JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING 2, 261-276 (1983)

Tridiagonalization of a Symmetric Matrix on a Square Array
of Mesh-Connected Processors

A. BOJANCZYK AND R. P. BRENT

Centre for Mathematical Analysis, The Australian National University, GPO Box 4,
Canberra ACT 2601, Ausiralia

Received October 22, 1984

A parallel algorithm for transforming an n X n symmetric matrix to tridiagonal
form is described. The algorithm implements Givens rotations on a square array of
n X n processors in such a way that the transformation can be performed in time
O(n log n). The processors require only nearest-neighbor communication. The re-
duction to tridiagonal form could be the first step in the parallel solution of the
symmetric eigenvalue problem in time O(n log n). © 1985 Academic Press, Inc.

1. INTRODUCTION

Reduction to tridiagonal form is a crucial step in the sequential QR algo-
rithm [8] as it reduces the number of arithmetic operations required to perform
one QR iteration from O (n?) for a full matrix to only O (n) for a tridiagonal
matrix. Also, the choice of shifts is critical for fast convergence of the OR
algorithm. The unshifted QR algorithm may converge very slowly, and it is
not clear how to choose shifts cheaply and effectively unless the matrix is
tridiagonal.

For parallel computation the tridiagonal form is not so crucial in reducing
the cost of one OR iteration, for it is known how to perform a QR iteration
on a full matrix in time O (n) on a two-dimensional array of n? processors [1].
However, this result is useless because of the lack of a good shift strategy.
Thus, it is natural to ask if a square (or linear) array of processors can be
utilized with reasonable efficiency in a parallel implementation of the QR
algorithm. Several authors have investigated this problem. Schreiber [6]
suggests that one first reduce the given matrix to a matrix of bandwidth w and
then apply the @R algorithm. Schreiber shows that the reduction can be done
in time O (n?/w) using O(wn) processors, but he does not discuss the shift
strategy. S. Y. Kung and Gal-Ezer [5] propose a linear array of O(n) pro-

261

Copyright © 1985 by Academic Press, Inc,

262 BOJANCZYK AND BRENT

cessors to reduce a symmetric matrix to tridiagonal form in time O(n?) and
then apply the QR algorithm with the standard shift. Heller and Ipsen [4]
consider only band matrices. For a matrix of bandwidth w their procedure
takes time O (wn?) using O (w) processors.

In this paper we show how a symmetric matrix A can be reduced to
tridiagonal form in time O(n log n), using a two-dimensional array of n?
processors with nearest-neighbor communication. This is an improvement of
order n/log n in speed over the results mentioned above, on the assumption
that n? processors are available. The eigenvalues of the tridiagonal matrix can
be found either by the QR algorithm or by the method of Sturm sequences and
bisection [8]. The latter method is attractive for parallel computation because
different processors can compute different eigenvalues independently.

The aim of this paper is to show that symmetric tridiagonalization in time
O(n log n) on a systolic array is possible. We do not claim that the algorithm
presented here is practical; rather we hope that our existence proof will
encourage the development of simpler systolic algorithms which also achieve
the time bound O (n log n). Consequently, we do not attempt to specify our
algorithm more precisely than is necessary to establish the O(n log n) time
bound. For example, we do not specify whether the operation of each systolic
processor is programmed as a function of n and the time step ¢ (which is
certainly possible) or whether the processors are driven by “data ready” lines
and other control lines from their neighbors (which might provide a simpler
implementation).

Although our algorithm seems to be too complicated for direct hardware
implementation at the present time, it is encouraging from the viewpoint of
computational complexity. Its main competitor is the parallel Jacobi method
of Brent and Luk [2, 3], which finds the eigenvalues of A directly, without
first reducing A to tridiagonal form, and also takes time Q(n log n) using
O (n?) processors. The parallel Jacobi method is simpler, and faster by a small
constant factor. On the other hand, the new algorithm can easily be extended
to reduce an unsymmetric matrix to upper Hessenberg form.

The paper is organized as follows. Preliminary results are given in Section
2, and the systolic model of computation is described in Section 3. The basic
idea of the algorithm is outlined in Sections 4 and 5. Section 6 is devoted to
the systolic organization. Details and proofs are given in Section 7. Exten-
sions to matrix bidiagonalization and the reduction of a nonsymmetric matrix
to Hessenberg form are mentioned in Section 8.

2. GIVENS ROTATIONS

The reduction of an n X n symmetric matrix A = (a;) to tridiagonal form
can be obtained by means of plane rotations applied to A on the left and on

TRIDIAGONALIZATION OF A SYMMETRIC MATRIX 263

the right in some prescribed order. A plane rotation is defined by a matrix

i column

Cip 8§ [TOW
P =

The matrix P, { > j, applied on the left rotates rows i and (i + 1) of A so
as to annihilate the off-diagonal element a;., ;. The parameters of F. ; are

defined by
a; = (aj + ajn)'*
c = a,;{ﬁ,;
5 = ﬂf+l._.-‘fﬁfj-

Rows i and (i + 1) and columns i and (i + 1) of the symmetric matrix A =

P ;A Pl are given by

E.‘p = Epf = aipci + ar‘+],psi
E.‘+1.p = Ep.i'f'] = —QpS; T Qivy,pCi

}p-?‘-‘i,i-l-l,j

Qiv1,j = Gjir1 = 0

i Qi] - [Ci 5;':| [ﬂﬁ Qi+l][Ci —Sf:l.

Qivii Gixr,i+ =8 Ci||Qieri Gitri+r || Si C;
The orthogonal matrix Q is fo_rmed as the product of plane rotations £, ; such
that the transformed matrix A = QAQT is tridiagonal; see [8] for details.

3. THE SystoLIC MODEL OF COMPUTATION

We want to realize reduction to tridiagonal form by means of a systolic
array [2, 7]. Roughly speaking a systolic array is an array of simple pro-
cessors which operate synchronously. Every processor is able to perform
certain floating point operations and has several words of local memory. The
processor layout is assumed to be at most two dimensional and processors can

264 BOJANCZYK AND BRENT

communicate only with their nearest neighbors. The cost of data transmission
between neighboring processors is comparable to the cost of the most ex-
pensive single operation performed by any processor in the array. Knowing
what operations the processors must perform in order to solve a problem, we
define a time unit to be the maximal time that is necessary for a processor to
perform the most time consuming operation together with loading and un-
loading its registers (see Section 6). A synchronization mechanism allows
processors to exchange data at time instants separated by integer multiples of
a time unit. We assume that the number of processors available is a function
of the problem size, although in practice this number will of course be
bounded.

4. THE Basic Ipea

Direct mapping of the sequential tridiagonalization algorithm to a parallel
algorithm for a square array of systolic processors yields processing time of
order n?. It may be shown that this is a consequence of the fact that in the
sequential algorithm the order in which elements are annihilated ensures that
no new nonzeros are reintroduced during the process of reduction. By relax-
ing this condition, i.e., by allowing the introduction of new nonzeros, we are
able to achieve O(n log n) time on n? processors.

The idea is as follows. In every major step we intend to halve the band-
width of the matrix. If this could be achieved in time independent of band-
width and linear in problem size then we would have an O (n log n) algorithm.
Assume that at the mth major step our matrix has a band B, with w sub-
diagonals (see Fig. 1).

We annihilate elements within the lower half of the band in some pre-
scribed order (see Section 5). Because of postmultiplications new nonzeros
are created forming a bulge beneath the lowest subdiagonal. This bulge is

FIG. 1. Regions for bandwidth reduction.

TRIDIAGONALIZATION OF A SYMMETRIC MATRIX 265

annihilated next, resulting in a second bulge further down the lowest sub-
diagonal. We end when the bulge is chased out of the matrix. As will be
shown in Section 5 the time spent in processing all elements in the lower half
of the band is O (n). Thus, by multiprocessing and pipelining we are able to
halve the bandwidth in time independent of the bandwidth. This in turn yields
O(n log n) total time for reducing the matrix to tridiagonal form.

5. ELIMINATION ORDERING

Let the current band have w = 3 subdiagonals; the case w = 2 is treated
in Section 7. We want to annihilate the k/2 lowest subdiagonals of the band,
where k = w — 1 forwodd ork = w — 2 for w even. First we annihilate the
element in the lower left corner. If the element in position (7, j) is eliminated
at time ¢ then the element above, i.e., in position (i — 1, j), is eliminated at
time ¢t + 3 and the element to the right, i.e., in position (i, j + 1), is elimi-
nated at time ¢ + 9. This is illustrated in Fig. 2 for £k = 10, w = 12. The
general formula is the following. We eliminate element g; at time

ty = ¢y T 3w — 1) + 9j, (5.1)

kq

L0119 | = ®
7116 {25} = x
4113 (22]131) x x

1322131 [40]49] = x
19 (28137 |46]55| x x

25|34 [43]52|61] x x
31 [40(49]158|67| x x
37|46155|64173 | x x
A3(152]61{70(79) x x
49|58 |67 (76|85 x x
55164 (738291 | x| x| x| x| x| x| x| x

Fic. 2. Elimination ordering {w = 12, %k = 10).

266 BOJANCZYK AND BRENT

where c¢,, is chosen in such a way that there is no interference between
computations for different bands (see Section 7).

6. ARRAY ORGANIZATION

We assume an n X n square network of processors. Every processor,
except for those on a boundary, is connected to its eight nearest neighbors.
The algorithm can clearly be modified to work on an array where each
processor is connected to its four nearest neighbors. We distinguish three
types of operation which processors are able to perform:

1. Determination of rotation parameters; i.e., given [a, b]T € R?, deter-
mine ¢,s € R such that

R R A

2. Single left or right rotation; i.e., given rotation parameters ¢ and s and
a column or row vector [a, b]" or [a, b], compute

DR R

3. Simultaneous left and right rotation; i.e., given rotation parameters ¢,
s1and ¢;, s; and a 2 X 2 submatrix [¢], compute

u ol _| ¢ s||lu vllecs —s
ET_—.nclzysz |
In order to perform operation 1 or 2 processors form conceptual clusters of
two cells with a vertical connection for the left transformation and a horizon-
tal connection for the right transformation; similarly, they form clusters of
four cells when operation 3 is to be performed (see Fig. 3). For example, the
cluster in Fig. 3a consists of two processors which initially (before operation

2) store a vector [3] and finally (after operation 2) store [‘—E] = [_¢ [5]- The
details of exactly how this could be implemented will not be specified pre-

i oo B

b c

FiG. 3. Possible configurations of clusters.

TRIDIAGONALIZATION OF A SYMMETRIC MATRIX 267

cisely, as it is enough for our purposes if the reader is convinced that an
implementation is possible.

We assume that operation 1 or 2 takes one unit of time while operation 3
takes two units of time (including data transfer time). At the beginning of the
computation each processor contains exactly one element of the matrix A. In
the course of the computation modified elements of the transformed matrix A
stay in the corresponding processors while generated rotation parameters
travel along horizontal and vertical connections. We assume that the network
works in a synchronous manner and that the propagation delay is one unit of
time. This means that rotation parameters cannot be broadcast but that their
transfer from one processor to neighboring processors in one unit of time is
possible.

Assume that the current bandwidth is w and, according to the ordering
described in Section 5, the next element to be annihilated at time 1, is at
position (i + 1, j). At time f; processors in positions (i, j) and (i + 1, j)
form a cluster of type (a) as shown in Fig. 3 and perform an operation of type
1. Then rotation parameters are sent to the right where a cluster of two or four
processors is formed. In the former case a left transformation is performed,
taking one unit of time, and rotation parameters are sent further to the right.
The latter case corresponds to the situation when left and right trans-
formations are to be performed simultaneously on a 2 X 2 submatrix of the
matrix A; i.e., a cluster of four processors simultaneously receives rotation
parameters from the left and top. This operation takes two units of time. Next
rotation parameters propagate to the right and to the bottom clusters. Define
a “channel” to be a pair of adjacent rows or columns of processors. Rotation
parameters that propagate along a horizontal channel eventually reach pro-
cessors on a diagonal. Here, a cluster of four processors is formed which
executes simultaneous left and right rotations using the same rotation param-
eters for both left and right transformations. Now, rotation parameters stop
traveling to the right. Instead they are reflected from the diagonal and move
downward, becoming a source of right transformations, until the lowest
nonzero codiagonal is reached. Here, when a new nonzero is created, the old
rotation parameters are no longer needed and can be discarded. As we started
at time ¢, from a cluster of processors in positions (i, j) and (i + 1, j), and
moved with unit speed, we had to arrive in position (i + w + 1, i) at time
t. =1t + (i +1—j)+ w. At time ¢,, a new nonzero is introduced in posi-
tion (i + w + 1, i). The new nonzero is annihilated at the next unit of time,
i.e., at time ¢, + 1, by a cluster of processors in positions (i + w, i) and
(i + w + 1, i). New rotation parameters start to propagate to the right along
a horizontal channel. When they reach the diagonal they are reflected and
propagate down a vertical channel. This process is repeated until the bulge is
chased out of the matrix; see Fig. 4.

As annihilation of an element causes emergence of a bulge we must ask
whether some rotations that chase bulges interfere with each other or with

268 BOJANCZYK AND BRENT

I
I
I
I
1
i
I
I

FiG. 4. Chasing a bulge.

original rotations. In Section 7 we show that it is possible to perform many
rotations in parallel without interference.

7. OPERATION OF THE ARRAY

In the process of elimination left and right transformations, i.e., pre- and
postmultiplications, may interfere with each other. We shall refer to the
interference between left and right transformations such that some matrix
element is involved in left and right transformations at the same unit of time
as a conflict.

We have to ensure that transformations are performed in the correct order
and that conflicts are resolved accordingly. There are four kinds of conflict
possible. As left and right rotations cross at some 2 X 2 submatrix we
describe conflicts in terms of the 2 X 2 submatrix

§ = a;j ai j+1
3
ivr,j Qiv1,j+)

TRIDIAGONALIZATION OF A SYMMETRIC MATRIX 269

left rotation
and right rotation

Consider the transformation

l:afj Qi+] _ [€ S::I[ﬂf.; a; j+1][Cr _-Tr]
Qiv1,j Qi1 j+ =S8t Co | Qi+r,j Qixrj+1][Sr cr |
A conflict of the first kind occurs when a left rotation 7 on [ay, ;411" and
right rotation 7; on [ay, a; ;+:] are to be performed at the same unit of time.
The second kind of conflict involves a left rotation on [ay;, @i+, J17 and right
rotation on [@+1, @i+1,j+1] while the third kind occurs when vectors
(@i j+1, @is1,j+1]" and [a;j, @i j+1] are to be transformed simultaneously by
rotations 7; and T;, respectively. Finally, a conflict occurs when 7; rotates
vector [a;, j+1, @is1,j+1]" and T, rotates vector [@;s1j, d@i+1,5+1], but this implies
that one time unit earlier a conflict of the first kind tock place. For this reason
we need to consider only three kinds of conflict; see Fig. 3.

LEMMA 1. Let T, and T, be transformations that zero elements a;; and a;,
within the current band. If i — j = k then T does not interfere with T,,. If
i — j < k then only a conflict of the first kind can occur.

Proof. Let T and T, be such that i — j = k. The earliest element to be
annihilated in row i is the element in column i — w. The last element to be
annihilated in row j is the element in columnj — (w — k/2 + 1); see Fig. 6.
Consider the case whens = i — wandt = j — (w — k/2 + 1). Since trans-
formation T, propagates with unit speed—first along the horizontal, then
along the vertical channel—it has to arrive in position (j + w, j — 1) where

H
L}

M AN L L v B

lat (a) 2nd 3rd 1st (b)

FiG. 5. Different kinds of conflict.

270 BOJANCZYK AND BRENT

FiG. 6. See Lemma 1.

a new nonzero is created after
wtw—k/2+1)=2w—k/2+1 (7.1)

units of time. The position (j + w, j — 1) corresponds to the position
(i + 1, s) when

k=w-—1 (7.2)

or to the position (i + 2, s + 1) when
k=w-— 2, (7.3)
In the former case (7.1) becomes 3k + 3 while in the latter case (7.1)

becomes 3k + 5.
From (5.1) we get

lis — Ly = 3(.} - ’) + 9(5 - u)
=6(i—j)—3k+9 (7.4)
=3k +0.

TRIDIAGONALIZATION OF A SYMMETRIC MATRIX 271

Comparing (7.1) with (7.4) for the cases (7.2) and (7.3) we see that
transformation T;, precedes transformation 7;, by at least four units of time.
Thus transformations 7, and T; do not interfere foru = j — (w — k/2 + 1),
F=1— W.

Now any other transformation 7, with / = j and r = u precedes trans-
formation T, and in consequence must precede T;. Similarly, any trans-
formation T, with ¢ = i and p = s is preceded by transformation T;. Thus
no transformation T, that zeros element a;, interferes with transformation 7,
that zeros element a;, as long as i — j = k.

Now consider the case i — j < k.

Let us assume that a conflict has been caused by left transformations T;; and
T., where j < i and u < s (it is easy to see that for u = s conflict cannot
occur). If transformations 7, and T, start at time ¢(7;) and #(T7;,), respectively,
and arrive simultaneously at location 1°, 2°, 3°, or 4° (see Fig. 7) then as they
propagate with constant unit speed we have the relation

t(T) — t(T,) = (s —w) + (i —) for case 1° or 4°
=G ~-w+@-j)+1 for case 2°
=(s—-—u+i—j)—1 for case 3°.

On the other hand because of the ordering imposed by (5.1), we have another
relation,

I(T‘l:s) - I(T}u) = 9(3 - H) - 3“ _wf)

Comparing these two relations we conclude that conflict can occur if and only
if

8(s—u) —4i—j)=0 for case 1° or 4°
=] for case 2°
= —1 for case 3°.
column u . column j
L N
E ™ -~ row j-1
row j—{ | _ _ _ L. ~

[

A
-

row i i ______QOh-

FG. 7. See Lemma 1.

272 BOJANCZYK AND BRENT

Since the left-hand side is divisible by 4, only conflicts of the first kind can
take place. H

CoroLLARY. Conflicts are caused only by left transformations T; and T,
Jor which

2 —uw) =i —], j<iand u <s.

Now we identify the pattern of potential conflicts in a given unit of time.
If a 2 X 2 submatrix
S. = aj Qi j+1
! iv1,j Qixl,j+i

is involved in a conflict caused by transformations 7 and 7}, then from the
assumed annihilation ordering the following 2 X 2 submatrices are also pos-
sibly in conflict as long as they are contained in the band:

I+

Sti-x)~21, (j-30+2i fork =0, =1, 2, .

(7.5)
[=0,%£1,%£2,..

Also, because of the assumed ordering of annihilation, at any given two
successive units of time only processors corresponding to matrices (7.5) are
active. Thus conflicts occur in disjoint and well-separated submatrices and
can recur every two units of time. This suggests the following solution to
handle conflicts.

When a conflict occurs and we know that it can only be a conflict of the
first kind, the four processors involved form a cluster as described in Section
6. Within this cluster first a left transformation on the whole 2 X 2 submatrix
is performed, then a right transformation also on the whole 2 X 2 submatrix.
Here it is assumed that a cluster of four processors is capable of performing
left or right transformations on 2 X 2 submatrices in one unit of time. This
means that after two units of time the transformed 2 X 2 submatrix has the
correct value.

After computation involving matrices described by (7.5) have been com-
pleted the new activities and new possible conflicts occur in submatrices
described by (7.5) where j is replaced by j + 2 (as the left rotation moves two
positions right and the right rotation moves two positions down).

LEMMA 2. Let T; be a transformation that zeros element a;; in the current
band and let T,, be a transformation that zeros some bulge. Transformations
T, and T, never interfere with each other.

Proof. Every transformation that annihilates bulges is a successor of
some transformation that annihilates elements within the band. Thus by

TRIDIAGONALIZATION OF A SYMMETRIC MATRIX

]
]

® oH M
®

13
19
25
31

7

41

39

{5

37 .
5 .
33

31

37

43

FIG. 8. See Lemma 2.

43

35

6l

273

Lemma 1 it is sufficient to consider only such transformations T and T, whose
predecessors annihilate elements that lie in rows which are separated by less

than k rows. Assume that a conflict has occurred in some submatrix S

(see

Fig. 8). This can only happen when left and right transformations are to be
performed simultaneously on some element of submatrix §;, ;,. Assume now
that the left transformation T,(i,, j,) is a reflection from the lowest codiagonal

274 BOJANCZYK AND BRENT

of the right transformation T(i, j) that transforms submatrix S;. Consider the
left transformation 7;(z, j), that is involved in conflict with 7;(i, j) in submatrix
Si. The left transformation reflects along the diagonal and becomes a right
transformation T.(i), j;) that passes through submatrix §;, ;. Because right
transformation 77(i,j) introduces a new nonzero below the codiagonal this
nonzero has to be annihilated, as soon as possible under the constraint that we
can move with unit speed, by left transformation 7;(i, j;). This additional
annihilation causes transformation 7;(i\, j;) to arrive at submatrix §;, ;, two
units of time later than right transformation 7; (i}, j;). Thus there is no conflict
between T.(i,,j,) and T;(i}, j,).

By examining the neighbor clusters of processors that are active at the same
time as the cluster corresponding to submatrix S, we conclude that a conflict
in position described by submatrix §;, ;, is not possible. As §;, ;, has been
chosen arbitrarily, conflict cannot occur. Il

ingi

Next we show that at any given unit of time bulges that are introduced
beneath the lowest subdiagonal can lie only on a single codiagonal next to the
lower boundary of the band before they are annihilated. Observe that the first
wave of bulges which arrive on the codiagonal next to the lower boundary is
due to annihilation of elements that lie along the left and lower boundary of
the band (see Fig. 8). The length of this new codiagonal is k — 1 with the
middle bulge corresponding to annihilation of the lower left corner (this
corner is eliminated first). The middle bulge emerges first, then every two
units of time successive bulges arrive above and every six units of time
successive bulges arrive below. According to the annihilation scheme, the
second wave arrives eight units of time later than the first wave. Thus there
is enough time to annihilate any two successive bulges before arrival of the
next wave. This ensures that bulges cannot accumulate. We can conclude that
all transformations are performed in a correct order.

Recall that we eliminate element a;; in the lower half of the current band
at time

ti=c, +t3w—-i)+9 forw—k/2+1=i—j=w.

From the above formula it follows that annihilation of the lowest k/2
subdiagonals in the current band takes 6n — w + O(1) units of time. Clearly
there is no interference between computations for two successive cycles, i.e.,
for band B,, and the next band B;, if

Cp — Cp = 6n.

Note, however, that computations for two successive bands can be over-
lapped. In fact it is sufficient to have c¢; — ¢, = 4n, as is explained in the
following lemma.

TRIDIAGONALIZATION OF A SYMMETRIC MATRIX 275

LeEMMA 3. Let B, and B; be two successive bands, w < w_ If
Ci — Cy = 4n,

then computations for band B, do not interfere with computations for band
Bs,

Proof. The time to eliminate from a,+;, t0 @pp-5- s 6(n — w — 1) +
9w — w— 1) = 6n + 3w — 9% + O(1). The next band has w = [w/2]
for w odd or w = [w/2] + 1 for w even and an elimination that started at
a3+, takes time at most 2(n — W) to propagate down to position
(n, n — w — 1). Thus we can overlap by 2(n — W) and start eliminating
Q4+, at time

6n—3w—9ﬁ_—2{n—w}<4n

after eliminating a,+,,. Il

The main result of this paper immediately follows from Lemma 3 and the
observation that tridiagonalization of the five-diagonal matrix, i.e., the case
w = 2, can be achieved in time O (n) by means of the standard sequential
algorithm. Hence we have:

Theorem. Tridiagonalization of an n X n symmetric matrix can be
achieved in time 4n log, n + O(n) using an array of n® mesh-connected
processors.

8. CONCLUDING REMARKS

It is clear that, by taking advantage of symmetry, we need only a triangular
array of n2/2 + O(n) processors, rather than a square array. Also, it is
possible to accumulate the transformations (i.e., to compute the matrix Q of
Section 2) using the same array of processors.

The concept of band halving can be applied to the reduction of a general
n X n matrix to upper Hessenberg form as well as to the reduction of a
triangular matrix to bidiagonal form. By a straightforward extension of our
method both problems can be solved in time O (n log n) on a two-dimensional
array of n® processors.

We have shown that certain matrix reductions which are usually performed
as a preliminary step before application of the QR algorithm can be done in
time O(n log n) on a systolic array. However, as mentioned in Section 1, it
is not clear if this is the best approach to the solution of eigenvalue problems
on systolic arrays. Iterative methods such as the Jacobi method of [2, 3],
which do not require any preliminary reductions, are certainly much simpler
and thus more easily implemented.

276 BOJANCZYK AND BRENT

We conjecture that the bound O(n log n) is best possible, i.e., that any
parallel algorithm which tridiagonalizes a symmetric matrix by the applica-
tion of plane rotations must take time at least Kn log n for some positive
constant K. However, we have not been able to prove this conjecture.

ACKNOWLEDGMENT

We thank Professor H. T. Kung for suggesting the problem and for helpful discussions
during November 1982. We also thank the referees for their comments, which have helped to
improve the clarity of the paper.

REFERENCES

1. Bojanczyk, A., Brent, R. P., and Kung, H. T. Numerically stable solution of dense systems
of linear equations using mesh-connected processors. SIAM J. Sci. Statist. Comput. 5
(1984), 95-104.

2. Brent, R. P., Kung, H. T., and Luk, F. T. Some lincar-time algorithms for systolic arrays.

In Mason, (Ed.). Information Processing 83. North-Holland, Amsterdam, 1983, pp.
865-876.

3. Brent, R. P., and Luk, F. T. The solution of singular-value and symmetric eigenvalue
problems on multiprocessor arrays. SIAM J. Sci. Statist. Comput. 6 (1985), 69-84.

4. Heller, D. E., and Ipsen, 1. C. F. Systolic networks for orthogonal equivalence trans-
formations and their applications. Proc. 1982 Conf. on Advanced Research in VLSI, MIT,
Cambridge, Mass., 1982, pp. 113-122.

5. Kung, 5. Y., and Gal-Ezer, R. J. Linear or square array for eigenvalue and singular value
decomposition, Proc, USC Workshop on VLST and Modern Signal Processing, Nov. 1982,
pp. 89-98.

6. Schreiber, R. Systolic arrays for eigenvalue computation. Proc. SPIE Symp. East 1982, Vol.
341, Real-Time Signal Processing V, Society of Photo-optical Instrumentation Engineers,
1982,

7. Ullman,). D. Computational Aspects of VLSI, Computer Science Press, Rockville, Md.,
1984, Chap. 5.

8. Wilkinson, J. H. The Algebraic Eigenvaiue Problem. Oxford Univ. Press (Clarendon),
London/New York, 1965.

