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ABSTRACT

We compare several dynamic storage strategies under the assumption
that they will be used on a computer with virtual memory. ©n such a computer
the total (virtual} memory referenced by a process may exceed the actual
amount of random-access memory avalilable to the process, and it is usually
more important to minimize the number of page faults than the wvirtual
memory regquired by the process. We show that dynamic storage allocation
strategies which work well on computers without virtual memory may exhibit
poor paging behaviour in a virtual memory environment. We suggest some new
dynamic storage allocation strategies which are intended to minimize the
nunber of page faults while keesping the total (virtual) memory used within
reasonable bounds. The new strategies can be implemented efficiently and
are preferable to well-known strategies such as the first-fit strategy if
the blocks being allocated are appreciably smaller than the page size.

Even in the simple case that all blocks are of one fixed size, the new
strategies may be preferable to the widely used strategy of keeping a
singly-linked list of free blocks and allocating them according to a stack

{i.e. last-in, first-out) discipline.

CR Categories and Subject Descriptors:

D.2.4 Programming Languages: Progessors - run-time environments;

D.4.2 Operating Systems: Storage Management - allocation/deallocation s
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1.  INTRODUCTION

Most comparisons of dynamic storage allocation strategies make the
assumption that a fixed amount of random-access memory is available for use
by the dynamic storage allocator [1,5,.7,10,18]. If a request cannot be
satisfied because no sufficiently large block of memory is free, then the
reguest either fails or is gueued until it can be smatisfied. Thus, the

traditional criteria used to compare dynamic storage allocation strategies

Wares

aj) the expected storage efficiency (i.e. the ratio of memory

requested to memory used) under conditions of heavy loading; and

b) the efficiency of algorithms which implement the strategies (i.e.

how the processor time varies with the number of blocks allgecated, etc.).

In this paper we assume that a computer with "wvirtual" memcry [&] is
used. A process which executes on such a computer has a certain amount
of "real" random-access memory available, but it can address a larger
amount of wvirtual memory. When the process attempts to access a virtual
memcry location which does not correspond to a location in the random-access
memory, a4 page fault interrupt occurs and a combination of hardware and
software (transparent to the process) reads the page containing the virtual
memory location from a secondary storage device (e.g. a disk) into random-
access memory, possibly after writing ocut some other page to make room for
it. The details of the paging process are not important here. BAs a
concrete example, the VAX 11/750 computer used to obtain the results of
Sections 3 and 7 has a page size of 512 bytes, the maximum amount of real
random-access memory available to a process (i.e. the maximum working set
size) is typically in the range 200 to 3000 pages, the actual random-access
memory size is 6144 pages, and the maximum amount of virtual memory available

to a process is 28672 pages, i.e. 14 Mbytes. The virtual memory size is



limited by the size of the paging file rather than by the number of bhits

in a virtual address (see Section 2). If a disk access is reguired then
the time taken to access a virtual memory location exceeds the random-access
memory cycle time by a factor of more than 10% . Hence, it is vital to
ensure that most virtual memory references do not generate page faults.
{(Sometimes a page fault may not necessitate a disc access because the

operating system may keep a list of recently-used pages in random-access

memory, but we shall ignore this complication below.)

Several authors have considered strategies for allocating executable
code in order to minimize the number of page faults which ccour when a
process is executed (see for example [6,17] and the references given there).
However, there does not seem to have been much study of strategies for
allocating data {e.g. dynamically created records, I/0 buffers, etc.) with
the same ohjective of minimizing page faults. ©On a computer with virtual

memory, criterion a) abowve is usually of less significance than

c) the expected number of page faults which occeur when the strategy

is used to allocate (virtual) memory dynamically.

In this paper we compare several well-known dynamic storage allocation
strategies and some new strategies, using criterion ¢) and, to a lesser
extent, criteria a) and b}). The comparison is mainly experimental rather
than theoretical, because realistic theoretical results appear to be very
difficult to cbhtain. The experimental results indicate that the new
strategies perform better than traditiconal strategies on criterion <),

i.e. they exhibit better paging behaviour in a virtual memory environment.
L different way of stating this result ia that if one of the new strategies
is used instead of one of the traditional strategies then we can get by
with a smaller working set (i.e. a smaller amount of real random-access

memory} for the same mumber of page faults. The new strategles can also



be implemented efficiently, i.e. they compare well with the traditicnal
strategies on eriterion b). Hence, they may be of interest aven if

criterion c} is irrelevant.

In Section 2 we consider the case that all blocks reguested have the
same size. This case is trivial on a :nmpﬁter without wirtual memcry, as
the cbvicus "stack" strategy (which involves keeping a singly-linked list of
free blocks and allocating them according to the last in, first out principle)
is fast, easy to implement, and gives optimal storage efficiency. However,
even this simple case is nontrivial on a computer with wvirtual memory: both
cur new strategies and the first-fit strategy may ocutperform the stack

strategy on criterion c}. Some examples are given in Section 3.

In Section 4 we outline how our new strategies can be implemented by
efficient algorithms. Our distinction between a dynamic storage allocation
atrategy and an algorithm which implements the strategy is the same as in
[5]. In Section 5 we show how the new strategies and the algorithms which
implement them can easily be extended to handle the case of variable block
size, subject to the constraint that the maximam block size should not
exceed the page size. Theoretical worst-case bounds on storage efficiency
are discussed in Section 6, and experimental results for the variable block

size algorithms are given in Section 7.

Our conclusjons are stated in Section 8. To summarige, we recommend a
combination of one of our new strategies (for blocks signifjcantly smaller

than the page size) and the first-fit strategy (for larger blocks).

The ideas behind our new strategies may be used in other applications
where locality of storage references is desirable. For example, when
allocating files on a disk we may wish to minimize the number of disk

head movements reguired to access the files. 3all files stored in one disk



cylinder can be accessed with at most one head movement, just as all memory
locations in one page can be accessed with at most one page fault. The time
required to move the disk head to another cylinder may be several times
longer than the rotation time of the disk (but the ratioc is much less

than the wvalue 164 mentioned above). Hence, our new strategies might be
useful for allocating space on a disk if "byte" (or "word") is replaced by

"sector" {or "track") and "page" is replaced by "cylinder'.

2. ALLOCATION OF EQUAL-SIZED BLOCKS

In this Section we consider a simple but common special case: the
allocation of blocks of one fixed size s bytes on a machine with wvirtual
memory and page size p bytes. We shall assume that the blocks are large
enough to store one pointer {i.e. a virtual memory address) but significantly
smaller than the page size. First we describe ten different strategies
for allocating and freeing blocks of size s, then (in Section 3) we present

the results of some experimental comparisons of the different strategies,

2.1 The STACK Strateqy

A simple strategy, which we call the "stack" strategy, is to keep a
stack of free blocks. When a new block is reguested, it is allocated from
the stack according to the last-in, first-out principle. If the stack is
empty, & new page of virtual memory is obtained and divided into c= Lpfgj
blocks, which are placed on the stack. The stack may be implemented by a
singly-linked list, with each free block containing a pointer te the block

bensath it on the stack.

The stack strategy is easy to implement and very efficient in terms
of CPU time. However, it may not be the best strategy in a wvirtual memory

environment. To see why this might be so, consider a process which runs for



a long time, allocating and freeing blocks so that each block has a finite
lifetime and the total number of blocks allocated at any time fluctuates
around some egquilibrium value n . (This might be the case for a discrete
simulation, or for an gperating system allocating and freeing 1/0 buffers,)
After some time the addresses of blocks will be randomized so that blocks
which are close to each other on the stack are unlikely to be in the same
page. Thus, a large number of page faults may be generated if nfc exceeds
the number of pages of real memory available to the process. Also, if n
decreases after a period of high load, the number of pages referenced by
the process is unlikely to decrease in proportion, because the allocated
blocks will be randomly distributed over (almost)} all the pages which were

required in the past.

2.2 The QUEUE Strategy

The "gqueue" strategy is very similar to the stack strategy, the
difference being that blocks are allocated according to the first-in,
first-out principle (instead of last-in, first-out). The gueue strategy
may be implemented efficiently with a singly linked list so long as pointers
to both ends of the list are maintained., In a virtual memery environment
the queue strategy suffers the same disadvantages as the stack strategy.

In fact, we might expect the queue strategy to generate more page faults
than the stack strategy because a block which has recently been freed is
more likely to be in a page which is in real memory than is a block which

was freed less recently.

2.3 The RANDOM Strategy

For the "random" strategy we maintain a pool of free blocks and, when
a new block is regquested, we randomly choose a block from the pocl (unless

the pool is empty, in which case we obtain a new page of wvirtual memory as



for the stack and queuwe strategies). The random strategy can be implemented

with reasonable efficiency by maintaining an array of pointers to free blocks.

We shall use the random strategy as a benchmark. 2 good strategy for
use in a wvirtual memory environment should generate significantly less page
fawlts than the random strategy! When making such compariscns we shall
ignore the space overheads required to implement the random strategy
efficiently (i.e. the array of pointers to free blocks) since approximations
to random behaviour can be obtained with much lower space overhead. Note
that our randem strategy is not identical to the "random fit" strategy of

Reeves [12].

2.4 The NOFREE Strategy

It it sometimes suggested that dynamic storage allocation strategies
are irrelevant on computers with a sufficiently large virtual address space
because there is no need to explicitly free hlocks. We call this the

"nofree" strateqy.

Unfortunately, the nofree strategy is not always feasible. The wirtual
pages which have not been explicitly freed must be kept either in real
memory or on secondary storage (e.g. a disk), since the system has no way
of telling that they will never be referenced again. Typically several
processes are executing concurrently, so the quota of disk space available
to each may be relatively small. For example, on the VAX computers
used by the author, this guota ranges from 4 Mbyte to 14 Mbyte, much less
than the 4096 Mbyte which is theoretically addressible on machines with
32-bit virtual addresses. Thus, the nofree strategy is not feasible for
long-running processes such as operating system storage allocators, although

it may be feasible for small, short-running processes. We show in Section 3



that the nofree strategy is not necessarily the best strategy even when it
is feasible, The reason for this is that blocks which are being referenced
may be spread over many pages, since most of the space in these pages is
occcupied by blocks which are no longer being referenced but have not been

freed.

2.5 The QUICK Strategy

The "guick" strategy is an attempt to retain the simplicity of the
nofree strategy while avoiding its major disadvantage of using an unbounded
number of pages even if the total nmumber of blocks allccated but not freed
remainsg bounded., With each page we maintajn a count of the number of blocks
allocated but not freed in the pagqe. When this count drops toc zerc we add
the page to a stack of free pages which are used in preference to new

virtual pages.

The gquick strategy is easy to implement and almost as fast as the nofree
strategy. Although it gives low storage efficiency, it is often feasible
when the nofree strategy is not. For a comparison of its paging behaviour

with that of other strategies, see Sections 3 and 7.

2.6 The FIRST-FIT Strategy

The "first-fit" strategy [10] is well known as a strategy for dynamic storage
allocation of unegual-sized blocks but it can, of course, also be used for
equal-sized blocks. The first-fit strateqy is simply to allocate each block
at the lowest possible wvirtual address. HNote that this may result in blocks

being split across page boundaries, which is not the case for the other

strategies described in this Section.



It appears tc be impossible to implement the first-fit strateqy as
efficiently as the other strategies described in this Section. A straight-
forward implementation [4,10] takes time O{F) on average to allocate and
free a block, where F is the total number of free blocks; better.
implementations [5] take time Of{log F). The other strategies described in
this Section can be implemented so the average time required to allocate
and free a block is constant, independent of the number of allocated/free

blocks (for details see Section 4).

Implementations of the first-fit strategy may have higher space over-
heads than implementationsof competing strategies. For example, the first-fit
implementation of [5] requires cne additional pointer per block. This over-
head is significant if the block sigze is small., In Section 3 we are interested
in comparing the paging behaviour induced by different strateqgies, so we shall
not consider the space and time overheads reguired to implement the strategies,
but the reader should bear in mind that this gives the first-fit strategy an
unfair advantage. Even with this advantage, the first-fit strategy does

not turn out to be the best strateqy.

2.7 The "current page" Concept

If a block has just been allocated in a page P, then it is reasonable to
satisfy requests for additional blocks by allocating them in the same page
P while this is possible, i.e. until all e¢s= Lpfq] blocks in page P have
been allocated. There are two motivations for using page P in preference

to ancother page:

1} If a block has recently been allocated in page P then P should be
in random-access memory and alleocating ancther bhlock in page P should

not immediately cause a page fault.
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2) In many applications blocks which are allocated at about the same time
tend to be referenced at about the same time. For example, a list may be
created by allocating and linking several blocks; subsequently the list
may be searched by following its links. Thus, it is desirable for blocks
which are alloccated at about the same time to be on one page or a small

number of pages.

The strategies described in Sections 2.8 - 2.11 have in commen that,
once &4 "gurrent page" P has been chosen, blocks are allocated from page P
while this is possible. 0©Once all blocks in page P hawve been allocated, a
new current page is chosen, The strategies differ in the criteria which
they use to choose the new current page. As far as we know these strategies

are new.

Let ¢{P) denote the number of free blocks in a page F . BSince we
assume that all blocks are of the same size s and are not split across
page boundaries, we have 02 ¢(P)sc = |p/s| . Thus ¢(F) = 0 means that
there are no free blecks in page P , while ¢ (P} = ¢ means that all
blocks in page P are free (although they may have been allocated and

subsequently freed).

We divide the set of virtual pages into four subsets:

[1¥]
1]

{p | no bleck in P has ever been allocated} ,

s}
|

, =1pgs, | ¢(®) =c},

o
I

{p | 0<¢P)<ec} , and

]
1l

s =17 | ¢@)y =0} .

Informally, S is the set of pages which have not been referenced, 5,

1

iz the set of pages which have been referenced but contain no currently

allocated blocks, 53 is the set of pages which contain both allocated
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and free blocks, and Sq is the set of pages which contain no free blocks.

A new current padge can be selected from Sl ' 32 or 53 if they are

nonempty. Howewver, the four strategies described in the remainder of this

Section all choose a page in 53 if 53 is nonempty. If 53 is empty but

5 is nonempty then they choose a page in S {using the stack, i.e. last-

2 2

in, first-out principle). Only if s and S are empty is a current

2 3

page chosen from 3 The rationale is that we want to minimize the total

1t

number of pages referenced (and hence avoid using 8 if possible) and also

1
minimize the number of pages on which currently allocated blocks reside
{and hence avoid using Sl or 52 if 53 is nonempty). The four
strategies differ in how they choose a new current page from 53 when 53

is nonempty.

2.8 The RANDOM{B) Strategy

The "random(B)" strategy provides a benchmark: if 53 is nonempty

we randomly select a page in 53 (with egual probabilities 1f|53|} to be
the new current page. Once the current page has been selected we allocate
blocks from it as described in Section 2.7 (compare the "random" strategy

of Section 2.3).

2.9 The MOST-FREE Strategy

The "most-free" strategy chooses a page PE€ S with maximal ¢(P) as

3
the new current page. In case of a tie, the stack principle is used. To
implement the most-free strategy efficiently we need to maintain a stack

of pages for each possible value of ¢(P) in the range 0<$(P)<ec: for

details see Section 4,

The motivation for the most-free strategy is that it locally minimizes
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the number of different pages which are used to satisfy a seguence of

requests for blocks which might be referenced together (see Section 2.7).

2.10 The LEAST-FREE Strategy

The "least-free" strategy chooses a page Peg 53 with minimal (P} ' as
the new current page; otherwise it is identical to the most-free strategy.

There are two motivations for the least-free strategy:

1) In the absence of other information it is reasonable to assume that
a page P with a larger number of allocated blocks (i.e. a smaller walue
of ¢(F)) is more likely to be accessible without generating a page fault

than is a page with a smaller number of allocated blocks,

2) By choosing a page P with small ¢(P) as the current page we make
it more likely that pages Q€ S, with larger values of ${Q) will migrate
to 52 as the allocated blocks in them are freed. Thus, the least-free
strategy should adapt well to a slowly fluctuating lcoad {where the "load"

is the numbexr of blocks which have been allocated but not freed).

2.11 The MRU Strategy

The final strategy which uses the concept of a current page is the
"most recently used" strategy (abbreviated "MRU"). The dynamic storage
allocator does not know when a page is accessed, but it does at least
know when a block is allocated or freed. The MRU strategy is to maintain
an ordered list of pages in 53 ; when a block in a page P is freed, P
is moved to the head of the list (unless ¢(BP)=c¢ , in which case PE 52} .
When it is necessary to choose a new current page, the page at the head of
the ordered list is chosen. The rationale for this strategy is that a

recently referenced page is likely to be in random-access mMemory.
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2.12 Using Additional Information

None of the strategies described above require the dynamic storage
allocator to know which pages currently reside in random-addess memory,
although some of the strategies are motivated by the likelihood of certain
pages (e.g. recently used pages) being in random-access memory. Obvious
modifications of the strategies are possible if it can be determined
{without generating a page fault) whether a given page P is present in
random-access memory. However, we shall not consider such modifications in

this paper.

2.13 The Tolerance 4:0

The random(B), least-free, most-free and MRU strategies may be
generalized by the introduction of a positive tolerance ¢0< c . When

choosing a new current page from S we consider only those pages F

3 *
for which ¢{P]]2¢D . The motivation for the introduction of the tolerance
¢0 is similar to the motivation for the most-free strategy: once a current
page is chosen we want to allocate several blocks from it. The optimal

choice of ¢D is considered in Section3.3. If ¢ﬂ is not specified it is

assumed to be 1 {as in Sections 2.7 to 2.11 above).

3.  EXPERIMENTAL RESULTS FOR EQUAL-SIZED BLOCKS

In this Section we report scme experimental comparisons of the ten
strategies for dynamic storage allocation of equal-sized blocks described
in Section 2. Since we are interested in the effect of each strategy on
baging behaviour, we disregard any overheads due to the implementation of
the strategies (see Section 2.8). To cbtain reproducible results we

simulate paging, using a strict least-recently-used paging strategy [&6].
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For a comparison which includes the overheads due to the implementation
of the strategies and gives actual rather than simulated page faults, see

Section 7.

3.1 Results for TRIDIAG

TRIDIAG is a Pascal program which simulates the tridiagonalization of a
symmetric matrix on a systelic array [2]. In Table 3.1 we guote the page
faults generated when simulating the tridiagonalization of a 128 by 128
matrix, using two different working set sizes (2000 and 4000 512-byte pages).
The columns headed "normalized page faults" give the ratio of page faults
for each strategy to page faults for the RANDOM strategy. "wvirtual
size" is the total number of wirtual pages referenced and “"working set"
i= the maximum number of pages in random access memory at any one

time.

TRIDIAG is typical of many list processing programs in that its usage of

storage builds up to a peak and never reaches even approximate ecuilibrium.
The block size is small (6 bytes) as blocks contain only a small integer
and a pointer to another block. In all cases TRIDIAG makes 1,803,213
requests to allocate a block, 1,789,653 reguests to free a block, and the

maximum number of allocated blocks is 545,777.

since no effort was made to make the paging simulation efficient, we
do not guote CPU times in Table 3.1. However, when the paging simulation
was turned off the CPU times ranged from 1595 sec (for the NOFREE strategy)
to 5693 sec (for the FIRST-FIT strategy) and were about 2500 sec for the
MOSTFREE, LEASTFREE and MRU strategies, when run on a VAX 11/750 with actual

working set size of 3000 pages. (We were forced to akbandon an attempt to
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compare these times with that for VAX VMS Pascal "new" and "dispose" after

running for 72 hours and generating 400,000,000 page faults! For further

comments on VMS routines, see Section 7.3.)

Table 3.1: Results for program TRIDIAG

Strategy Virtual Page faults HNormalized Page faults Hormalized

size (working set page {working set page

{pages) 2000 pages) faults 4000 pages) faunlts

STACK 6423 3469580 0.498 606808 0.406
QUEUE 6423 3048212 0.437 460270 0.308
RANDOM 6423 &0eD773 1.000 1495095 1.000
NOFREE 21467 72471 0.010 21866 0.015
QUICK 9361 163520 0.024 29721 0.020
FIRST-FIT 6397 171484 0.025 30593 0.020
RANDOM (B) 0423 165488 0.024 27374 0.018
HMOST-FREE 6423 172207 0.025 25589 0.017
LEAST-FREE 6423 172765 0.025 24768 0.017
MRU 6423 160555 0.023 25089 0.oLl7

From Table 3.1 we see that the STACK and QUEUE strategies do not perform
very much better than the RANDOM strategy. HNOFEEE is the best strategy if it
is feasible (i.e. if it does not give a prohibitively large wvirtual size).
The other six strategies (QUICK, FIRST-FIT, RANDOM (B), MOST-FREE, LEAST-FREE
and MRU) give approximately the same number of page faults, slightly more
than HOFREE but much less than BANDOM, STACK or QUEUE. The QUICK strateqy
gives a virtual size about 50 percent larger than FIRST-FIT etc. but much

smaller than MNOFREE.

3.2 Results for PQSIM

PRSIM is a Pascal program which simulates discrete events using a

priority queue implemented as a "leftist tres" [10]. It is probably typical
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of many programs which manipulate binary trees. Each dynamically allocated
bleck (actually an unpacked Pascal record) contains five fields: two pointers,
a Key, a priority wvalue, and a small integer giving the distance to the

nearest leaf in the tree. Thus, the block size is 20 bytes.

In Table 3.2 we compare the paging hehawviour of wvarious dynamic storage
allocation strategies when used by PRSIM,. The events simulated by PQSIM had
exponentially distributed inter-arrival times and lifetimes. The mean number
of arrivals per (simulated) second was about 200 and at eguilibriuwm the mean
number of events in the gueue was about 2400. (For more details, see the
description of the CAMBRIDG distribution in Sectien 7.l1.) In all cases
the simulated working set size (excluding implementaticn-dependent cverheads)
was 50 pages. PQSIM was run for 2000 (simulated) seconds but page faults
were only counted after the first 1000 (simulated) seconds, once approximate
equilibrium had besn reached. Results quoted for NOFREE in Tablesz 3.2 and 3.3

are estimated, due to paging file gquota restrictions.

Table 3.2: Results for program POSIM

Strategy Virtual size Page faults Normalized

{pages) {working set page
50 pages) faults

STACK 101 561080 0.71
QUEUE 101 803555 1.01
RANDOM 102 794000 1.00
NOFREE 31360 445709 0.56
QULCK 1823 531122 0.67
FIRST~-FIT 98 455026 0.57
RANDOM (B) 103 606035 0.76
MOST-FREE 102 453102 0.57
MOST—FREE{¢Q=5} 118 361515 0.46
LEAST-FREE 102 511869 0.64
LEBST-FREE{¢D=5} lle 377282 0.48
MRU 101 374908 0.47

MRU (¢,=5) 118 337436 0.42
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From Table 3.2 we see that the difference btween the strategies is not
so marked as for the program TRIDIAG (see Table 3.1). Ewven so, the better
strategies generate less than half as many page faults as the RANDOM
strategy does. MRO, MOST=-FREE (with ¢0==5} and LEAST=-FREE ({with ¢n= 5)
are significantly better than NOFREE. Thus, the NOFREE strategy is not

always best even if it is feasible.

3.3 The Effect of Varying Load

In some applications it is desirable to have a strategy which adapts
well to a slowly changing load. For example, we expect the response of a
time-sharing system to improve when the load decreases. Thus, we repeated
the simulations described in Section 3.2 with the leoad for the first 1000
simulated seconds doubled {(i.e. mean inter-arrival times halved).. The
load for the second period of 1000 simulated, seconds, during which page
faults were counted, was the same as before. The results are summarized
in Table 3.3. The last column of the table gives the ratio (page faults

with initial load doubled)/(page faults with initial load as in Secticn 3.2).

Table 3.3: Results for PRSIM after initial load doubled

Strategy Page faults Normalized Page fault
{initial load 2) page faults ratio
STACK 1044235 0.76 1.B6
QUEUE 1365741 1.00 1.70
RANDOM 1372438 1.00 1.73
HOFREE 520717 G.38 1.17
QUICK 587452 0.44 1.12
FIRST-FPIT 643004 0.47 1.41
RANDOM (B) 568352 0.41 0.94
MOST-FREE 498482 0.36 1.10
HDST—FREE{¢G=5} 477215 0.35 1.32
LEAST-FREE 726429 0.53 1.42
LEHST—FHEE{¢D=S} 523993 0.38 1.329
MRU 337048 0.25 0.%0

MRU{¢G=5} 361058 0.26 1.07
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From Table 3.3 we see that the STACK, QUEUE and RANDOM strategies do
not adapt well to a decreasing load. This is because blocks are spread
over a large number of pages when the load is high, and most of these
pages continue being accessed after the load has declined. The NOFREE,
QUICK, FIRST-FIT, MOST-FREE and LEAST-FREEE. strategies adapt reasonably
well, in that they perform almost as well after a period of abnormally
high locad as they do after a period of normal leoad (the ratios given in
the last column of the table are in the range 1.08B to 1.42). The RANDOM(B)
and MRU {¢ﬂ= 1) strategies adapt wvery well: the ratios given in the
last column of the table are less than unity, i.e. the strategies perform
better after a period of high load than after a pericd of normal load.
Owerall the MEU strategy performs significantly better than the other

strategies,

3.4 The Choice of g

In Takles 3.2 and 3.3 we gave results for the MOST-FREE, LEAST-FREE and MRU
strategies for two different values of the tolerance ¢0 {see Section 2.13).
The strategies performed better with ¢D = 5 than
with the default value of ¢D= 1 . (This is not always true: Ifor the program
TRIDIAG of Section 3.1 there was no significant difference between the
results with ¢D==1 and with ¢0 * 1.) In Table 3.4 we show the effect
of different choices of ¢0 for the MOST-FREE (MF), LEAST-FREE (ILF) and
MRU strategies. &Apart from the cheoice of ¢0 evervthing is as in Section

3.2, Wote that c=|p/s| = 25 so 154,525 .
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Table 3.4: Results for POSIM with variocus ¢g

¢ch virtual size normalized page faults
MF LF MRU MF LF MRD
0.04 102 102 101 0.57 0.64 0.47
G.08 104 105 107 0.52 0.57 0.51
0.12 108 110 110 0.51 0.54 0.48
0.16 113 111 111 0.48 0.48 0.42
0.20 1lg 1le 118 0.46 0.48 0.42
0.24 123 124 124 0.48 0.47 0.44
0.28 131 130 128 0.45 0.47 0.44
0.32 132 137 131 0.44 0.46 0.43
0.36 141 144 140 0.44 0.45 0.44
0.40 151 152 149 0.44 0.46 0.43
0.44 161 164 lél 0.44 0.47 0.43
0.48 171 171 171 0.45 0.45 0.44
0.52 183 179 181 0.46 0.45 0.45
0.56 189 201 194 0,45 0.46 0.47
0.60 214 212 211 0.45 0.45 0.45
0.64 228 232 222 0.47 0.486 0.45
0.68 256 244 251 0.47 0.48 0.46
0.72 282 282 279 0.48 0.47 0.47
0.76 307 320 ilz 0.47 0.49 0.48
Q.80 349 357 isl Q.48 0.50 0.49
C.B4 423 407 412 0.50 0.50 0.50
0.ga 496 494 501 0.52 0.51 Q.50
0.92 651 63l 642 0.52 0.52 0.52
0.96 865 932 925 0.54 0.54 0.53
1.00 1635 1622 1740 0.54 0.54 0.54

From Table 3.4 we see that the behaviour of the MOST-FREE, LEAST-FREE
and MRU strategies is very similar, with MRU performing marginally better
than the others. The number of page faults as a function of ¢D has a
minimum at some optimal wvalue ¢Dpt =~ 0,4c . However, the dependence on ¢D
is very small {(i.e. the graph is wvery flat) for 0.1& s ¢afc S 0.6 . As

expected, the virtual size increases with ¢Q . Thus, we may prefer to
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choose ¢n < ¢npt in order to reduce the virtual size at the expense of

a slight increase in the number of page faults. See also Section 7.3.

3.5 Conclusions

From the experimental results guoted in Sections 3.1 to 3.4, and
similar results which are not quoted because of space limitations, we may

draw scme conclusions;

1. The NOFREE strategy performs well but not always as well as the MOST-FREE,
LEAST-FREE or MRU strategies (see Tables 3.2 and 3.3). Thus, even when virtual
size restrictions do not preclude use of the WOFREE strategy, it is not

necessarily the hest choice.

2. The QUICK strategy performs slightly worse than the NOFREE strategy,
but is more likely to be feasible because of its significantly smaller

virtual size reguirements.

3. Strategies which use the "ocurrent page" concept (see Section 2.7)
generally perform better than the STACK and QUEUE strategies, and the
difference can be dramatic (see Table 3.1)., Hence, we do not recommend

the STACK or QUEUE strategies for use in a virtual memory environment.

4. The MRU, MOST-FREE and LEAST-FREE strategies (with a good choice of

¢D} can perform significantly better than the RARNDOM (B} strategy, so their
performance is not entirely due to their use of the "currgnt page" concept.
They perform significantly better than the FIRST=FIT strategy (and, as shown
in Section 4, can also be implemented more efficiently than FIRST-FIT).
Overall the MRU strateqgy appears to be the best choice, although the
differences hetween MRU, MOST-FREE and LEAST-FREE are small and may depend on
the paging strateqy. It is plausible that our choice of the least-recently-

used paging strategy favours the MRD storage allocation strategy.



2l

4.  EFFICIENT IMPLEMENTATION OF THE STRATEGIES

In this Section we describe how the MOST-FREE, LEAST-FREE and MRU
strategies can be implemented so that reguests for the allocation and
release of blocks can be met in constant time (independent of the total
number of allocated or free blocks). We still assume that all blocks are
of the same sige s S p ;, and that virtual memory can be allocated in

units of one page. First consider the MOST-FREE and LEAST-FREE strategies.

Within each page we allocate c==Lpf;J blocks using the S5TACK strateqy
{or any other reasonable strategy - clearly the strategy for allocating blocks
within each page does not influence the paging behaviour). For simplicity
we do not attempt to split blocks across page boundaries. Each page P in
use has an associated "page header" record H(P)} containing the following

fields:

next, prev: pointers to adjacent page headers in a doubly-linked list;
leftmost: pointer to "left header" for doubly linked list (see below);
freelist: pointer to top of stack of free blocks within the page;

freekt: the number of free blocks within the page.

The page headers for pages having the same number ¢ of free blocks

are kept in a doubly linked list L {hence the "next" and "prev" fields).

¢
For ease of implementation each such list is eircular. For each list L¢
there is a "left header" record LH¢ containing the following fields:
next, prev: pointers to page headers in L¢ H
up, down: pointers to left headers;
s: the block size (only necessary when several block

sizes are permitted: see Section 5).

The left headers LH¢ are kept in a doubly-linked list ordered by their

¢ walues {hence the "up" and "down" fields). The whole data structure is
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accessible via a pointer to LHG (which is always present, even if Lﬂ is

empty) .

~

LH, I‘&D »

=

[ .
LHc P

—J

Figure 4.1: Illustration of the data structure for page headers,

Apart from LH, o the left headers LH¢ are omitted if their

corrasponding lists L, are empty. This is illustrated in Figure 4.1,

b

where four lists {LU*LE'LE and L?} of page headers are nonempty.

When a block in a page P 1is freed, the corresponding page header

H{F) has to be removed from its list L¢ and inserted in L¢+l .

is straightforward and can he done in constant time, independent of the

This

length of L.'_p ; because LH¢ can be accessed via the "leftmost" field in
H(P). ({The leftmost fields are not shown in Figure 4.1.)

When a block is freed only its virtual address need be known. From
its address it is easy to compute the index of the page P containing it,
and then to locate the corresponding page header H(P), provided that each
page P which is in use contains a pointer to its header record H{(F). It

is not desirable to store the header record H(P) in page P , because

updating the doubly-linked lists of page headers might then generate more
page faults than if the headers and left headers were stored in dedicated

pages which would usually bhe present in random-access Memory.
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In corder to allocate a block, the "current page" ¢ must be accessible.
hn efficient solution is to Keep the header H(C) for the current page at
the head of the list LD ; S0 it is accessible via the left header LI-ID .
{(When a block in C is freed, the header H{C) is not moved, but the "freekt"
field of HI{C) is incremented.) To allocate a block, we check if the "freekt"
field of H(C)} is positive. If so, the block can be allocated on page ¢

and the "freekt" field decremented. Otherwise a new current page has

to be selected. For the MOST-FREE strategy we follow the "up" field

of the left header LH, to find the left header I'H{p with maximal ¢<c¢ .
For the LEAST-FREE strategy we follow the "down" field to find the left
headex LH¢ with minimal ¢z ¢0 . In order to avoid scanning a list of
length ﬁ{¢0} ; it is desirabkle to merge the lists LHO ' LHl""'LH¢ﬂ—1 ‘
i.e. the page headers for pages with less than ¢u free blocks are all
kept on the same doubly-linked list LHO . This alse decreases the number

of doubly-linked list insertions and deletions regquired when blocks are

freed.

For the MRU strategy we merge the doubly-linked lists IJ% ""'LHc-l .

0
i.e. the page headers for pages with ¢ £free blocks, where ¢n£ e

are all kept on the same doubly-linked list IH When a block in such a

b

page is freed, the corresponding header is moved to the head of LH¢ .
0

Otherwise the MRU strategy is implemented in the same way as the LEAST-FREE

strategy.

Other efficient implementations of the three strategies are possible.
For example, the left headers might be maintained in an array with indices
0..c instead of a doubly-linked list, and the page header H({P) corresponding
to a block in page F might be found by hashing the index of P instead
of by reserving a pointer in each page (the results guoted in Section 7.2
are for an implementation which useg hashing in this way}. The important

point is that the strategies can be implemented so that requests for the
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allocation and release of blocks can be met in constant time. Thus the
strategies are competitive with popular strategies such as first-fit,

best-fit, ete. if CPU time is the dominant criterion.

5.  EXTENSION TO BLOCKS OF DIFFERENT SIZES

So far we hawve restricted our attention to the case that all blocks
requested have the same size 5 . However, it is easy to extend the
MOST-FREE, LEAST-FREE and MRU strategies to handle requests for blocks
of arbitrary size s Sp . We need a mapping SIZEMAF (which will be
implemented as an array) from the set of possible sizes 1"5max to

itself, satisfying the following condition:

<
a) SIZEMAF [3] 2 5 for lz sz Emax .
In addition, a practical mapping would be monotonic, i.e.
b}  SIZEMAP [s+1] Z SIZEMAP[s) for las<s .

Because of memory alignment constraints, we might also insist that SIZEMAF ([s]
be divisible by soeme small power of 2 (e.g. 4 or 8). BAlignment constraints
will be ignored, since they are easily handled by changing the units
in which storage is measured (e.g. from bytes to words). We discuss

the choice of the mapping SIZEMAP in more detail in Sections 5.1 and 5.3.

4 reguest for a block of size s 1is satisfied by allocating a block
of {possibly larger} size SIZEMAP[s]. For each distinct value in the
range of SIZEMAP, we use the MOST-FREE, LEAST-FREE or MEU strategies,
as described in Sections 2 and 4. The only significant change is that

instead of having a single pointer to the left header LH (see Section 4)

0

we now have an array of pointers, because there is now a distinct left

header LHp for each distinct block size SIZEMAFP([s]. (A less significant
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change is that the headers for pages in which all blocks are free are kept
on a single linked list, instead of one list for each possible hlock size.
Thus, at any given time a page contains blocks of only one size, but that

size may change if all the blocks allocated in the page are freed.)

5.1 The choice of SIZEMAP
Suppose that there are k distinet wvalues s <5 < ...%<8 in the

1 "2 k

range of SIZEMAP, so SIZEMAF [s]= s; if 15s3 S,

- - sj r 1<j=k . We shall consider how 51""'51: should bhe

and SIZEMAP[=z] = sj

if Sj-l

chosen to give a reasonably high storage efficiency. The worst case is

considered in Section 6.

Consider two possible block sizes s' and s" . If |p/s'|=|p/s"]
then there is no advantage to be gained in making SIZEMAF([s'] and

S5IZEMAP[s"] distinct., Thus, a simple algorithm for choosing 51'52""'3]1 is:

8, = minimum wseful block size;

while sj < p do

begin

Sy4q 5 WAX {sj+1,|__pf{'|_pfsj_[—lull H

joe= 341

If Syr+-+15, are chosen in this way, it is easy to see that

= 4
sj-i-l = sj+1 for sjsp

and

)
L:_:,.-’sj_i_lj = Lpfsj_l -1 for sjEp '
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k = zpi .

5.2 The parameter FREETOL

When considering the allocation of blocks of one fixed size, we assumed
that the page capacity ¢ and tolerance ¢0 (Section 2.13) were fixed.
How, with blocks of several sizes, we have different capacities cj=:[pf5jj
for each size sj, i=1..k . It seems reasonable to take the tolerance
¢D proportional to cj rather than constant. Thus, define FREETOL to he
the number of bytes which must be free in a page before it is considered as
a candidate for the next current page (Sec. 2.13), and for each block
size Ej take ¢0(5j}= F%REETDLI551 . The results of Secticon 3.4 suggest
that 0.4p is a reasconable choice for FREETOL (but see alsoc the comments at
the end of Section 7.3).

5.3 Storage efficiency and the parameter FFCROSSOVER

As in Section 1, we define "storage efficiency" to be the ratic

E = total size of blocks regquested but not freed
total storage used to satisfy requests

Even if blocks are never freed after being allccated, the storage efficiency

E will be less than 1, for the following reasons:

al "Internal fragmentation" [15,16] due to rounding up a request of

size s to Ej=SIEEI'1P.P[s] s ;

b} "External fragmentation" [15,16] due to the loss of (p med st bytes
in each page in which bklocks of size Sj are allocated, since blocks

are not split across page boundaries;

c) "External Eragmentation" due to allocation of an integral number of

pages for each size sj ;7 and

d) Space occupied by page headers and left headers, etc.
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The loss due to a) and b) combined when several reguests of zize = are
satisfied is less than s bytes per page if SIEEMAP is chosen as above.
Thus, a) and b) do not seriously reduce the storage efficiency so long

as s<<p . The worst case is s= Lpf2_1 +1 , when only about 50 percent

of each page is used.

The loss due to ¢) is at most one page per distinct block size
allocated, i.e. at most ka;Zp} pages in all. This is not sericus if a
large number of pages are allocated, but may be sericus if the number of
pages allocated is small. (Compare the storage efficiencies for the

CAMBRIDG and YKIVMV simulations of Section 7.2.)

Finally, the loss due to d) is relatively small so long as the page
header and left header records are much smaller than one page. For our
implementation on a VAX the page headers ocoupy 20 bytes (24 if hashing

is used) which is less than 5 percent of the page size.

We conclude that the MOST-FREE, LEAST-FREE and MRU strategies may give
high storage efficiencies so long as the maximum block size reguested
is significantly smaller than the page size. On the other hand, the FIRST-
FIT strategy implemented as in [5] gives high storage efficiency so long as
the block sizes are not too small (because there is a certain fixed overhead
per block). Thus, it is reascnable to combine the MOST-FREE, LEAST-FREE
or MRU strategies for blocks of size s & FFCROSSOVER with the FIRST-FIT
strategy for blocks of size s> FFCROSSOVER, where FPCROSSOVER<p is a
suitably chosen thresheld. A reasonable chnicg is FFCROSSOVER=~ p/4 (see

Section 7).

If we know the distribution of block size reguests (as is the case in
Section 7, for example) and FFCROSSOVER has been chosen, then a dynamic

programming approach can be used to chovse a close to optimal SIZEMAP in
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order to (almost) maximise the expected storage efficiency. The basic

idea is, for each possible size s=FFCROSSOVER-1 down to S; + we decide
whether to choose SIZEMAP([s] = 5 or SIZEMAP[s] = SIZEMAF [s+1] after
estimating the expected storage regquired from a) to d) above. We shall

omit the details.

6.  WORST-CASE FRAGMENTATION FOR THE MOST-FREE STRATEGY

In this Section we consider the worst-case storage fragmentation for
the MOST-FREE strategy when applied to blocks of arbitrary size g$p (where
P as usual is the page size). Identical results hold for the LEAST-FREE and
MRD strategies. We neglect the space cccupied by page headers and left
headers since this depends on the implementation of the strategy and in any

case amounts to only a small percentage of the total space (see Section 5.3).

To conform with the notation of Robson [14], we shall assume that the
maximam block size is n Dbytes (in the notation of Section 5,
n= EmaxE P} , and that at most M bytes of (virtual or real) memory are

requested at any time. In other words, if blocks of sizes Tpeeesaly have

been reguested but not freed, then o +—...+-ams M . For any stocrage

1
allocation strategy, the memory size S necessary to guarantee that the
strategy does not break down due to fragmentation is a functicon of n and

M . Robson [13] has shown that 5 lies between §(M 1ug2nl and about

0.84 (M lcgzn} for the optimal strategy.

We shall show that S 5 l.8B42 (M logzn} for the MOST-FREE strategy,
provided that SIZEMAP is chosen appropriately and FREETOL has its minimam
value of 1. In other words, the MOST-FREE strategy is within a small
constant factor of optimal, so far as its worst-case fragmentation is

concerned. Similar results are known for the FIRST-FIT and (binary) BUDDY
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strategies: Robson [14] has shown that Sz M lagzn for FIRST-FIT, and
Knuth [10] has shown that S< 2(M logzn}l for BUDDY. MNote that the BEST-FIT

strateqy is much worse: Robson [14] has shown that it has S=Mn .

Practical experience and simulations show that the worst case behaviour
is extremely unlikely to occur, so the results of this Section have little

practical relevance. For more practical results, see Section 7.

6.1 The choice of SIZEMAP

In order to prove Theorem 6.1 we take a particular choice of SIZEMAP.

Let p > 1 be a constant whose optimal value will be determined below.

Take 8y > 1/ (p=1) and sj+1=m:i.ntn,|_psjjl for 43=1,2,...k-1, where
k is the first index such that 5 =0 . Then {(as in Section 5}

= 3 L = ] i < E s ow
SIZEMAP [5] = if 1ls3s5 Sy and SIZEMAP[s] sj if sj_l 5 sj We

shall assume that requested block sizes lie in the interval [Sl'sk] . For

convenience in the statement of the results below we define Su= 51—1 .

6.2 The worst-case bound

Since the proof of the worst-case bound is rather technical, we first
state the main result (Theorem 6.1) and then give some Lemmas which are

needed for the proof.

THEOREM 6.1:

If PREETOL = 1 and SIZEMAP is as in Section 6.1 with p = e , then
for the MOST-FREE strategy

8 5 1.8B842(M 1Drg2n'_l + O{M+p log n} ,

where the constant 1.88... = e.1ln2 .

LEMMA 6.1:

If 0<x31 then -u-l—-:1+2x .

xl_l,-l’xj
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Proof:

1l 1

1 -
If x 2 %+ then xLJ_;xJ < T - 1

" & 1+2x . On the other hand,

1 1

if ¥<251 then ———— == < 2 < 1+ 2x .
xl_lfx]

LEMMA 6.2:

Those blocks with sizes ¢ in the interval {5j,s ] occoupy at most

J+1

oM 251'+1 .
1+ D 1+ B pages, for 0z j<k .

Proof:

There are at most M/ 5j such blocks, and Lp,.-"s of them fit on

ol

one page, so the number of pages reguired is at most 1 + « How

M
5|2/ 54q
apply Lemma 6.1 with x = 5j+l‘fp r using the fact that

Si4l = psj for j&l1 ({a trivial modification to the argument is reguired
when J=0).

LEMMA 6.3
If k and El’“”sk are defined as in Secticn 6.1, then

k = lugpn +0(1)

and
k
5. =0(n) .
1 5= om
i=1
Proof:
From the definition of s, in Section 6.1 it is easy to prove that

j+1
j 1 J .
D [sl p—lJ b Ej+1 zp 5, for 0=zj<k ,

and the Lemma follows easily from this.
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LEMMA &.4

85 (p lcgpnjﬂ + 0{M+p log n) .

Proof:

Sum the bound of Lemma 6.2 for j=0,1,...,k-1 , wusing Lemma 6.3.

Proof of Theorem 6.1:
Simply choose p =& in Lemma 6.4 to minimize the factor iEE—E- which
maltiplies (M log n) din the dominant term.

Remark:

SIZEMBP was chosen in Section 6.1 to give the smallest possible constant
in Thecrem 6.1. However, the reader will see from the proof of Theorem 6.1
that rather weak restrictions on SIZEMAFP are sufficient to guarantees that
the worst case fragmentation for MOST-FREE is within a constant factor

of the best possible, Similarly for LEAST-FREE and MRU.

7.  EXPERIMENTAL RESULTS FOR BLOCKS OF VARIOUS SIZES

Many programs which use dynamic storage allocation actually reguest
blocks of only a small number of distinct sizes, e.g. for the nodes in
certain list structures. For such programs we expect the results of Section
3 to be relevant. However, in other applications a large number of different
bleck sizes are reguested, and it is not clear how well we can extrapolate

results obtained for a single block size.

A difficulty in comparing dynamic storage allocation strategies is that
some assumptions have to be made about the distribution of block size
requests and block lifetimes. If we were to compare strategies for
artificially simple distributions ({(e.g. uniform block siges in some interval

and independent uniform or exponential lifetimes) then our conclusions
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would be unconvinecing because of the artificiality of the assumptions. In
this Section we use "real" block size and lifetime distributionsz, although
some simplifying assumpticons (e.g. regarding independence) still have to
be made. Also, in this Section we include the implementation overheads

of the different strategies in the comparisons (i.e. we are comparing
algorithms which implement the strategies) and we quote actual CPU times

and page faults (instead of simulated page faults as in Section 3).

7.1 The CAMBRIDG and YKTYMV distributions

Bozman et al [4] obtained several empirical reguest distributions by
collecting data on requests made to the operating system storage manager
in some large time-shared computer systems. PFor each possible block size s,
Bozman et al [4] estimated the mean inter-arrival time I, and holding time
Hs . They then made the simplifying assumption that reguests were independent
and exponentially distributed with the empirically cbserved means IE and Hs'
In other words, they assumed that
a) for each size s , the time between requests for blocks of size 5 1is
exponentially distributed with mean I5 , and
b} each request for allocation of a block of size 5 is feollowed, after
a time which is exponentially distributed with mean H o by a request to

free the block. For a justification of these simplifying assumptions, see [4].

In this Section we use two of the distributions given by Bozman et al [4]:
CAMBRIDG (from an IBM 370/158 UP serving 40-50 simultansous users at the IBM
Cambridge Scientific Center in Cambridge, Massachusetts), and YKTVMV (from
an IBM 3033 MP serving 450-540 simultanecus users at the IBM Thomas J. Watson
Research Center in Yorktown Heights, Hew York). For these distributions all
block sizes are multiples of 8 bytes in the interval [8,4096]. Some
statistics on the distributions are given in Table 7.1. Hote that the YKTVMV

distribution has about 5 times as many reguests per second and more than
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10 times as many active blocks as the CAMBRIDG distribution.

Table 7.1: Statistics on the CAMBRIDG and ¥YKTVMV distributions.

CAMBRILDG TETVMV
Mean reguests per second = ElfIs 196 1033
mean number of active blocks
at eguilibrium = EHS,-"'IE 2347 27360
mean storage regquested
{in bytes) = EEHEIIE 307397 3226427
mean size of a reguest
{in bytes) = {EstslflﬂlfIsl o8 129
mean block lifetime
{in seconds) = {EHEHIS}f{ElfIEJ 12 26

7.2 Comparison of storage efficiencies and items visited

In their comparisons of different dynamic storage allocation algorithms,
Bozman et al [4] considered storage efficiency and items visited. The
latter is the number of items visited on linked lists or added to linked
lists (with items added to doubly linked lists given double weight), and
is intended to provide a rough measure of the CPU time regquirements of the
algorithms in a machine-independent manner. In Table 7.2 we give the mean
storage efficiencies and mean items wvisited (per request for a block and
its subsequent freeing) for several algorithms and both the CAMBRIDG and

YETVMV distributions. We give results for two different page sizes:

P 512 hytes (as on the VAX 11/750 and as in Section 3);

p = 4096 bytes (as in Bozman et al [4]}.

In obtaining our results we ignored blocks of size 5 with H, = 0.01 sec ;

these would have made a negligikle difference.
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Table 7.2: Comparison of storage efficiencies and items visited.

Strategy Page size FFCROSSOVER Mean storageefficiency Mean items visited
CAMBRIDG YETVMY CAMBRIDG YETVMY
Standard 1BM‘Y? 4096 0.843 0.887 9.7 108.7
First-£it ' 0.844 0.926 425.4 3270.0
Pirst-fit % 512 0 0.844 0.877 20.56 20.14
4026 0 0.852 0.902 107.94 115.19
HExt-fit{lra} 0.570 0.567 207.4 1A92.8
. (1,4}
Binary buddy 0.683 0.641 5.01 5.00
. {1,5)
Binary buddy 0.688 0.716 16.31 50.44
LEAST~FREE *°) 512 120 0.830 0.986 5.67 5.82
512 512 0.759 0.811 5.45 5.33
4096 120 0.806 0.913 6.31 8.50
4096 4096 0.750 0.B96 5.05 5.03
Hotes

(1) As given in Tabkle 3 of Bozman et al [4].

{2) Implemented as in Brent [5] with segment size = page size,

(3] "Next-fit" is Bozman et al's "mod-first-fit": see Hext [7] and Knuth
[10], exercise 2.5.6.

{4} Binary buddy [8,92,10,11] with tag bhits.

{3) Binary buddy [B,9,10,11] without tag bits.

(6) LEAST-FREE implemented as described in Sections 4-5, with FREETOL=1,
SIZEMAF chosen as described at the end of Section 5, and FIRST-FIT used
for blocks of size exceeding FPCROSSOVER. Means are over 4000 seconds

of simulated time. Results for the MOST-FREE and MRU strategies are

similar to those for LEAST-FREE.
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From Takle 7.2 we see that for some algorithms the mean items visited
(per block reguested and released) increases almost linearly as the mumber
of blocks allocated increases. This is true for the standard IBM algorithm,
the first-fit algorithm implemented in the cbvious way, and the next-fit
algorithm. Hence, these algorithms become -impractical because of their CPU
time reguirements if a large number of blocks are allocated. In contrast,
the mean items visited is almost independent of the number of blocks
allocated for the LEAST-FREE algorithm, the binary buddy algorithm (with tag
bits), and the first-fit algorithm implemented as in Brent [5]. Of these
binary buddy (with tag bits) and LEAST-FREE visit less than 10 items per
block reguested and freed. However, the binary buddy algorithm gives
gsignificantly lower storage efficiency than LEAST-FREE, so LEAST-FREE is

to be preferred.

The choice of FFCROSSOVER is a trade-off between storage efficiency
and CP0 time (or items visited). With FFCROSSOVER = p we have almost "pure"
LEAST-FREE with 5-& items visited per request. With FFCROSSOVER = 0 we
have the first fit algorithm with a considerably larger number {depending
on the segment size) of items visited per regquest, but significantly higher
storage efficiency, especially for CAMBRIDG. The compromise of
FPCROSSOVER = 120 seems to come close to obtaining both high storage

efficiency and low items visited per request.

The use of LEAST-FREE for blocks of size s 5 FFCROSSOVER in order to
improve execution time of FIRST-FIT is similar to Bozman's use [3] of
"goftware lockaside buffers". As far as storage efficiency and items visited
are concerned, the LEAST-FREE algorithm is very similar to the "subpooling®
algorithms of Bozman et al [4]. However, we would expect their paging
behaviour to differ because the subpooling algorithms essentially use the

STACK strategy in each subpool (see Sections 2-3).
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7.3 Comparison of paging behaviour of different algorithms

Bozman et al [4] did not cobtain any data on how often each block was
referenced. Hence, to compare the paging behaviour of different dynamic
storage allocation algorithms with the CAMERIDG and YKTVMV distributions, we
simply assumed that each block was referenced twice, once when allocated
and once just before heing freed. This assumption certainly underestimates
the number of references to each block, but there is no cbvious reason why
it should fawvour one of the dynamic storage allocation algorithms over the

others.,

In Table 7.3 we give the (real) page faults and CPU time required on a
Vax 117750 computer when simulating the YKTVMV distribution for t= 2000
{gimulated) seconds with a working set of 3000 5l2-byte pages. The expected
inter-arrival times Iﬂ given in [4] were divided by a "load factor" L so
that results could be obtained for different loads (the expected number of
blocks allocated is 27360L and the expected amount of storage requested
is 3226427L bytes). In Table 7.3, "E" is the mean storage efficiency,
"of /f£" is the number of page faults per simulated second, and "CPU/t" is
the CPU time (in seconds) per simulated second. The CPU time required for
random number generation and simulation is included, but is not very
significant. A fast time-indexed simulation algorithm [19] was used rather

than the leftist tree algorithm of Section 3.

In addition to results for the FIRST-FIT, LEAST-FREE, MOST-FREE, MRU
and QUICK algorithms, we include in Table 7.3 some results cbtained using
the standard VAX VMS library routines LIBSGET VM and LIBSFREE VM (which
are called by Pascal "new" and "dispose" procedures with additicnal space and

time overheads).
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Table 7.3: Comparison of dynamic storage algorithms for YETVMV distribution.

{1} Implemented as in Brent [5] with segment size 512 bytes and segments

aligned on page boundaries.

{2) Implemented as described in Sections 4-5 with FREETOL = 1.
S0B iz the maximum allowable wvalue of FFCROSSOVER since each page
contains a 4-byte pointer back to its page header.

(3} Using VAX VMS library routines LIB$GET VM and LIESFREE_VM.
efficiency E not detexmined, but probably slightly lower than fozr

our FIRST-FIT algorithm.

Hote that

Algorithm FFCROSSOVER Load factor 0.50 Load factor 0.75 facter 1.00
E pf/t CPU/e E  p/t CRUJt cru/t
QUICK 120 0.351 80.2 1.319 0.355 276.0 2.194 3.227
K08 0.300 70.2 1l.281 0.301 188.9% 2.034 2.943
risT-FITY 0 0.877 22.5 1.770 0.879 131.0 2.866 4.124
mosT-FREE %) 120 0.881 20.5 1.394 0.893 71.5 2.120 3.021
508 0.786 18.5 1.313 0.789 49.2 2.027 2.831
LEAST-FREE ') 120  0.886 17.5 1.400 0.300 76.0 2.139 3.039
508 0.792 14.8 1.365 0.796 45.2 2.101 2.872
ey 9 120 0.884 18.9 1.363 0.901 74.5 2.081 2.954
508 0.783 1B.8 1.342 0.788 54,5 1.996 2.B01
?AK“?MEEE} - - 1lh6.6 12.048 - 1121.6 24.941 33557.9 60.562
Notes

From Table 7.3 we see that the QUICK strategy is indeed fast, although

not significantly faster than the MRU strategy.

QUICK generates more page faults and gives low storage efficiency.

MRU is preferable bhecauses

We were unable to obtain comparahle results for HOFREE because of paging

file overflow.

worse than QUICK.

However, runs with t < 2000 showed that NOFREE performs
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The FIRST-FIT strategy, implemented as in Brent [5], gives good storage
efficiency and reasonable CPU times, but it is significantly slower than the
MRU strategy. The results for FIRST-FIT and VAX-VMS show the difference
between two implementations of the first fit strategy. A curious cbservation
is that for VA¥X-VMS the entries pf/t and. CPU/t increase with the
simulated time t (e.g. for load factor 1.00 and t= 4000 we have pf/t= 87777
and CPU/t=91.561l; for t= 2000 as in Table 7.3 we have pf/t= 33557 and
CPU/t=60.562). For the other algorithms pf/t and CPU/t are almost

independent of t .

The behaviour of MOST-FREE, LEAST-FREE and MRU is wvery similar. Por all
three strategies the page faults and CPU time are decreased by choosing the
maximal wvalue of FFCROSSOVER (i.e. 508} instead of 120, but this is at
the expense of lowering the storage efficiency by about 10 percent. If
FFCROSSOVER is reduced below 120 the behaviour of the strategies becomes close
to that of FIRST-FIT (which is the limiting case FFCROSSOVER=0), i.e. the

storage efficiency stays about the same but page faults and CPU time increase.

The results given in Table 7.3 are all for FREETOL = 1. We tried larger
values of FREETOL, but the results were generally worse than with FREETOL= 1

{compare the results of Section 3.4).

8.  CONCLUSION

The criteria which should be used to compare dynamic storage allocation
strategies (and algorithms which implement the strategies) differ if the
strategies are to be used on a computer with virtual memory rather than on
one without wvirtual memcry. We have presented three new strategies (the
MOST-FREE, LEAST-FREE and MEU strategies) which are intended to be good on

a computer with virtual memcry. The new strategies can be implemented
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efficiently {as discussed in Sections 4-5) and have good worst-case

behaviour {as discussed in Section &}. The new strategies compare well with
traditional strategies, both in the general case {allocation of blocks of
various sizes} and in the special case that all blocks have the same size:

see Sections 3 and 7 for experimental results, The difference between the

three new strategies is small, but overall the MRU strategy may perform slightly
better than the MOST-FREE and LEAST-FREE strategies. Even on a computer
without wvirtual memory, the MRU strategy may be a good choice because it can

be implemented efficiently and gives high storage efficiency.

Because the new strategies are only applicable for blocks of size
smaller than the page size, they have to be combined with another strateqy
which is used for large blocks. To obtain the results gquoted in Section 7
we combined the new strategies with an efficient implementation of the

FIRST-FIT strategy.

As mentioned in Section 2.12, none of the strategies considered in this
paper make use of information about which wirtual pages are present in
random access memory, and better strategies might be feasible if such
information is available. Ancther area for future work is the influence of

different paging strategies.

all the storage allocation strategies discussed in this paper have been
implemented in {slightly machine-dependent} Fascal on a VAX computer
running under VMS: readers interested in obtaining further information

should contact the author.
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