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Abstract

We present an algeorithm which solves the parsing problem for any
context—free grammar, and is suwitable for execution on a synchronous
computer with unbounded parallelism. The algorithm parses arbitrary imput
strings of length n in time O(log n) on a unit-cost SIMDAG, or in time

G(lﬂgzn] on a log-cost SIMDAG, using D[nﬁ} processors in each case.

l. Introduction

For a number of years, main memory on existing sequential computers
has been so inexpensive and therefore plentiful that it has been reasconable
to write programs which assume that memory is unmbounded, rather tham of a
small fixed size. Thus programs are written which, for imputs of length

n, declare arrayvs of size n (and sometimes n2 or faster growing functions

of n). These programs work because there is adequate main memory (occasionally
supplemented by virtual memory) to handle their data storage requirements

for the practical input sizes which the programs are expected to encounter.

As a rough rule of thumb, the unbounded main memory assumption is usually
reasonable if the program's main memory usage grows by no more than a

(small) polynomial funetien of n, the input size.

Current hardware trends suggest that a similar assumption of unboundedness
regarding the number of simple processors available may soon be reasonable.
That is, it will be economically and technically feasible te build machines
with hundreds of cthousands, or even millions, of parallel processing elements
interconnected in a sufficiently general way to permit general-purpose
programming [18]. A number of theoretical computer models with these
characteristics are surveyed in [9] (see also [7, 10, 12, 14, 23]). Of course,
any real machine will be built with a finite number of processors, and
"wirtual processors” may be used in the same way that virtual memory is now.

411 the reasonable parallel computer models which have been proposed turm
put to be equivalent (up to a low-degree polynomial) in their time and
hardware resource usage [li]. Thus the class of problems called HC, i,e,

those problems computable in U(logkn} time and O(ncj processors for some
constants k and ¢, is invariant with respect to the details of the parallel
computer model. However, for the sake of definiteness, we shall use the
SIMDAG model [iﬂ . (S5IMDAG stands for "Single Instruction stream, Multiple
Data stream, Global data".) Essentially, a SIMDAG consists of a large number
of processors which all synchronously execute the same instructien (but
perhaps on different data) at any unit of time, and which communicate via a
global memory. To facilitate operating on different data, each processor



has access to its own (unique) processor number. The global memory allows
simultaneous reads and writes, with the provisc that if two or more processors
attempt to write to the same memory location at the same time unit, then the
lower numbered processor has precedence. For a unit—cost SIMDAG each
instruction is considered to take unit time, whereas for a log-cost SIMDAG

the time required for an instruction may be proportional to

the number of bits required to represent the data and addresses relevant to
the instruction. For ideas regarding the practical implementation of

machines which approximate SIMDAGs, see [3, 23] .

Many interesting and natural problems are known to be in the class
NG EHH, e.g, arithmetic operations, common vector and matrix operations,
sorting and searching, and many graph-thecretic problems {l, 2, 8, 13, 17,
19, 20, 22, 25, 26]. Ruzzo [ﬁi} was the first to show that context-free
parsing is in NC. In fact, Ruzzo showed that context-free languages could

. . 2 . 1
be recognized in time 0{log n) with O(n 5] processors. Ruzzo also stated
. b
(without proof) that the problem could be solved with "about n " processors.
In Section 4 we present a parallel algorithm which requires D(nﬁ} ProCcessors

and 0(log n) or D{logzn) time (depending on whether we make the upit—cost or
log-cost assumption). The proof is given in Section 5.

Qur expeonent 6 is better than Ruzzo's 15, but still uncomfortably high,
It is conceivable that it might be reduced to 3 (or even 2.495553) as these
numbers are the best exponents known for the time required for context-free
language recognition on a sequential machine [11, 16, 2&]. For further
comments on the number of processors required, see Sectiom 6. Lower bounds
{for a more restrictive model) are discussed in [5 .

2. NHotation

Let L be a (fixed) context-free language, and G a grammar for L in
Chomsky normal form, i.e. each productien of G has the form A=¥BC or A-¥d,
where A, B and C are non-terminals and d is a terminal symbol of G, The start
symbol of G is denoted by 5, and the number of non-terminals of G is denoted
by M. ﬁ::;gi...gj has the usual meaning (i.e. that there is a parse tree with

root A and leaves g,...g.)}. "A—=BC in G" means that A-*BC is a production of G.
1 J

The input string to be parsed is gl...gn. We regard n as a wariable but

W as a constant. Thus, for example, the fupction H3n5 is D(n6}+

A tree with root A, leftmost leaf &4 and rightmost leaf gj is denoted by

A
1.-&‘] .

The degenerate cases i = j (and i = j = A) are allowed if cthe tree has 2 (or 1)
nodes. We shall identify trees with their roots, i.e. we may speak of '"the
tree A". The number of nodes in a tree A is denoted by |A]l. If A has a subtree
C with leftmost leaf Er and rightmost leaf §,» We assume that i<€r£s<j and

A

A
writ@. If C is replaced by a leaf ¢ we write iAj .

f . .\.
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W denotes the set §J(A, i, i) '.A is a nonterminal of G, 1<i<n, 1_-c_:j_-gn}.
It will be convenient to write Aij for an element (A, i, j) of W.

When describing parallel algorithms, square brackets after a statement
indicate that the statement should be executed in parallel by as many processors
as necessary. For example, the statement

Q{Aijﬂxy} - Aij = Bxy Ihij’ Bxy € W]

initializes an array Q of dimension ﬂ?'n‘:i and should be executed using Hznﬁ
PrOCESSOrs.

e

k
Finally, "log n" is used as an abbreviation for riagzﬁ?k .

3. Preliminarvy Results

The algorithm described in Section 4 depends on the following trivial
but useful properties of trees D’l, 5]:

Lemma 1

If A 15 a tree with |A] = n, there is a node C (called the "eritical node™)
of A such that |C]/» n/2 but D]l €£n/2 for all children D of C.

Intuitively, Lemma 1 says that the "large" tree

/Déi

i p qagqtl r j

can be split into three "small" trees

A D E
. ™ . ) & and A .
i p-l;.-c“r+l i P q gl
-pf-i--lr
where ¢ is a leaf replacing the subtree C.
Lemma 2
Given a leaf b in a tree A with fﬂi = n, there i= a node C of A4 such that

b&C, |C]7n/2, and [Dlgn/2, where D is the subtree of C containing b.

Intuitively, the interpretation of Lemma 2 is similar to that of Lemma 1
except that we insist that a certain "distinguished" leaf b must be in the
subtree C, and we can not conclude anything about the size of the subtree(s)
of C which do not contain b. (In Lemma 2 we assume n*»1, for otherwise D
does not exist.)



4. The Main Result and Parallel Algorithm

The main result of this paper is:
Theorem 1

Let L be any context-fres language. Then L can be recognized by a

. . . . 6
unit—cost SIMDAG in time O(leg n) using O(n ) processors (i.e. for any
lnput string g ---g, We can decide if By++B_ € L in time O(log n) using

O{n 3 prucessors} On a log—cost SIMDAG L can be recognized in time Gflcgzn)
with G(n } processors.

The proof of Theorem 1 is constructive, First we give a parallel
algorithm for context-free language recognition. Then, in Section 5, we
show that the time and processor requirements of the algorithm satisfy

the statement of Theorem 1. As above, let G be a grammar for L in Chomsky
normal form.

The Parallel Algorithm

P(A;;) = (1 = ) and (A-g, in G) [a, . ew]
q(Alj o) P Ay By [A 50 By .sw]
for t :=1 to log n do
begin
C B .
V(e By = Qe B [, B €mls

if (C—DE in G) and
{(Q(quﬁxy} and Pqu_l_l,r}] oxr (P{(D q) and Q(E o+, r x}r}}}
then UU%#%F}:=tnm l<p, r€n; 1l=q<n; %WEW;
C, D, E nonterminals of GJ;
£ U(AC ) and U(C B )
then Q(AijBxF} = true {hij, BxF, CpreEW];
= P(C .
vee,,) (€, [-:pre' W] s
if (C-DE in G) and P(D ) and P(E ; )
then V(C ) := true [L<p, r<n; lgq<n;
C, D, E nonterminals of G];
if Q{ﬂ ﬂ ) and ?{Cpr]
I:hen P(A J) := true -I-Aij’ CPrE I-I]
end;

i;_P{Sln} then accept else reject.



Intuitively, the arrays P and O stored in global memory represent
possible parse trees, and are updated on each iteration of the algorithm.
We show in Section 5 that P and § converge te their final values after at
most log n iteratiens. P{A .} will eventually be set true iff there is a
parze tree of the form

&

i.e. A ... in G.
PAN =288y
+ J
Q(ﬂijBx}*} will eventually be set true iff there is a parse tree of the form

A

ij i.e. A=dg ... Bg ...z, iIn G.
. -1 1

s 177 B8y 8y

The algorithm evaluates P{BHY} and Q{Aijﬁxy) in parallel; if both are true
(for one or more of the many possible Bx;-r} then P(Aij} is true. (This is

the key idea, but to get convergence In log n iterations we have to refine it
and make use of Lemmas 1 apnd 2.) Finally, g8 is accepted iff P{Sln} is

true, i.e. E=?gl...gn in G.

5. Proof of Theorem 1

Theorem 1 follows easily from the following two Lemmas,
Lemma 3

If - g€ L then the algorithm of Section 4 accepts.
Proof

If By---8 & L then S=}gl B in G, so there is a parse tree T with

1 + . ..
root 5 and n leaves, so I"L‘I = ?.n 1 <20 1. Hence, it dis sufficient

to show the following properties Hl and H2 hold after the t-th iteration of
the algorithm:

Hl: If there is & parse tree T of the form 14&] with |lT|£2

_ . KE WY
then Q(ﬂi Exy} true}

A
H2: If there is a parse tree T of the form i'&j with ITlggt-i-

then P(Aij} = true.

We shall prove Hl and H2Z by induction on t. They are certainly true
for £ = 0 by the initialization phase of the algorithm (i.e. the first two
parallel statements which initialize T and Q). Hence, we shall assume by
induction that H1 and H2 hold {with t replaced by t-1) after t-1 iteratiomns,
and prowve that Hl and H2 alsoc hold after the t-th iteration.



A
To prove Hl, assume that there is a parse tree T of the form i &j

L.
with |T] £2%. By Lemma 2, A X"y

AN

i p/Bg gl ¢ j
x "y

T =

A D B
where 1@3 < Zt-l, pg'&'q < Et_l, q-l-‘lﬁlr £ 2!:, and CDE is in G
P A

{(or the analogous case in which B is in the subtree with root E rather than D).

; . \ c - _ - .
Thus, by the inductive hypothesis, Qfﬂij PI'} Q{quﬁx}r} P[Eq+1,r] true
It is easy to check that the algorithm will set U(A,.C ), U(C B ), and
1] pr Pr X¥
finally Q(A,.B J to true, as required to prove HL.
iy xy’ = A
To prove H2, assume that there is a parse tree T of the form i‘&j
with [Tl €25, By Lemma 1, A
T = C

0
i pgqagtl r 3
E

FaN
qgtl r

D

where |1/CY] 52“, ]p,{l t

é 2 3

£ 2%, and C-DE is in G.

q

L
T

Thus, by the inductive hypothesis, Q{#Lijl: ) = true.

} =P = P(E
pt ( pqJI ( q+l,r
It is easy to check that the algorithm will set ‘F.F{Cpr} and then P{Aij} to

true, as required to prove HZ,

We have proved that Hl and H2 hold for all t % 0. The lemma now follows
from H2 (with A = 8 and t = 1log n).

Lemma &

If the algorithm of Sectiom 4 accepts, then glh.gne: L.

Proof
We shall prove a stronger result: after the t-th iterationm, A
Hl: if Q{Aij]}xy} = true then there is a parse tree of the form ij 5 and
x!{.}t}r

HZ:; if P{ﬂij} = true then there is a parse tree of the

form idj .



The proof is by induction on t. As inductiwe hypothesis we assume that
Hl and H2 hold after the (t-1)-th iteratiom. Suppose that Q(&ijBxy} = true

after the t-th iteration. Either Q(ﬁijBxy} was set to true before the t-th

iteration, in which case the inductive hypothesis shows that the desired parse
tree exists, or there is some C € W such that U{ﬁijcpr} is set to true

during the t-th iteratiom, as is U{Cprﬂxy}' There are several cases to
consider. TFor example, suppose that after the (t-1)-th iteration Q(hijﬂpr}

is true but Q(Cprﬁxy} is false. Then there exist nonterminals D, E and

an index ¢ such that C—=DE in G and

{Q{DPQEK}F} and P{Eq+ ,r}} or (Pinpq} and Q(E B_})

1 gqtl,r =y

is true after the {(t-1)-th iteration. Suppose that Q(D B ) and P(E )]
true Pq Xy q+l,r
are true after the (t-1)-th iteration (the case that P(D ) and Q(E B )
- pq q+l,r xy
are true is similar). By the inductive hypothesis, there exist parse trees
A D B
. . s
VATV R S
Pl xily

which can be combined to give a parse tree
A
1/6\3 A
of the desired form i .

D
N
pq ¢fL r xi-y
=

XE-Ty
From this and similar cases, we conclude that Hl holds after the t—th
iteration.
To establish HZ2 after the t-th iteration, we argue in a2 similar manner.
If P{ﬁij} iz true after the t-th iteration, either P{Aij) was true after the

(t=1)-th iteration (in which case we use the inductive hypothesis), or
there exists C €W =such that Q(A, .C ) and V{C ) were set to true
pPr 1] pr pT

during (or before} the t-th iteration. H2 now follows from a case analysis
similar to that above.

Proof of Theorem 1

Inspection of the algorithm of Section 4 shows that it uses at most

N3n6 = D[nﬁ} processors. The execution time is dominated by the loop, which

is executed log n times., Subscript calculations associated with the arrays
can be precomputed before entering the loop, in time O{log n) on the unit-cost

model, or D(lngzn} on the log-cost model. Each iteration of the loop then
takes comstant time (on the unit-cost model} or O(leg n) time {on the log-cost
model), so the total running time is as claimed in the statement of the theorem.



6. Comments

The algorithm was presented in terms of accepting or rejecting its input
string. However 1t is clear that, if each time an element of P or § is set
to true, information is retained about why that element was set to true, then
a parse tree for the input string can be reconstructed,

There are connections between algorithms for context-free language
recognition and algorithms for matrix multiplicatiem. TFor serial computationm,
context-free language recognition can be reduced to multiplication of n by m

matrices, so the time required is D{nz'ﬁ9555] [i1, 1s, 24}, Since time bounds
for serial algorithms are often the same as preocessor bounds for fast parallel
algorithms, we might hope to recognize context-free languages with D{HE'QQSSE}
processors in time D{logkn}. However, it is not known if this is possible.

Considering the number of processors used by our parallel algorithm, the
most expensive statement is:

i C 1=
if UA;C ) and U(C B, ) then Q(A; B, ) := true [Aij, By Cor € W]

which is essentially performing the multiplication of Boolean matrices

2
of size Nn = D(nz}. Thus, it should be possible to reduce the number of
processors required by our parallel algorithm to G{nﬁ'ggllj, where the
exponent is twice the best known for matrix multiplication [11], and still

k
retain the time bound O(log n), although k may be greater than in Theorem 1.

7. Conclusion

We have given an alporithm for parsing an arbitrary context-free grammar
2
in 0O{log n} time on a unit-cost SIMDAG (O(log n) time on a log-cost SIMDAG)

with D{nﬁ} processors. It is unlikely that the time bound could be improved
much. TIn Section 6 we suggested that the processor bound might be reduced
somewhat. Certainly the constant factor can be reduced considerably by taking
advantage of the cordering constraints on the subseripts 1, j, ... in the
algorithm. On a real parallel machine with a bounded number of processors

we would probably combine the ideas of the algorithm presented here with these
of more traditiomal serial parsing algorithms, in order to make the best use
of whatever degree of parallelism was available, as in [4, §] .
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