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We describe an algorithm that efficiently implements the first-fit strategy for dynamic storage 
allocation. The algorithm imposes a storage overhead of only one word per allocated block (plus a 
few percent of the total space used for dynamic storage), and the time required to allocate or free a 
block is O(log W), where W is the maximum number of words allocated dynamically. The algorithm 
is faster than many commonly used algorithms, especially when many small blocks are allocated, and 
has good worst-case behavior. It is relatively easy to implement and could be used internally by an 
operating system or to provide run-time support for high-level languages such as Pascal and Ada. 
A Pascal implementation is given in the Appendix. 

Categories and Subject Descriptors: D.4.2 [Operating Systems]: Storage Management-allocation/ 
deallocation strategies; main memory; D.4.8 [Operating Systems]: Performance-modeling and 
prediction; simulation; E.2 [Data]: Data Storage Representations-contiguous representations 

General Terms: Algorithms, Languages, Performance 

Additional Key Words and Phrases: Dispose, dynamic memory management, dynamic storage 
allocation, first-fit strategy, heaps, new, trees 

1. INTRODUCTION 

The dynamic storage allocation problem is to maintain a region of memory so 
that requests for the allocation and subsequent liberation of blocks of various 
sizes can be met as far as possible. The problem arises in operating systems 
(where the blocks are usually large), in simulation (where they are usually small), 
and in providing support for the run-time facilities of some programming lan- 
guages, for example, the “new” and “dispose” procedures of Pascal [8]. A surpris- 
ingly large number of current Pascal systems fail to implement “dispose,” 
implement it inefficiently, or use a stack discipline instead of genuine dynamic 
storage allocation. 

It is important to distinguish between a strategy for dynamic storage allocation 
and an algorithm designed to implement a particular strategy. A strategy specifies 
which blocks are allocated, but not how they are allocated. Different algorithms 
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First-Fit Strategy for Dynamic Storage Allocation 389 

implement the same strategy if they always satisfy identical sequences of requests 
by allocations at identical sequences of memory locations and differ only in the 
time and space overheads required to satisfy the requests. 

Several dynamic storage allocation strategies have been proposed and compared 
[3,9,12,14,16]. The result of such a comparison depends greatly on the assumed 
distribution of block sizes, block lifetimes, and details of the testing procedure. 
The theoretical worst-case behavior of several strategies has also been studied 
[ 151. For our purposes it is sufficient to note that the “first-fit” strategy compares 
well with other strategies, including the “best-fit” and “buddy” strategies, both 
empirically and in the worst case. In the comparisons, the first-fit strategy 
emerges either as the best strategy or close to the best, depending on the precise 
assumptions and testing procedure. 

This paper is concerned with algorithms for implementing the first-fit strategy. 
The obvious algorithm [12, Alg. A] maintains a singly linked list of free blocks 
and has to search about halfway along this list (on average) to allocate a block, 
so it is slow if the number of free blocks is large. A common “improvement” [12, 
ex. 61 avoids this difficulty at the expense of not implementing the first-fit 
strategy at all: Instead it implements a “next-fit” strategy that is inferior to first- 
fit for certain distributions of block sizes and lifetimes, for example, distributions 
(a)-(d) of Section 5 (see also [l] and [3]). In Section 3 we describe an algorithm 
that implements the pure first-fit strategy, but is much faster than the obvious 
algorithm when the number of free blocks is large. The worst-case performance 
of the algorithm is discussed in Section 4, and some empirical results are given 
in Sections 5 and 6. A secure implementation is described in Section 7. 

McCreight [13, ex. 6.2.3.301 has devised theoretically good algorithms, based 
on balanced binary trees, for the first-fit and best-fit strategies. Our new algo- 
rithm is faster and easier to implement than McCreight’s algorithms and has 
other advantages (mentioned in Section 4) when small blocks are common. 

Stephenson [18] has recently suggested algorithms for the first-fit and related 
strategies. Stephenson’s algorithms use “Cartesian” trees [19] that may become 
unbalanced, so the worst-case performance of our algorithm is better than that 
of Stephenson’s algorithms. McCreight’s and Stephenson’s algorithms for the 
first-fit strategy are described briefly in Section 2. 

2. THREE KNOWN ALGORITHMS FOR THE FIRST-FIT STRATEGY 

A simple algorithm, which we call “Algorithm A,” is given in [12, Algs. A and B]. 
Each free block p contains two fields: 

size(p): the number of words in the block, and 
link(p): a pointer to the next free block. 

Here, p and link(p) may be memory addresses, array indexes, or reference 
variables. For simplicity we assume that they are memory addresses. We also 
assume that a “word” is the basic unit of storage, where a word is large enough 
to store an address. If a block of n words is required, we simply scan the list of 
free blocks from the beginning, until either a block p is found with size(p) > n 
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or the end of the list is reached (when no sufficiently large block is available). If 
size(p) > n, the block is split into two smaller blocks, of sizes n and size(p) - n. 
(There may be a lower bound on the size of a block that can be created by 
splitting, but we ignore this complication here.) The block of.size n is removed 
from the free list and made available for use. For details see [12, Alg. A]. 

When a block p is freed, it is necessary to add it to the list of free blocks 
and to merge it with its left and/or right neighbors if they are free. This is 
possible if 

(1) the free list is kept in address order (i.e., link(p) > p if p and link(p) are the 
addresses of successive blocks on the free list); and 

(2) the size of a block to be released is known. The simplest way to ensure this 
is to reserve a size field in allocated blocks as well as in free blocks. 

Let F denote the average number of free blocks. We assume that an equilibrium 
has been reached, so it makes sense to talk about averages. Algorithm A requires, 
on average, the inspection of about F/2 blocks when a block is allocated or freed. 
Algorithms that use tag fields or doubly linked lists may be slightly faster than 
Algorithm A, but they still require time O(F) on average to allocate a block 
[12, Alg. C and ex. 191. 

McCreight [13, ex. 6.2.3.301 has given a (theoretically) more efficient first-fit 
algorithm. His algorithm, which we call “Algorithm M,” uses a height-balanced 
binary tree (i.e., an AVL tree) with each free block corresponding to a node in 
the tree. A field is reserved in each node to indicate the size of the largest free 
block corresponding to a node in the left subtree attached to the given node. A 
disadvantage of Algorithm M is that the smallest block must be large enough to 
hold at least five fields (two pointers to left and right descendants, a balance 
factor indicating the difference in height between the left and right subtrees, and 
two size fields). A practical implementation would probably maintain three 
additional fields (two pointers to left and right neighboring free blocks and an 
“up” pointer to avoid the need for a stack when traversing the tree). Thus, 
Algorithm M is not suitable in applications where small blocks are common or 
where, to avoid the need for “actual” and “requested” size fields, allocated blocks 
must be exactly the size requested. 

The time required by Algorithm M to allocate or free a block is O(log F), 
theoretically better than the O(F) of Algorithm A. However, the constant hidden 
in the “0” notation is rather large (see Section 5), and the implementation of 
Algorithm M is not a trivial task. The algorithm described in Section 3 avoids 
these difficulties while retaining a logarithmic worst-case time bound. 

Stephenson [18] has suggested an algorithm, which we call “Algorithm S,” in 
which free blocks are maintained as nodes in a Cartesian tree [19]; that is, for 
each block N in the tree, 

(1) address of descendants on left (if any) < address of block N < address of 
descendants on right (if any), and 

(2) size of descendants on left (if any) 5 size of block N 2 size of descendants 
on right (if any). 
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Stephenson’s algorithm works well, with less overhead than McCreight’s, so long 
as the Cartesian tree remains well balanced. Unfortunately, it is not possible 
to guarantee this. In the worst case, the Cartesian tree could degenerate to a 
list, and the time required to allocate or free a block would be O(F), as for 
Algorithm A. 

3. A NEW ALGORITHM FOR THE FIRST-FIT STRATEGY 

In this section we describe a new algorithm, “Algorithm N,” for implementing 
the pure first-fit strategy. Suppose that W contiguous words are avilable for the 
dynamic storage area. Choose S to be a power of two in the range W 5 cS < 2 W 
for some suitable constant c; for example, c = 200 (see Section 4). The dynamic 
storage area is split into S segments numbered 0, . . . , S - 1, each (except possibly 
the last) containing f W/S1 words. 

The algorithm maintains two arrays 

PA: array [0 . . . S - l] of integer; (“pointer array”) 
ST: array [0 . . . 2S - l] of integer; (“segment tree”} 

so that the following relations hold: 

PA[i] = 
{ 

(address of the first block starting in segment i) - 1, or 
w 

if there is no such block. 

1 

max(ST[2i], ST[21. + I]) if 0 < i < S, 
0 if no block starts in segment i - S, S zz i < 2S, 

ST[i] = ’ 
if some block but no free block starts in segment i - S, 

SzGi<BS, 
1 + (size of largest free block starting in segment i - 5’) 

if some free block starts in segment i - S, S I i < 2s. 

Thus, ST[l], , . . , ST[2S - I] is a “heap” in the sense of [13, Sect. 5.2.31, though 
we shall avoid using the word heap as it has a different meaning in the context 
of dynamic storage allocation. We may think of ST[l], . . . , ST[SS - l] as a 
perfectly balanced binary tree of 2S - 1 nodes with implicit links. This is 
illustrated for the case S = 4 in Figure 1. 

There is one “control” word of overhead for each block. We adopt the conven- 
tion that, for a block of size s starting at address p + 1, word p is the control 
word for the block, and words p + 1, . . . , p + s are available for use; the control 
word for the next block (if any) is word p + s + 1. By “block p” we mean the 
block whose control word is at address p. We say that a block starts in a given 
segment if its control word is in that segment. 

The control word for a block contains a signed integer; the sign is positive if 
the block is free and negative if the block is allocated. The absolute value of the 
control word is the number of words occupied by the block and its control word, 
that is, s + 1. Thus, if V[p] denotes the contents of word p, a block starting at 
address p + 1 has size abs( V[p]) - 1 and is free if V[p] > 0, and the next block 
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(if any) has its control word at address p + abs (V[p]). To find the first free 
block of size at least n - 1 words, we have (in pseudo-Pascal): 

if ST[l] < n then (error exit: there is no free block large enough]; 
i := 1; 
while i < S do (descend segment tree, keeping left where possible) 

if ST[2*i] 2 n then i := 2*i else i := 2*i + 1; 
p := PA[i - S]; (the required block starts in segment i - S, and p is the 

address of the control word of the first block in segment 
i - S] 

while V[p] < n do p := p + abs( V[p]); 
{scan until block found in segment i - S) 

(now the required block starts at address p + 1) 

Before allocating a block p of n - 1 words, it is necessary to split it into two 
blocks if V[p] > n. To do this we set 

V[p + n] := V[p] - n; 
V[p] := n 

and update the arrays PA and ST. The actions required are a combination of 
those described below, so we omit the details and assume that V[p] = n. To 
allocate a block p in segment i - S, we set 

V[Pl := -V[Pl 

and update the array ST as follows: 

{compute new value mx for ST[i]] 
q := PA[i - S]; (address of control word of first block in segment i - Sl 
if q E segment (i - S) then mx := 1 else mx := 0; 
while q E segment (i - S) do {look for largest free block in segment i - S 1 

begin 
mx := max(mx, V[q]); 
q := q + abs(V[q]) 
end; 

(now update ST[i] and its ancestors in the segment tree] 
ST[O] := 0; (sentinel to ensure that the while loop terminates) 
while ST[i] > mx do 

begin 
ST[i] := mx; 
i := i div 2; {ancestor) 
mx := max(ST[2*i], ST[2*i + 11) 
end 

When a block p in segment i - S is freed, it must be merged with its left 
and/or right neighbors if they are free, and PA and ST must be updated 
appropriately. There are several cases, depending on whether the neighbors are 
in segment i - S or not, but everything is straightforward once the block q 
preceding block p is found. This may be done in O(log 5’) operations by the 
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following algorithm: 

j := i; 
if PA[i - S] = p then 

begin [block p is the first block in segment i - S) 
while ST[ j - l] =Odoj:=jdiv2; (ascend segment tree) 
j := j - 1; {move left} 
while j C S do (descend segment tree, keeping right if possible) 

if ST[2*j + l] > 0 then j := 2*j + 1 else j := 2*j 
end; (now the predecessor of block p lies in segment j - S) 

q := PA[ j - S]; (block q is the first block in segment j - S) 
while (q + abs( V[q 1) # p do q := q + abs( V[q]) 
{now block q is the predecessor of block p) 

The algorithm assumes that block p has a predecessor, so we allocate a “sentinel” 
block of length 0 at the start of segment 0. This is illustrated in Figure 1. Note 
that a similar algorithm can be used to find the first word of a block, given the 
address of an arbitrary word within the block. 

A Pascal implementation of Algorithm N is given in the Appendix. The Pascal 
implementation includes some refinements that were not mentioned in the 
description above. For example, S is a variable (initially l), so the overheads of 
initializing and searching large segment trees are avoided if only a small fraction 
of the W words available are actually used. S is doubled when necessary, until it 
attains its maximum value S,,, ( w rc h’ h corresponds to S in the description above; 
i.e., W 5 cS,,, < 2 W). The procedures of interest to users are blnew (which 
allocates a block), bldisp (which frees a block), blsize (which returns the size of 
a block), and blinit (which performs initialization). 

4. WORST-CASE ANALYSIS OF ALGORITHM N 

In this section we consider the worst-case space and time requirements of 
Algorithm N and compare Algorithm N with Algorithms A, M, and S (see Section 
2). When comparing the space overheads of different algorithms, we count any 
space used outside the W words reserved for the dynamic storage area (e.g., the 
arrays PA and ST used by Algorithm N), as well as any reserved fields in the 
dynamic storage area (e.g., the control words used by Algorithm N). We do not 
count the space made available in allocated blocks (since this is common to all 
dynamic storage allocation algorithms) or the space occupied by free blocks (even 
if the free blocks are incorporated in some data structure, e.g., a tree or linked 
list). Thus, we are counting “internal” but not “external” fragmentation [16]. 
The external fragmentation depends on the dynamic storage strategy but not on 
the algorithm that implements it. 

Suppose that R blocks have been allocated by Algorithm N and that S is as in 
Section 3. The space required by Algorithm N is 3S + R words (3s for the arrays 
PA and ST, and one control word per allocated block). Recall that CS < 2 W, so 
if c = 200 the space required for the arrays PA and ST is less than 3 percent of 
the space (W words) reserved for the dynamic storage area. 

Let s,in be the size of the smallest block allocated (excluding the initial sentinel 
block of size 0). We can assume that S,in 2 1. Thus, the space overhead caused 
by the control words for each block is R 5 W/(S,i, + 1) 5 W/2 words. Although 
substantial if there are many small blocks, this overhead is common to all the 
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first-fit algorithms considered-they all need to know the size of a block when it 
is released, so a size field is generally necessary. (In some applications, e.g., 
allocation of nonvariant records in Pascal, the size can be determined at compile 
time.) 

We now consider the time required by Algorithm N to allocate or free a block. 
The number of blocks starting in any segment is at most rrW/Sl/(s,i, + 1)1, 
which is bounded by fc/(smin + 1)l I rc/21. To allocate or free a block requires at 
worst a small number of scans along the linked list of blocks in a segment and a 
smaller number of traversals of a branch of the segment tree. Thus, the number 
of operations is O(log S) + O(1) = O(log W). (In fact, if S varies as in the 
implementation given in the Appendix, this bound may be reduced to 
Wlog Max), where W,,, - -Z W is the maximum number of words actually used 
in the dynamic storage area.) 

For Algorithms A and S, the worst-case number of operations required to 
allocate or free a block is O(F), where F is the number of free blocks. F is of 
order W if the average block size is small and the loading is heavy. The average 
number of operations required by Algorithm A in most circumstances is not 
much better than the worst case, but for Algorithm S the average behavior may 
be appreciably better (see [18]). 

For Algorithm M the worst-case (and average) number of operations required 
to allocate and/or free a block is O(log F) = O(log W). However, the constant 
hidden by the “0” notation is considerably larger than for Algorithm N (see 
Section 5). 

5. IMPLEMENTATION AND COMPARISON OF ALGORITHMS N AND A 

Algorithm N has been implemented in both Pascal and FORTRAN. The Pascal 
implementation is given in the Appendix. It has been used as part of a module 
that provides dynamic storage allocation (more efficiently than “new” and 
“dispose”) for Pascal programs on a VAX@ running under VMS (see [6]). The 
FORTRAN implementation was written as part of a package intended to make 
dynamic storage allocation readily available to FORTRAN library routines. 

The motivation for the development of the FORTRAN dynamic storage 
allocation package was that it was needed to provide storage management for a 
multiple-precision interval arithmetic package and a single stack, as used in [7], 
was insufficient. 

To provide a benchmark, we also implemented Algorithm A. The implemen- 
tations were tested with several distributions of block sizes and lifetimes, using 
a “must keep going” testing procedure [9], on Univac 1100/82 and VAX 11/750 
computers. As expected, the algorithms both implemented the same (pure first- 
fit) strategy and differed only in their space and time overheads. We found that 
Algorithm A was slightly faster than Algorithm N if there were few blocks 
allocated, but Algorithm N was faster if there were more than about 100 allocated 
blocks (or about 50 free blocks; note the “fifty percent” rule [12,17]). Some 
statistics are given in Table I. Results for various other distributions of block 
sizes and lifetimes were similar to those given in Table I. 

@ VAX is a trademark of Digital Equipment Corporation. 
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Table I. Comparison of Algorithms A and N 

Average number 
of free blocks 

Average time to allocate 
and free a blockb 

Ratio of times: 
Distribution” F 

I$ 120 30 

(cl 480 
Cd) 1960 

Algorithm A Algorithm N Algorithm N/Algorithm A 

0.94 2.40 1.17 1.53 0.64 1.24 

8.09 1.73 0.22 
32.08 1.92 0.06 

’ Distribution (a) has blocksize uniform in 1 10, lifetime in 1 100, with probability 0.8; blocksize 
uniform in 10 . 100, lifetime in 1 . . 100, with probability 0.1; and blocksize uniform in 100 . 1000, 
lifetime in 100 . . 200, with probability 0.1. Distribution (b) is the same as (a) except that lifetimes 
are multiplied by 4. Similarly for distributions (c) and (d), with factors of 16 and 64, respectively. In 
all cases the block sizes are in bytes but are rounded up to the next multiple of 4 to give an integral 
number of words (each of 4 bytes). 
h Times are in milliseconds, based on l,OOO,OOO trials on a VAX 11/750. For Algorithm N we used 
the Pascal implementation given in the Appendix with W = 219 - 1 words (each of 4 bytes) and 
S = 2” segments so each segment except the last was 128 words (i.e., 512 bytes or 1 page). In fact, 
W,,, < 2i8, so at most 2i1 segments were used. 

The almost linear time required by Algorithm A (as a function of F, the number 
of free blocks) and the logarithmic time required by Algorithm N are evident 
from the entries in Table I. Because of its complexity, Algorithm M has not been 
implemented, but timing of a priority queue implementation using “leftist trees” 
[13, Sect. 5.2.31, which are easier to update than AVL trees, indicates that our 
implementation of Algorithm N would be at least twice as fast as a similar 
implementation of Algorithm M. This is plausible because the tree used by 
Algorithm N is always perfectly balanced, and links do not need to be main- 
tained between its nodes (since they are implicit). For similar reasons we would 
expect Algorithm S to be no faster than Algorithm N, even if the Cartesian tree 
remained well balanced. In the worst case, Algorithm S could be about as slow as 
Algorithm A. 

6. A REALISTIC TEST OF ALGORITHM N 

The block size and lifetime distributions used in Section 5 are artificial. Recently 
Bozman et al. [3] compared several dynamic storage allocation strategies using 
distributions obtained from monitoring large time-sharing systems. For a realistic 
test of Algorithm N, we used two of Bozman’s empirical distributions: 

(1) CAMBRIDG, using data obtained on an IBM 158 UP serving an average of 
40-50 logged users at the IBM Cambridge Scientific Center in Cambridge, 
Massachusetts; and 

(2) YKTVMV, using data obtained on an IBM 3033 MP serving an average of 
450-540 logged users at the IBM Thomas J. Watson Research Center in 
Yorktown Heights, New York. 

In both cases the block sizes are multiples of 8 bytes in the range 8 to 4096 bytes. 
For each block size 8s, the interarrival times and lifetimes are modeled by 
independent exponentially distributed random variables with empirically deter- 
mined means IAT and HT(s), respectively. The values IAT and HT(s) are 
given in Tables 9 and 10 of [3]. For the CAMBRIDG data, the mean number of 
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Table II. Performance of Algorithm N with Bozman’s distributions 

Mean items visited 
Distribution Algorithm per request 

CAMBRIDG Algorithm N 12.4 
Algorithm A” 213.3 

YKTVMV Algorithm N 12.5 
Algorithm A 1678.9 

’ Results for Algorithm A are from Bozman et al. [3]. 

Mean items visited Storage 
per release efficiency 

9.9 0.86 
212.1 0.84 

9.7 0.89 
1591.1 0.93 

requests per second for a block of storage is 198, the mean total size of current 
requests is 306K bytes, and the mean number of allocated blocks is 2356. For the 
YKTVMV data, these statistics are 1034, 2995K bytes, and 27,334, respectively. 

To facilitate comparison with the results in Tables 3 and 4 of [3], we give in 
Table II the mean number of items visited per request for a block, the mean 
number of items visited per release of a block, and the storage efficiency. These 
terms are defined in [3]; in counting items visited, we have counted the number 
of references to control words in the dynamic storage area (i.e., the array V) but 
not the (comparable) number of references to the pointer array PA and the 
segment tree ST since the latter are likely to be present in the cache on the 
computers considered. “Storage efficiency” is the ratio of space requested to 
space used in the array V (including internal fragmentation due to control words 
and external fragmentation due to gaps between allocated blocks); the space used 
for the arrays PA and ST is not counted but is approximately 2.5 percent for a 
segment size of 512 bytes. 

It is clear from Table II that Algorithm A is quite impractical for use in a large 
system. As Bozman et al. point out, the overhead per request increases roughly 
in proportion to the size of the system. However, Algorithm N is practical because 
the overhead per request increases only logarithmically with the size of the 
system. An even faster algorithm, discussed in [6], is a combination of Algorithm 
A and “subpooling,” that is, keeping a “lookaside” list [2] of free blocks of a few 
popular sizes and resorting to Algorithm A for blocks of other sizes. However, 
the increase in speed may be at the expense of a decrease in storage efficiency 
(see [3, Tables l-31). 

7. A MORE SECURE IMPLEMENTATION OF THE FIRST-FIT STRATEGY 

Algorithm N is insecure in the sense that it fails if the block control words are 
accidentally or maliciously overwritten. To avoid this, we might keep the control 
words in a separate address space that could be protected from modification by 
the user’s process. Algorithm N can easily be modified so that, instead of 
preceding the blocks to which they refer, the control words are kept in a separate 
singly linked list. The modified algorithm uses an additional array 

CWP: array [0 . . S - l] of integer; {control word pointer array) 

that is maintained so that CWP[i] points to the control word for the first block 
(if any) starting in segment i. To find the control word associated with a block 
in segment i, we search the linked list of control words, starting from the control 
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word at address CWP[i]; the addresses of the blocks in segment i are easily 
computed from PA[1’] and the control words as they are scanned. 

The price paid for security is an increase in the space overhead of the algorithm. 
We showed in Section 4 that the space overhead of Algorithm N is 3s + R words. 
The modified algorithm requires an additional S words for the array CWP, 
F control words associated with free blocks (since it is not secure to store these 
control words in the free blocks), and F + R words for the links in the linked list 
of control words, making 4s + 2(F + R) words of overhead in all. Since F + R I 
W/s,;,, the additional overhead is not very significant unless a,in is small. 

8. CONCLUSION 

We have shown that it is possible to implement a good dynamic storage strategy- 
the first-fit strategy-so that 

(1) only one word per allocated block (plus a few percent of the total space) is 
required for “housekeeping” purposes; 

(2) the time required to allocate or free a block does not increase linearly with 
the number of free blocks, but only as O(log W), where the dynamic storage 
area has size W, and 

(3) the algorithm is straightforward and relatively easy to implement, even in a 
low-level language. 

It is not clear whether a similar implementation of the best-fit strategy is 
possible. However, the average behavior of first-fit is usually about as good as 
that of best-fit, and the worst-case analysis clearly favors first-fit [El. First-fit 
also appears to make better use of the available storage space than does the 
buddy system [3, 10-12, 141, unless the block sizes are restricted to favor the 
buddy system. Another advantage of the first-fit strategy is that it tends to leave 
a large free block at the high end of the dynamic storage area, and this space 
may be used for a stack that grows downward. This facility has been included in 
the implementation [5]. Since allocation of space on a stack requires only 
constant time, it is desirable to use a stack where possible. 

APPENDIX. Pascal Implementation of the First-Fit Strategy 

(Pascal procedures implementing first-fit strategy. 
The procedures of interest to users are blnew, bldisp, blsize, and blinit.] 

const w = 52428’7; 

smax = 4096; 
s21= 8191; 

type seg = 0 . . smax; 
erseg = 0 . . ~21; 
address = 0 , . w; 
dtype = record 

(size of dynamic storage area in words, may be in- 
creased or decreased as desired} 

(power of 2, preferably about w/100] 
(2 * smax - 1) 

v: array [address] of integer; (main DS area} 
pa: array [seg] of address; bointer array) 
st: array [enseg] of address; (segment tree] 
s: seg; {segments in use) 
wordsperseg: integer 
end; 

dptr = Idtype; 
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var d: dptr; {Global variable, used by first-fit procedures. 
Note: d could be made an argument of each dynamic storage routine 
to avoid use of a global variable.) 

function blseg (p: address): exseg; 

{Returns d .*a + (index of segment containing address p)) 

begin ~ (blseg) 
with d do blseg := s + (p div wordsperseg) 
end (blseg); 

procedure bldouble; 

(Doubles number of segments actually in use, assuming current number is 
s < smax/2) 

var i, k: seg; 

begin I (bldouble} 
with d do 

begin 
fori:=sto2*s-ldopa[i]:=w; 
k := s; 

repeat 
for i := 0 to k - 1 do 

begin 
st[2 * k + i] := st[k + i]; 
st[3*k+i]:=O 
end; 

k := k div 2 
until k = 0; 

st[l] := st[2]; 
s := 2 * s 
end 

end (bldouble]; 

procedure blfixl (p: address); 

(Does housekeeping necessary if a block with control word u[p] will be allocated or 
merged with a block on its left in a different segment) 

var sister, mx, pj: address; 
pn: integer; 
j: exseg; 

begin - 1 blfixl ) 
with d do 

begin 
j := blseg (p); 
if (u[p] <= 0) or (st[j] <= u[p]) then 

begin 
pj := pa[ j - s]; (index of first block in segment) 
pn := (j + 1 - s) * wordsperseg; (start of next segment) 
if pn > w then pn := w; (handle last segment) 
if pj < pn then 

begin 
mx := 1; {there is a block starting in this segment): 

repeat 
if mx < u[pj] then mx := u[pj]; 
pj := pj + abs(u[pj]) 
until pj >= pn 

end 
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else mx := 0; (no block starting in this segment) 
st[O] := 0; (sentinel] 
while st[j] > mx do 

begin (update segment tree) 
st[j] := mr; 
if odd(j) then sister := st[j - l] else sister := st[j + 11; 
if mx < sister then mx := sister; 
j := j div 2 (go up branch of segment tree) 
end 

end 
end 

end (blfixl ); 

procedure blfix.2 (p: address); 

(Does housekeeping necessary after a block with control word u[p] is freed or merged 
with a block on its right or created by splitting (with p on the right of the split)) 

var up: address; 
j: exseg; 

begin I (blfix:! ) 
with d do 

begin 
j := b.!.seg (p); 
whilej>=2*sdo 

begin 
bldouble; 
j := blseg (p) (s has changed) 
end; 

ifpa[j-s]>pthenpa[j-s]:=p; 
up := u[p]; 
st[O] := up; (sentinel] 
while st[ j] C up do 

begin (go up branch of segment tree] 
st[j] := up; 
j:=jdiv2 
end 

end 
end (blfix2); 

function blpred (p: address): address; 

{Returns predecessor of block p (always exists because of dummy first block); 
p and blpred are indexes of control words) 

var q, qn: address; 
j: exseg; 

begin - (blpred) 
with d do 

begin 
j := bkeg (p); 
if pa[ j - s] = p then 

begin (find rightmost nonempty segment to left) 
while st[j - l] = 0 do j := j div 2; 
j:=j-1; 

whilej<sdoifst[2*j+l]>Othenj:=2*j+lelsej:=2*j 
end; 
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qn := pali - s]; 
repeat (follow chain until reach p) 
q := qn; 
qn := qn + abs(u[qn]) 
until qn = p; 

blpred := q 
end 

end 1 blpred) ; 

function blnew (size: address): address; 

(Returns index of a block of at least size words, or 0 if no such block exists. Note 
that size excludes control word for block and may be zero. blinit must be called to 
perform initialization before calling blnew.) 

var j: exseg; 
n, p, up: address; 
fix1 : Boolean; 

begin (blnew ) 
with d* do 

begin 
if st[l] <= size then 

blnew := 0 (size too large] 
else 

begin (find first segment containing large enough free block) 
n := size + 1; {n is length including control word) 
j := 1; 
while j < s do 

ifst[2*j]>=nthenj:=2*jelsej:=2*j+l; 
p := pa[ j - s]; (index of control word of first block in segment j) 
while u[p] < n do p := p + abs(u[p]); 
(Now p is index of control word of required block] 
up := u[p]; 
u[p] := -n; {flag block as allocated] 
fix1 := (up = st[j]); (blfix2 may change st[j]) 
if up > n then 

begin (split block) 
u[p + n] := up - n; 
if blseg (p + n) > j then 

blfix2 (p + n) (necessary asp + n in another segment] 
end, 

if fix1 then blfirl (p); (necessary to update st here] 
blnew := p + 1 (return index of first word after control word) 
end 

end 
end (blnew]; 

procedure bldisp (ua: address); 

(Disposes of a block obtained using blnew. vu is the index that was returned by 
blnew.] 

var p, pr: address; 
j, jn: exseg; 
pn, up: integer; 

begin (bldisp) 
p := va ,l; (index of control word}_ 
up := -d. u[p]; (block already free if d.u[p] > 0) 
if up > 0 then with d do 

ACM Transactions on Programming Languages and Systems, Vol. 11, No. 3, July 1989. 



402 l FL P. Brent 

begin 
v[p] := up; (flag as free] 
j := bkeg (p); 
pn:=p + up; 
if pn < w then if v[pn] >= 0 then 

begin (next block free, so merge} 
v[p] := up + v[pn]; 
jn := blseg (pn); 
if jn > j then 

begin 
pa[jn - s] := p + v[pJ; 
blfixl (pn) 
end 

end; 
pr := blpred (p); (preceding block] 
if u[pr] >= 0 then 

begin {preceding block free, so merge} 
ubrl := vb-I + W; 
if pa[j - s] = p then 

begin (adjust pointer to first block in segment j) 
pa[j - s] := pr + v[pr]; 
blfixl (p) 
end; 

blfix2 (pr) 
end 

else if v[p] > st[j] then blfix2 (p) 
end 

end (bldisp]; 

function blsize (vu: address): integer; 

(Returns size of a block allocated by call to blnew) 

begin (b.!.sizeJ 
with dA do 

{Error if v[ua - l] C= 0) 
blsize := -(v[va - l] + 1) 

end (bkize); 

procedure blinit; 

{Does initialization of segment tree, etc. 
Must be called before calling any other bl . . . routine] 

var dummy: address; 

begin (blinit) 
new (d!; {get space for dynamic storage area] 
with d do 

begin 
s := 1; (may be increased by bkdouble) 
st[l] := w; 
pa[O] := 0; 
v[O] := w; (one large free block v[l . . . w - 11) 
wordsperseg := (w div smax) + 1; 
dummy := blnew (0) {create dummy block as sentinel] 
end 

end (blinit); 
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