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Abstract

This paper concerns the computation of the singular
value decomposition using systolic arrays. Two different
linear time algorithms are presented.

Introduction

Perhaps the most important factorization of a given
m X n matrix A (m>n) is its singular value decomposi-
tion (SVD):

A=UTVT, (1)

where the matrices U (mXm) and V (nXn) are
orthogonal, and the matrix ¥ (m Xn) is nonnegative
diagonal. For details on applications of the SVD see
Golub and Luk! and Golub and Van Loan®. The best
sequential SVD algorithm { due.to Golub ) is coded in
LINPACK?®. Recently, there has been much interest in
computing the SVD using systolic arrays, principally due
to the needs of real time signal processing ( Bromley and
Speisert ). SVD arrays are presented in Brent and Luk?®,
Brent, Luk and Van Loan®, Finn, Luk and Pottle"', Heller
and Ipsen®, Luk?, and Schreiber®.

The [(astest SVD algorithms ( effectively linear
time ) are the Jacobi procedures of Brent et al.5 and
Luk®. Jacobi-type methods are natural for matrix com-
putations using processor arrays: they have been pro-
posed for the symmetric eigenvalue decomposition by
Brent and Luk®, for the QR-decomposition by Luk!!, and
for the Schur decomposition by Stewart!?. In addition,
the methods used for finding eigenvalues and singular
values on the first parallel computer, the ILLIAC IV,
were also of the Jacobi type ( Luk!® and Sameh!t ).
Unfortunately, Jacobi-SVD algorithms are applicable
only to square matrices. For an m Xn matrix A, an
obvious strategy is to first compute its OQR-
decomposition (QRD):

—)

where the matrix @ (m Xm) is orthogonal and the
matrix R (n X n) is upper triangular, and then apply an

SVD procedure to R. This approach is particularly suit-
able for the case where m>>n ( of. Chan!® ). QRD-
arrays have been thoroughly studied; see Ahmed,
Delosme and Morf'®, Bojanczyk, Brent and Kung!”, Gen-
tleman and Kung!®, Heller and Ipsen!®, Johnsson,
Luk!! and Sameh®!. However, the interfacing of QRD
and SVD arrays can be a difficult problem. In fact, the
QRD algorithm in Luk!! is the only algorithm imple-
mentable on the square SVD array of Brent et al.’
Recently, Luk® presents the only triangular processor

array that can compute both the QRD and the SVD.

The purpose of this paper is to survey the two
linear-time SVD methods®? and their associated proces-
SOT arrays.

v itio

The classical method of Jacobi uses a sequence of
plane rotations to diagonalize a symmetric matrix A. Let
us denote a Jacobi rotation of an angle # in the (i,j)
plane by J(¢,7,8) = J, where 1 <j. The matrix J is the
same as the identity matrix except for four strategic ele-
ments:

Ji=c ,J; =3, (3)
Ji=-8 J;=c,
where ¢ = cosf and s = sind. Setting B = JT AJ, we
get
T
[bﬁ b;,-‘l [.: 3] l“ﬁ' “i_fl[ ¢ s
= 4
by by -8 ¢l lay a;0l-s ¢ (4)
If we choose the cosine-sine pair (¢,s) such that
biy = b = a;(¢*8%) + (g5-a;)es =0, (5)

then B becomes “more diagonal” than A in the sense
that

of [(B)=of[(A) - 2a3, (6)
where

of [IC) = chq for C = (c,,) - (7)
préq



Jacobi methods for the symmetric eigenproblem are
of interest because they lend themselves to parallel com-
putations. Brent and Luk® have developed a square pro-
cessor that can diagonalize an n X n symmetric matrix in
effectively O(n) time. It may seem that software (or
hardware) for the symmetric eigenvalue problem can be
used to solve the SVD problem. For example, we may
compute the eigenvalue decomposition

VIATA)V = diaglef, - - - ,02). (8)

where V ={v,, - -.v,) Iis orthogonal and the o;
satisfy

oz 2o, >0 =" =a,=0, (9)

with r = rank(A ). We next calculate the vectors
w = (/o)A (i=1, 1), (10)

and determine the others: {u, ,, - - ,u,} so that the
matrix U/ = (uy, - - * ,u,,) is orthogonal. The factoriza-
tion UTAV = diag(cy, - - - ,0,) gives an SVD of A.
Thus, one can theoretically compute an SVD of A via an
eigenvalue decomposition of AT A. Unfortunately, well-
known numerical difficulties are associated with the
explicit formation of AT A.

A way round this difficulty is to apply the Jacobi
method implicitly. This is the gist of the “one-sided”
Hestenes® approach in which the matrix V is deter-
mined so that the columns of AV are mutually orthog-
onal. Implementations are discussed in Luk!® and in
Brent and Luk®. In the latter reference a systolic array is
developed that is tailored to the method. However,
inner products of m-vectors are required for each (¢,s)
computation. Because of this, the speed of their parallel
algorithm is effectively O(mn) for a linear array of O(n)
processors, and O(nlogm) for a two-dimensional array
of O(mn) processors with some special interconnection
patterns for inner-product computations. Another draw-
back of the one-sided Jacobi method is that it also does
not directly generate the vectors u, ., ' ' ,u4,. This is
an inconvenience in the systolic array setting since one
would need a special architecture to carry out the
matrix-vector multiplications in (10).

Another approach to the SVD problem is to com-
pute an eigenvalue decomposition of the
(m+ n)X(m+ n) symmetric matrix

o IO .-{]
L= AT o (11)
Note that if
O Al u
|:17 0] = 0 [y} (12)
then A 74y = o®v and AATu = o®u. Thus, the

eigenvectors of C' are “made up" of the singular vec-
tors of A . It can also be shown that the spectrum of
" is given by

MC)={xo,. ", 20,.0,---,0}. (13)

The disadvantages of this approach are that C has
expanded dimension and that recovering the singular
vectors may be a difficult numerical task. In addition,
the case of rank(A )< n requires extra work to generate

R T

To summarize, it is preferable from several different
points of view nof to approach the SVD problem as a
symmetric eigenvalue problem.

Two-by-two SVD

The basic tool in a Jacobi-SVD method is the 2x 2
plane rotation

cosf sind
J8) = |_

sinf cosf) (14)

as the basic problem concerns the diagonalization of a
2X 2 matrix by the rotations J(#) and K(¢):

w

z d; 0
J(ﬂ}"“‘y JK{m = [0 dy) - (15)
A two-stage procedure is adopted. First, find a rotation

S{¥) to symmetrize B:

w T

y - (16)

3

s | .

If z=y we choose =0, otherwise we compute
w4z
-y
siny = Signle) (17)

1+ p*

cosy = p siny .

= ctny

Second, diagonalize the result:

d, 0
P9 I
= T AR
ko [? Jreer = |, del : (18)
Suppose 70 ( else choose either p=0 or p=x/2 ). It is
well known that ¢ = tan¢ satisfies the quadratic equa-
tion:

t2+ 2pt-1 =0, (19)
where

r-p
9

p= = ctno . (20)

The two solutions to (19) are

¢ = —sign(p)
lo |+ V1+p°
cosg = L (21)

Vit

sing = { coso



and
t = -sign(p) [ lp|+ V1+ 7],
1
1+ ¢2
sing =t coso .

cosg = (22)

The angle ¢ associated with (21) is the smaller of the
two possibilities; it satisfies 0 < [@| < 7/4, whereas
the one associated with (22) satisfies =/4 < |¢| < 7/2.
We refer to a rotation through the smaller angle as an
“inner rotation” and one through the larger angle as an
“outer rotation". The ‘‘inner rotation™ is chosen in
Brent et al.’ and the “outer rotation” in Luk®. If the
given matrix is diagonal ( z=y=0) then an “inner
rotation” means ¢==0 and an “outer rotation" implies
o=m/2. In the former case the matrix stays unchanged,
whereas in the latter case the singular values are inter-

changed:
0 -1)fw O){ 0 1 : 0
ll 0”0 :]I—l o) = [0 wl' (23)
Finally. J{#) is given by
JOT = K@) TswT, (24)
ie.d=0+ ¢.

By solving an appropriate sequence of 2X2 SVD
problems, we compute an SVD of a general n X n matrix
A. The Jacobi transformation is

Ty + A~ JlAK; (25)

iy

where J;; and Kj; are rotations in the (1,j) plane chosen
to annihilate the (¢,;) and (j,7) elements of A. As in the
symmetric case, the transformation T,; will produce a
matrix B satis{ving

of [(B) = of f[(A) -1} -r], (26)

i.e.. the matrix B is more “diagonal” than A. The value
of (i.j) is determined according to some ordering, to be
determined such that all the off-diagonal elements will be
annihilated once in any group of n(n-1)/2 rotations
( called a *sweep” ). A well known example is the
cyclie-by-rows ordering, illustrated here in the n =4 case:

(£.J) = (1,2),(1,3),(1,4),(2,3),(2,4),(3,4). (27)

A Jacobi-5VD algorithm for 4 is simply

Algorithm SVD.

do until convergence
for each (f.j) according to

some preferred ordering
A—=JT4K; . 0

By convergence we mean that the parameter of f(4) has
fallen below some pre-selected tolerance. However, it is
difficult to monitor of f{.A) in the settings of parallel

computations. Since convergence is fast { ultimately qua-
dratic ) it is a usual practice to stop iterations after a
sufficiently large number { say ten ) of sweeps.

Square arrav

A “parallel” ordering that allows |n/2] simultane-
ous rotations was introduced by Brent and Luk®. Their
new ordering is amply illustrated by the n = 8 case:

(p.g) = (L2),(3,4),(56),(7.3),
(14),(2.6),(3.8) . (5,7),
(16), (4.8),(2,7), (3,5),
(1,8), (6,7) , (45) , (2,3),
(1,7),(85),(6,3), (42),
(1,3),(7,3), (8,2), (6,4) ,
(1,3), (5.2), (7.4) , (86) .

Rotation pairs associated with each “row™ of the above
ordering can be calculated concurrently. Brent et al.®
propose a square array of O(n?) processors implementing
a parallel SVD algorithm for an n X n matrix 4:

Algorithm SVDI1.

do until convergence
for each (r,;) according to

the ‘‘parallel” ordering
A — Jl'JT A Kl; .
{ “inner rotations' are used } O

Details on the processor arrdy are given in Brent et al.>®
Important points worth emphasizing are that only
nearest neighbor connections are required, that broad-
casting can be avoided through a staggering of computa-
tions, and that one sweep of the algorithm is implement-
able in time O(n).

Numerical experiments were performed on a VAX-
11/780 at Cornell University. Double floating data types
were used: each number is binary normalized, with an &
bit signed exponent and a 57-bit signed fraction whose
most significant bit is not represented. The accuracy is
thus approximately 17 decimal digits. The results are
presented in Table 1. We started with random nXn
matrices whose elements came [rom a uniform distribu-
tion in the interval (-1,1); we stopped when the parame-
ter of f(A) had been reduced to 107'? times its original
value. The rate of convergence was quadratie,
confirming theoretical predictions, and only eight or
fewer sweeps were required for n <200. The SVD of an
nXn matrix is thus computable in effectively O(n)
time.



Table 1. Average Number of Sweeps
Required by Algorithm SVD1

n trials | #sweeps
10 | 1000 4.55
20 100 5.54
30 100 6.09
40 100 6.40
50 100 6.72
20 30 7.30

100 10 7.56

150 3 7.7

200 1 8.10
Triangular array

Luk® proposes a triangular processor array that
directly computes an SVD of a rectangular matrix. The
associated SVD algorithm has two stages. First, a QR-
decomposition is computed of A as it is fed into the
array. This procedure is quite similar to that of
Gentleman-Kung!®. A major difference is that Luk per-
forms 22 QRDs, whereas Gentleman and Kung annihi-
late individual elements. Second, a Jacobi-SVD algo-
rithm is applied to the resultant triangular matrix. The
pivot block is restricted to contiguous diagonal elements,
so as to preserve the triangular structure of the matrix.
“Outer rotations’ are required to ensure that all off-
diagonal elements will be annihilated. Details on the
array are presented in Luk®. Again the important points
concern the nearest neighbor connecticns, the avoidance
of broadcast, and the completion of a sweep in O(n)
time. We present here the associated SVD algorithm for
an n X n upper triangular matrix A:

Algorithm SVD2.
do until convergence

begin
{ “*outer rotations” are required }
fort =1,3,---(f odd ) do

'1‘_J||+l {KIS-PI‘

fori =2,4,---(f even)do
A= Jh A K
end. ||

Simulation experiments were performed under the same
conditions as reported in the previous section. However,
we started with upper triangular matrices and scaled
them so that initially of f(A) = 1. The parameter ¢
represents the machine precision and approximately
equals 1.4X 10°'", The ultimate quadratic convergence
rate of a Jacobi algorithm is nicely exhibited in Table 2.

Table 2. Of f (A) After Each Sweep
of Algorithm SVD2

Sweep

" 1 9 3 4 5
4 le-01 1e-03 | 2e-09 < €

6 | 3e-02 | 4e-05 | le-11 < €

8 le-01 | 4e-04 le-09 < €

10 | 1e-01 | 1e-02 | 3e-07 <€

12 | 2e-02 | 2e-03 | 505 | le-11 < ¢
14 | 5e-02 | 2e-03 | 2e-05 | le-10 < €
16 | 3e-02 | 1e-03 | 6e-06 | 3e-11 < €
18 le-01 1le-03 | 4e-06 | 2e-10 < €
20 | 9e-02 | 5e-03 | 2e-04 | 2e-07 | le-13

Missized problems

We conclude with some remarks about the handling
of SVD problems whose dimensions differ from the
effective dimension of the processor array. To fix the
discussion, suppose that A is an n Xn matrix whose
SVD we want and that our array can handle SVD prob-
lems with maximum dimension V.

If n<N, it is natural to have the array compute
the SVD of

. A0
A= 0 0): [28]
so that
UTAV = diagloy, - - ,0,,0, - - - 0} . (29)
Brent et al.’ show how one may take the precaution to
ensure
. Uuo
U=0[ and V_OI (30)
whence UTAV = diag(oy, .. .,0,). Let us point out

that an SVD procedure needs not produce matrices U
and V with the above block structure in the case
rank(A) = rank(A) < n. For example, if ¥ =3 and

11 .
A = [I ll , then one of the infinitely many SVDs of A

is
o "DT
p p~ p* 110pp' V2 00
p -p> -p*l 110 - —pl ‘000,{31}
0 -p p 000 -p 000

where p=1/v2. Further computations are thus neces-
sary before an SVD of A can be obtained.

Next, let us examine how oversized SVD problems
may be handled. Partition the matrix A so that



A 0 Al

where each A;; is N/2XN/2. ( Assume that N, the
dimension of the systolic array, is even so that
n=kN /2. ) One way to compute an SVD of 4 is a
“block’ Jacobi scheme®, In this scheme we repeatedly
pick (f,7) satisfying 1</ < j<k and use an SVD array
to solve the N XN problem:

Us Up7 l-‘li; A.‘_;”V.'.‘ Vii

Up Uyl Wy A5 W5 Vil ™
We then construct an n X n orthogonal matrix U so that
it is equal to the identity matrix except for the four stra-
tegic blocks in the (f.¢), (f,7), {7,7) and (j,j) positions.
Those blocks assume the values as given by (33). An
n X n orthogonal matrix V is constructed in an identical

manner. Then the matrix B = UTAV will have the
property that

of [(B) = of [(A) - | 45117 - lA; 117
- of f(Az) - of [(Aj;) . (34)

The indices (r,7) may be chosen according to either
Algorithm SVDI1 or SVD2. We can exploit a block sys-
tolic array, where the diagonal arrays perform SVDs and
the off-diagonal arrays matrix-matrix multiplications.
The blocks A;; will move around an array of arrays in
exactly the same fashion as the elements a;; do in an
array of processors. This “‘block” Jacobi technique will
be studied in a future report.

D, 0
0 Dj]. (33)
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