and columns { and j. The modified
values are defined by

aE‘k'f'I]'_aEk} IGE;“:

i;(-dﬂ_atk}_i_z a{k]

ii e

(5-2;] aE}k*—lJ ﬂjf-‘l-”_o,
th+1) _ (k+1) _ Lol (k)
Gy Qg =cosf-ay —sinf-a;

(g#4j).
aly ™ =al*V=sing- aly +cos 8- aly’

Again we choose (4, J) in accordance to the new ordering introduced in § 3. The
comments that were made in § 2 concerning various aspects (convergence proof,

SINGULAR-VALUE AND SYMMETRIC EIGENVALUE PROBLEMS 75

convergence rate, threshold approach, etc.) of the Hestenes method apply equally well
here to the Jacobi procedure.

6. An idealized systolic architecture. In this section we describe an idealized
systolic architecture for implementing the Jacobi method to compute an eigenvalue
decomposition of A. The architecture is idealized in that it assumes the ability to
broadcast row and column rotation parameters in constant time. In § 8 we show how
to avoid this assumption, after showing in § 7 how to take advantage of symmetry,
compute eigenvectors, etc.

Assume that the order n is even and that we have a square array of n/2 by n/2
processors, each processor containing a 2 X 2 submatrix of A = (a;;). Initially processor
P, contains

(ﬂ::—q.e;'—n dai—1.25

daiz2j—1 Qi34

) forij=1,---,n/2,

and Py is connected to its nearest neighbors Py, ; and P,.., (see Fig. 3). In general
P; contains four real numbers
(“ff -Br'f)
i 8/

where a;=ay, §,;= 28, and B8; =y, by symmetry.
The diagonal processors P; (i=1,- - -, n/2) act differently from the off-diagonal
processors Py (i # J, 1 =4, j= n/2). Each time step the diagonal processors P; compute

rotations
({:F Sr)
=& G

to annihilate their off-diagonal elements 8; and v, (actually B; =), i.e., so that

ci+s?=1and
(ff _Ss)(ﬂ':f -Er'i\‘(i 5:) _ (“;i 0)
5 vy Swi\—s o 0 &5

35 Qag

4z Gy

FiG. 3. Initial configuration (idealized, n =6).

76 RICHARD P. BRENT AND FRANKLIN T. LUK

is diagonal. From (5.1} and (5.2) with a change of notation we find that

(6.1) (z)=~h{+ﬁ(:)

and
(50)= () e)
8 8. 1
where
62) 0 if B; =0,
.2 4 = . : ‘

;E%%? if B, # 0,

and
i
To complete the rotations which annihilate 8, and v, i=1,---,n/2, the off-

diagonal processors F; (i # j) must perform the transformations
g ol gl
(‘Iu ,34;) - (:r Jsrr)'
Yii arj Yij Sij

where

(ah ﬁ:’j)___(f“; —5.)(%' ,8,-,-)(< "*1")
Yi 850 \s o/\y &/\-5 ¢

We assume that the diagonal processor P; broadcasts the rotation parameters ¢, and
5 to processors Py and P; (f=1,- -+, 1n/2) in constant time, so that the off-diagonal
processor P; has access to the parameters ¢;, $;, ¢; and 5; when required. (This assumption
is removed in § 8.)

To complete a step, columns (and corresponding rows) are interchanged between
adjacent processors so that a new set of n off-diagonal elements is ready to be
annihilated by the diagonal processors during the next time step. This is done in two
sub-steps. First, adjacent columns are exchanged as in the SVD algorithm described
in $§ 3-4 and as illustrated in Fig. 2. Next, the same permutation is applied to rows,
50 as to maintain symmetry. Formally, we can specify the operations performed by a
processor P; with outputs out hay, -+, out hdy, out vey, * -+, out vd;, and inputs
in hay, + + -, in v8; by Program 1. Note that outputs of one processor are connected to
inputs of adjacent processors in the obvious way, e.g. out A8;; is connected to in ha;
(1=i=n/2,1=j<n/2): see Fig. 4. In Fig. 4 and elsewhere, we have omitted subseripts
(4, j) if no ambiguity arises, e.g. in ver is used instead of in Ve

SINGULAR-VALUE AND SYMMETRIC EISENVALUE PROBLEMS 77

{subscripts (4,) omitted if no ambiguity results)
{ealumn interchanges)
il £=1 then [out i+~ 8 out hé - 5]
else 1f < nf2 then [out A8 — o) out fif +~ y],
il £ 1 then [out ha = 8 oul by« 8];
{fwait for cutputs to propagate to inpuats of adjacent processors)
il f="m/2 then [#+in B, § «in h§)]
else [Fea: 8]
il i1 then [a&«in ha; ¥+ in Ay,
{row interchanges}
if f=1 then [out vy« ¥; out vf + §]
else if j<n/2 then [out vy« a; out vé— B];
if f= 1 then [out te = y: out g + 8];
{wait for outputs to propagate to inputs of adjacent processors)
if f=snf2 then [y+~in ey, §+in L]
else [y—a; 5« B;
if j=1 then [e=inve; B«in e8]

ProcGram 1. Column and row interchanges for idealized processor P,

The only difierence between the data Aow here and that in § 4 is that here rows
are permuted as well as columns in order to maintain the symmetry of A and move
the elements to be annihilated during the next time step into the diagonal processors.
Hence, from § 3 it is clear that a complete sweep is performed every n—1 steps,
because each off-diagonal element of A is moved into one of the diagonal processors
in exactly one of the steps. Each sweep takes time O(#n) so, assuming that O(log n)

sweeps are required for convergence, the total time required to diagonalize A is
O(n log n).

out ver inux out ud ineB

I

in hier ——n bt (3811 F13
b g
out ho «— e in h
Py
in hy —» : — out i
¥ &
out by — — in 15

P11

muy outty in v out o

FiG. 4. Input and output lines for idealized processor Py with nearesi-neighbor connections.

7. Further details. Several assumptions were made in § 6 to simplify the exposi-
tion. In this section we show how to remove these assumptions (except for the broadcast
of rotation parameters, discussed in § 8) and we also suggest some practical optimiz-
ations.

7.1. Threshold strategy. It is clear that a diagonal processor P; might omit
rotations if its off-diagonal elements 8; = y; were sufficiently small. All that is required

j|' 0

78 RICHARD P. BRENT AND FRANKLIN T. LUK

along processor row and column i As discussed in § 2, a suitable threshold strategy
guarantees convergence, although we do not know any example for which our ordering
fails to give convergence even without a threshold strategy.

7.2. Computation of eigenvectors. If eigenvectors are required, the matrix U of
eigenvectors can be accumulated at the same time as A is being diagonalized. Each
systolic processor P; (1=, f=n/2) needs four additional memory cells

(F"-ij Fr',')
3
o Ty
D’j‘i Tjj (.Tjj' Tij —.5'_, C"

Each processor transmits its
wo¥
T T

values to adjacent processors in the same way as its
(5 2
¥y &
values (see Program 1). Initially p;=w;=oy=7;,=0ili# fand gy =7 =1, o4 = v =
0. After a sufficiently large (integral) number of sweeps, we have U defined to working

accuracy by
(“2:‘—|.2;—1 uﬂi—l.zj)z(#'ij Vi;‘)
Mzizj- M3j 35 Ty Ty
7.3. Diagonal connections. In Program 1 we assumed that only horizontal and
vertical nearest-neighbor connections were available. Except at the boundaries,

diagonal connections are more convenient. This is illustrated in Figs. 5 and 6 (with
subscripts (/, /) omitted).

and during each step sets

ina out 3

out o in 8

in¥ out &

out ¥ in &
Fic. 3. Diagonal input and owiput lines for processor Py,
Diagonal outputs and inputs are connected in the obvious way, as shown in Fig. 6,
ill Tl'—l.;'"'l lfl}l,j{HfIZ,
) in a4 ifi=1,j<n/2,
e.g. out 8 is connected tog _)
1]'15,'_”: lfi}l,‘f=n/2,

in B, ifi=1,j=n/2.

SINGULAR-VALUE AND SYMMETRIC EIGENVALUE PROBLEMS 79

P Py, Py Py
£z P2z Pza. P24
£y, Py Py Py,
Py Pz Puy Fos

FiG. 6. * Diagonal™ connections, n =8 (here and below « stands for =).

Frogram 2 is equivalent to Program 1 but assumes a diagonal connection pattern
as illustrated in Figs. 5 and 6. Subsequently we assume the diagonal connection pattern
for convenience, although it can easily be simulated if only horizontal and vertical
connections are available.

{subscripts (i, j) omitted for clarity}

roultr*—a;cutﬁc—,&;]

if (f=1)and{j=1)then
i yand (j) L oul y+= vy, out 5« §;

[out &« 8, out § « a;
else 1f i =1 then A B '}

L out ¥« &; out & + y;

else if f=1 then

[out &i—y:ou{ﬂi—ﬁ;]
| out ¥+ a;out 8+ 3;

glse

[out o+~ &; out ,84—1:;]

out ¥+ 3; out § «+ o;
{wait for outputs to propagate to inputs of adjacent processors);
aeina; «inf;
y+iny; §«in

PrOGRAM 2. Disgoral interchanges for processor P

7.4. Taking full advantage of symmetry, Because A is symmetric and our transfor-
mations preserve symmetry, only a triangular array of (1/2)(n/2)(n/2+1)=
n(n+2)/8 systolic processors is necessary for the eigenvalue computation. In the
description above, simply replace any reference to a below-diagonal element a; (or
processor Py) with i > f by a reference to the corresponding above-diagonal element
a; (or processor Fj). Note, however, that this idea complicates the programs, and
cannot be used if eigenvectors as well as eigenvalues are to be computed. Hence, for
clarity of exposition we do not take advantage of symmetry in what follows, although
only straightforward modifications would be required to do so.

80 RICHARD P. BRENT AND FRANKLIN T. LUK

7.5. Odd n. So far we assumed n to be even. For odd n we can modify the
program for processors Py; and Py (i=1,--+,[n/2]) in a manner analogous to that
used in § 3. or simply border A by a zero row and column. For simplicity we continue
to assume that n is even.

7.6. Rotation parameters. In § 6 we assumed that the diagonal processor P; would
compute ¢; and s; according to (6.1), and then broadcast both ¢; and s; along processor
row and column & It may be preferable to broadcast only « (given by (6.2)) and let
each off-diagonal processor P; compute ¢, s, ¢; and 5, from , and f; Thus communica-
tion costs are reduced at the expense ol requiring off-diagonal processors to compute
two square roots per time step (but this may not be significant since the diagonal
processors must compute one or two square roots per step in any case). In what follows
a “rotation parameter’”’ may mean either ¢ or the pair (¢, ;).

8. Avoiding broadcast of rotation parameters. The most serious assumption of
§6 is that rotation parameters computed by diagonal processors can be broadcast
along rows and columns in constant time. We now show how to avoid this assumption,
and merely transmit rotation parameters at constant speed between adjacent pro-
cessors, while retaining total time O(n) for the algorithm. We use a special case of a
general procedure (due to Leiserson and Saxe) for the elimination of broadeasting.

LetA,=|i — jl denote the distance of processor P; from the diagonal. The operation
of processor P, will be delayed by A, time units relative to the operation of the
diagonal processors, in order to allow time for rotation parameters to be propagated
at unit speed along each row and column of the processor array.

A processor cannot commence a rotation until data from earlier rotations is
available on all its diagonal input lines. Thus, processor P; needs data from processors
Py oty Picvjurs Py jorand Py if 1<<i<n/f2,1<j<n/2 {(for the other cases see
§ 7.3). Since

|1'3-r'j_ ﬁu] J=1 =2

it is sufficient for processor Py to be idle for two time steps while waiting for the
processors Py ;- to complete their (possibly delayed) steps. Thus, the price paid to
avoid broadcasting rotation parameters is that each processor is active for only one
third of the total computation time. A similar inefficiency occurs with many other
systolic algorithms, [2], [3], [17], [18]. (The fraction one-third can be increased almost
to unity if rotation parameters are propagated at greater than unit speed.)

A typical processor P, (1<j=i<n/2) has input and output lines as shown in
Fig. 7 (with subseripts (i, j) or (i, {) omitted). Figure 7 differs from Fig. 5 in that it

Subdiagonal (1< j<i<n/2) Diagonal (1 =<i<n/])

out vt

o a m w aut 3 in e out B

outa,\\ ,-i"-/'“"JB out & /il'l.ﬂ

out i e—-y £, — in At out At i b QUL P

'ITIT/.'/ l out & in ¥ \nutﬁ

out ¥ Ut o in & out ¥ out ol ind

FiG. 7. Input and outpur lines for typical subdiagonal and diagonal processors.

SINGULAR-VALUE AND SYMMETRIC EIGENVALUE PROBLEMS 81

2 3 3 4 4 5 g [
P|_| 1 Ptl 2 l"::'IZI. 3 lp|.1

A=} A=1 A=2 A=13
3 3 - 12 5 4 3 s
3 |1 2 3 3 4 4 5 5
le I P22

a=1 A=

4 4 3 3

4 |2 3 4 1 3

Py |2 Py 1

A=3 A=

5 5 4

sl s 2| 3

Py 2 Py 2

4=3 d=2

FI1G. 8. Interprocessor connections {n=8). [The first times at which inputs are avatlable are ndicaed,)

shows the horizontal and vertical lines in ht, out At, in vt, out vt for transmission of
rotation parameters. Processors interconnect as shown in Fig. 8.

Assuming that the array {&;;);s:;5, is available in the systolic array at time T=0,
the operation of processor P; proceeds as described by Program 3. We assume that
each time step has nonoverlapping read and write phases; the result of a write at step
T should be available at the read phase of steps T+ 1, T+2and T+ 3 in a neighbouring
processor, but should not interfere with a read at step T in a neighbouring processor.
The first time steps at which data are available on various processors’ input lines are
indicated in Fig. 8.

Program 3 does not compute eigenvectors, but may easily be modified to do so
(as outlined in § 7). We have also omitted a termination criterion. The simplest is to
perform a fixed number $ (say conservatively 10) sweeps; then processor P; halts
when T=3S5(n-1)+4;+3, since a sweep takes 3(n—1) time steps. A more sophisti-
cated criterion is to stop if no nontrivial rotations were performed during the previous
sweep. This requires communication along the diagonal, which can be done in n/2
time steps.

iM(TzA)and (T-A=0(mod 3)) then
begin
ifrmmen[“ 'B]<—[,'”“ f“ﬁ].
y & iny ind

if A=0 then {diagonal processor}
begin
if B=0then £«Delse E=(d—a)/{2=p5);

sign (&)
e+ V1 +£

if £=0 then r+0 else {+

B2 RICHARD P. BRENT AMND FRANKLIN T. LUK

avra=f+B;d=8+1%3;
B=0:y+1
crnd

else [off-diagonal processor}
begin
fomin byt = im ul
T T T A R

gerrpory et w e

(‘iili)“(i GO)

out his fout vl e 1';
if i > j then set out & as in Program 2;
if i<jthen set out y as in Program 2
end
else if (TzA) and (T—4=1 (mod 3}} then
begin
il {i=1)or{f=1) then set out & as in Program 2;
if {i=n/2) or {j=n/2) then set out & as in Program 2
cnd
elee if {Tz=AYand (T—A=2 (mod 3}} then
bagin
if {i= 1) and {j> 1) then set out & as in Program 2;
if =/ then set out 8 as in Program 2;
if i = f then set out ¥ as in Program 2;
i (F<nf2) and {j<m/2) then set out & as in Program 2
end
else {do nathing this time steph

FPrOGRAM 3. Program for one time step of processor P,

9. Conclusion. We have presented a linear array of [n/2] processors, each able
to perform floating-point operations (including square roots) and having O(m) local
storage, for computing the SVD of a real m X » matrix in time O(mn log n). We have
also described how a square array of [#/2] by [n/2] processors, each with similar
arithmetical capabilities but with only O(1) local storage, and having connections to
nearest horizontal and vertical (and preferably also diagonal) neighbors, can compute
the eigenvalues and eigenvectors of a real symmetric matrix in time O(n log n). The
constant is sufficiently small that the method is competitive with the usual O(n?) serial
algorithms. e.g., tridiagonalization followed by the QR iteration, for quite small n.
The speedup should be significant for real-time computations with moderate or
large n.

The problem of computing eigenvalues and eigenvectors of an unsymmetric real
matrix on a systolic array is currently being investigated; unfortunately, the ideas used
for symmetric matrices do not all appear to carry over to Eberlein’s methods [8] in
an obvious way. However, everything that we have said concerning real symmetric
matrices goes over with the obvious changes to complex Hermitian matrices.

Appendix. Simulation results. We have compared the ordering described in § 3
with the cyclic-by-rows ordering (2.7) by applying the Jacobi method with each ordering
to random n X n symmetric matrices (a;), where the elements a; for 1=i=j=n were

SINGULAR-VALUE AND SYMMETRIC EIGENVALUE PROBLEMS 33

uniformly and independently distributed in [—1, []. (Other distributions were also
tried, and similar results were obtained.) The stopping criterion was that the sum
Y az of squares of off-diagonal elements was reduced to 107"~ times its initial value.
Table 1 gives the mean number of sweeps S, and 5., for the cyclic-by-rows ordering
and the ordering of § 3, respectively, where a “sweep” is n(n—1)/2 rotations. The
maximum number of sweeps required for each ordering is given in parentheses in the

Table.

TasLE |
Simulution resulis for row and new orderings.

n trials 5w Shew

4 5,000 2.961(4.17) 2.64 {4.00)

6 3,000 3.63{4.87) 3.37(4.40)

a8 2,000 4.07 (5.04) 379475
10 2,000 4.39(5.56) 4.09(5.47)
20 1,000 3.23(5.93) 4.94(5.81)
30 1,000 5.67 {6.62) 541 (6.49)
40 1.000 53.92 (6.76) 5.74 {6.54)
50 1,000 6.17(7.13) 5.99(6.78)
100 500 6.81(7.42) 6.78 (7.32)

From Table 1 we see that our new ordering is better than the cyclic-by-rows
ordering, perhaps for the reason suggested in § 2, although the difference between the
two orderings becomes less marked as n increases. For both ordering, the number of
sweeps S grows slowly with ». Empirically we find that $= O(log n), and there are
theoretical reasons for believing this, although it has not been proved rigorously. In
practice S can be regarded as a constant (say 10) for all realistic values of n (say
n=1,000); see [21]. More extensive simulation results for six different classes of
orderings will be reported elsewhere.

Acknowledgment. We thank the referees and the editor for their comments,
which helped to improve the presentation and make the list of references more
complete.

REFERENCES

[1] H. C. ANDREWS anND C. L. PATTERSON, Singular value decomposition and digital image processing,
[EEE Trans. Acoustics, Speech and Signal Processing ASSP-24 (1976}, pp. 26-53.

(2] A. Bosanczyx, R. P. BRENT aND H. T. KUNG, Numerically stable solution of dense sysiems of
linear equations using mesh-connecied processors, this Journal, 5 (1984), pp. 95-104. Also available
as Tech. Report. TR-CS-81-01, Drept. Computer Science, Australian National Univ., 1981.

[3] R. P. BRENT anD F. T. LUK, Computing the Cholesky factorization using a sysiolic architeciure, Proc.
fth Australian Computer Science Conference (1983), pp. 295-302.

. A systolic architecture for the singular value decomposition, Tech. Report TR-CS-82-09, Dept.

Computer Science, Australian National Univ., August, 1982,

. A systolic archirecture for almost linear-time solwiion of the symmetric eigenvalue problem, Tech.
Report TR-CS5-82-10, Dept. Computer Science. Australian Mational Univ., 1982.

[6] R.P. BReNT, F. T. LUK aND C. Van LoaN, Computation of the generalized singular value-decomposi-
tion using mesh-connected processors, Proe. SPIE Vol. 431, Real Time Signal Processing V1, SPIE,
Bellingham, WA, 1983, pp. 66-TL.

(7] K-W. CHEN AND K. B. IRANL, A Jacobi algorithm and its implemenmtation on paratiel computers, Proc.
18th Annual Allerton Conference on Communication, Contrel and Computing, 1980, pp. 564-573.

[8] P.). EBERLEIN AND J. BOOTHROYD, Solution to the eigenproblem by a norm reducing Jacobi type
methoed, in [30], pp. 327-338.

(4]
(5]

84 RICHARD P. BRENT AND FRANKLIN T. LUK

[9 AL M. Finn, EL T, LUk anp C POTTLE, Systoflic array compatation of the singular value decomposition,
Proc. SPIE Symp. East 1982, Vol. 341, Real Time Signal Processing V. 1982, pp. 35-43.

[10] G. E. ForsyTHE anb P. HENriCt. The eyclic facobi method for computing the principal values of a
complex mairic, Trans, Amer. Math. Soc., 94 (1960), pp. 1=23.

[11] G. H. Gorun anp F. T. LUK, Singular valwe decompaosition: applications and computations, ARO
Report 77-1, Trans. 22nd Conference of Army Mathematicians (1977}, pp. $77-605.

[12] E. R. Hawnsen, Or cyelic Jacobi methods, I, Soc. Indust. Appl. Math., 11, 1963, pp. 448-459.

[13] D. E. HELLER AND L C. F. IPSEN, Sysiolic nerworks for orthaponal equivalence transformations and
their applications, Proc. 1982 Conf. on Advanced Research on VLSI, Massachusetts Institute of
Technology, 1982, pp. 113-122.

[14] . Systolic nerworks for orthogonal decompositions, this Journal, 4 {1983), pp. 261-269.

[15] M. R. HESTENES, fnversion of matrices by biorthogenalization and refated results,). Soc. Indust. Appl.
Math.. 6 (1958), pp. 51=80.

(1] D. J. Kuck anp A, H. Sased, Paralfel computation of eigenvalues of real marrices, Information
Processing 1971, North-Holland, Amsterdam, 1972, pp. 1266-1271,

[17] M. T. Kung, Why systolic architeciures, IEEE 1. Comput., (1982), pp. 37-46.

[18] H. T. KunGg anD C. E. LEISERSON, Algorithms for VLSI processor arrays, in Introduction to VLSI
Systems, C. Mead and L. Conway, eds. Addison-Wesley, Reading, MA. 1980, pp. 271-292.

[19] 5. ¥. KunG anp R. J. GaL-EzZER, Linear or square array fo. eigenvalue and singular value decomposi-
tions?, Proc, USC Workshop on VL3I and Modern Signal Processing, Los Angeles, California
{Nov. 1982), pp. 89-98.

[20] F. T. Luk, Computing the singular-value decomposition on the ILLIAC IV, ACM Trans. Math. Software,
& (1980}, pp. 324-539,

[21] H. RuTisHAUsSER, The Jacoli method for real symmetric matrices. in [30]. pp. 202-211.

[22] A. H. Samer, On Jacobi and Jacobi-like algorithins for a parallel computer, Math. Comput., 25 (1971},
pp. 579-590,

» Solving the linear least squares problem on a finear array of processors, Proc. Purdue Workshop
on Algorithmically-specialized Computer Organizations, 1982.

[24] R. SCHREIRER, Systolic arrays for eigenvalue compunation, Proc. SPIE Symp. East 1982, Vol 341,
Real-Time Signal Processing V., 1982,

. A systolic architeciure for singular value decomposition, Proc. 1st International Colloguium on
Vector and Parallel Computing in Scientific Applications, Paris, Mar., 1983,

[26] J. M. SPEISER aND H.). WHITEHOUSE, Architecture for real-time matrix operations, Proc. 1980
Government Microcircuits Applications Conference, Houston, TX, Nov., 1980

[27] H.). WriTEHOUSE,). M. SPEISER AND K. BROMLEY, Signal processing applications of systelic array
iechnology, Proc. USC Workshop on YLSI and Modern Signal Processing, Los Angeles, CA, Nov.
1982, pp. 5-10.

[28] 1. H. WiLKINSON, Note on the guadratic convergence of the cyclic Jacobi process, Numer. Math., 4
{1962}, pp. 296-300.

(29] . The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965.

[30] J. H. WILKINSON aND C. REINSCH, eds., Handbook for Automatic Computation, Vol T (Linear
Algebra), Springer-Verlag, Berlin, 1971.

[23]

[25]

