[91]} Appeared in Australian Computer Science Communications 7, l(Feb. 1985). 17.1

The Most—Recentlv-Used Stratepy for Dypnamic Storage

Allocation on a Computer with Virtual Memory

Richard P. Brent
fsustralian Natlonal University
Box 4, Canberra, ACT 2601

Abstract

We compare several dynamic storage allocation strategies under the
assumption that they will be used on a computer with virtual memory.
We show that dynamic storage alloeation strategles which work well om
computers without wvirtual memory may exhibit poor paging behaviour in a
virtual memory environment, We suggest a new dynamic storage allocatiom
strategy, the "most-recently-used" (MRU) strategy, which is intended to
minimize the number of page faults while keeping the total (virtual)
memory used within reasonable bounds. Ewen in the simple case that all
blocks allocated are of one fixed size, the MEU strategy may be preferable
to the widely used strategy of keeping a singly-linked list of free blocks
and allocating them according to a stack {l.e. last-in, first-out) discipline.

1. Introduction

Most comparisons of dynamie storage allocation strategies make the
assumption that a fixed amount of random—access memory is available for
use by the dynamic storage allocator [1,3,6,7,91, If a request can not
be satisfied because no sufficiently large block of memory is free, then
the request either fails or is gqueued until it can be satisfiled. Thus,
the traditiocnal eriteria used to compare dynamic storage allocation strategles
are!
a) the expected storage efficlency (i.e. the ratic of memory requested
to memory used) under conditions of heavy loading; znd

b) the efficiency of algoricthms which implement the strategies (i.e.
how the processor time varies with the number of blocks allocated, etc.)}.

In this paper we assume that a computer with “wirtual" memory [5] is
used. A process which executes on such a computer has a certain amount
of Yreal" random-access memory available, but it can address a larger
amount of wirtual memory. When the process attempts to access a virtual
memory location which does not correspond to a location in the random—-access
memory, a page fault interrupt occurs and a combination of hardware and
software {(transparent to the process) reads the page containing the virtual
memory location from a secondary storage device (e.g. a disk) into random-
access memory, possibly after writing out some other page to make room for
it. The details of the paging process are not important here. The virtual
memory available to a process is often limited by the size of the paging
file rather than by the number of bits in a virtual address (see Section 2.3}.
If a disk access is required then the time taken to access a virtual memory
location exceeds the random-access memory cycle time by a factor of more
than 10,000. Henece, it is vital to ensure that most virtual memory references
do not generate page faults.

Several authors have considered strategles for allocating executable
code in order to minimize the number of page faults which occur when the
code is executed (see for example [5,8] and the references given there}.
However, there does not seem to have been much study of strategies for
allocating data (e.g., dynamically created records, I1/0 buffers, etc.) with
the same objective of minimizing page faults,



17.2

On a computer with virtual memory, criterlon a) above is usually of
less significance than

c) the expected number of page faults which occur when the stracegy
is used to allocate (virtual) memory dynamically.

In this paper we compare some well-known dynamic storage allocation strategies
with a new strategy, the "most-recently-used" (MRU) strategy, using criterion
c¢). The comparison is experimental rather than theoretical because realistic
theoretical resulcs appear to be wvery difficult to obtain. The experimental
resulrs indicare that the MRU strategy performs better than traditional
strategies on criteriom c}, di.e. it exhibits better paging behaviour im

a vircual memory envirooment. A different way of stating this result is

that we can get by with a smaller working set (i.e. a smaller amount of real
random-access memory} for the same number of page faults 1f we use the MRU
strategy. The MRU strategy can be implemented efficiently, i.e. it compares
well with traditional strategies on criterion b), Hence, it may be of interest
even if criterion ¢} is drrelevant.

In Section 2 we describe several strategies for dynamie storage allocation
in the case that all bloeks requested have the same size, This case is trivial
on a computer without virtual memory, as the obvious "stack" strategy {(which
involves keeping a singly-linked list of free blocks and allocating them
according to the last-in, first-out principle} is fast, easy to implement,
and gives optimal storage efficiency. However, it is nontrivial om a
computer with virtual memory: both the MRU strategy and some other strategies
[4] may outperform the atack strategy on criterion c}. Experimental results
for the different stratepies are given in Sectiom 3.

Pue to space limitations, we do not consider the case that blocks of
various different sizes have to be allocated:; for this case the reader is
referrved to [4]. However, it is easy to extend the MRU strategy to handle
requests for blocks of different sizes, and the conclusion reached in [4]
is essentially the mame as we reach on the basis of the results guoted in
Section 3: the MRU strategy (combiped with another strategy such as first-fit
to handle blocks larger than the page size) 1s preferable to well knowm
strategies on a computer with virtual memory.

2. Allocation of equal-sized blocks

In this Section we describe four different stratepgies for allocating
and freeing blocka of one fixed size 5 bytes on a computer with wirtual
memory and pagesize p bytes., We shall assume that the blocks are large
enough to store one pointer (i.e. a virtual memory address) but significantly
smaller than the page size.

2.1 The STACK strategy

4 simple strategy, which we call the STACK strategy, is to keep a stack
of free blocks, When a new block is requested, it is allocated from the
atack according to the last—in, first-out principle, If the stack is empty,
a new page of virtual memory is obtained and divided inte ¢ = {p/s} blocks,
which are placed on the stack, The stack may be implemented by a singly-
linked 1ist, with each free block containing a pointer teo the block beneath
it on the stack.

The STACK strategy is eaay to implement and very efficient in term of
CPU time. However, it may not be the best strategy in a virtual memory
environment. To see why this might be so, consider a process which runs
for a long time, allocating and freeing blocks asco that each bleock has a



17.3

finite lifetime and the total number of blocks allocated at any time
fluctuates around some equilibrium value n. (This might be the case for

a discrete simulation, or for an operating system allocating and freeing
1/0 buffers.) After some time the addresses of blocks will be randemized
50 that blocks which are close to each other on the stack are unlikely to
be in the same page. Thus, a large number of page faults may be generated
if n/c exceeds the number of pages of real memory available to the process,
Also, 1f n deereases after a period of high load, the number of pages
referenced by the process is unlikely to decrease in proportion, because
the allocated blocks will be randomly distributed over (almost) all the
pages which were required in the past.

2.2 The RANDOM stratepy

For the RANDOM strategy we maintain a pool of free blocks and, when
a new block is requested, we randomly choose a block from the pool {unless
the pool is empty, in which case we obtain a new page of wirtual memory as
for the STACK strategy).

We shall use the RANDOM strategy as a benchmark. A good strategy for
use in a virtual memory environment should generate significantly less
page faults than the RANDOM strategy! When making such comparisons we shall
ignore the space overhead required to implement the RANDOM strategy
efficiently (i.e. the space for an array of pointers to free blecks).

2.3 The NOFREE strategy

It is sometimes suggested that dynamic storage allocation strategies
are irrelevant on computers with sufficlently large virtual address spaces
because there is no need to explicitly free blocks. We call this the NOFREE
strategy.

Unfortunately, the NOFREE strategy is not always feasible, The virtual
pages which have not been explicitly freed must be kept either in real memory
or on secondary storage {e.g. a disk}, since the system has no way of telling
that they will never be referenced again. Typically several processes are
executing concurrently, so the quota of disk space available to each may be
relatively small. For example, on the VAX computers used by the author, this
quota ranges from 4 Mbyte to 14 Mbyte, much less than the 4096 Mbyte which is
theoretically addressible on machines with 32-bit wvirtual addresses. Thus,
the NOFREE strategy is not feasible for long-running processes such as
operating system storage allocators, although it may be feasible for small,
short-running processes. We show in Section 3 that the NOFREE strategy is
not necessarily the best strategy even when it is feasible., The reason for
this 1s that blocks which are being referenced may be spread over many pages,
since most of the space in these pages is occupied by blocks which are no
longer being referenced but have not been freed.

2.4 The "current page” concept

If a block has just been allocated in a page P, then it is reasonable
to satisfy requests for additicmal blocks by allocating them in the same
page P while this is possible, i.e. untll all ¢ = |p/s] blocks in page P
have been allocated. There are two motivations for using page P in preference
to another page!

13 If a block has recently been allocated in page P then P should be in
random—access memery, and allocating another block in page P should not
immediately canse a page fault.



17.4

2) In many applications blocks which are allecated at about the same time
tend to be referenced at about the same time. For example, a list may be
created by allocating and linking sewveral blocks; subsequently the list may
be searched by following its links. Thus, it is desirable for blocks which
are allocated at about the same time to be on one page or a small number

of pages.

The MRU atrategy and the LEAST-FREE and MOST-FREE strategies of [4]
have in common that, once a "current page" P has been chosen, blocks are
allocated from page P while this is possible. Once all blocks in page P
have been allocated, a new current page is chesen. The strategies differ
in the criteria which they use to choose the new current page.

Let ¢(P) denote the number of free blocks in a page P. Since we
assume that all blocks are of the same size s and are not split across
page boundaries, we have 05¢{P)zZc, Thus $#(P) = ¢ means that all blocks
in page P are free (although they may have been allocated and subsequently
freed), We divide the set of virtual pages into four subsets:

8, = {P | no block in P has ever been allocated},

1

SZ = {I,?Esl | ¢(P:’ = c}l

§, = {P | 0<¢(P)<c}, and

s, = (P | ¢(p) = 0},
Informally, S. is the set of pages which have not been referenced, 52 is
the set of rages which have been referenced but contain neo
currently allocated blocks, 53 is the set of pages which contain both
allocated and free blacks, and S# is the set of pages which contain

no free blocks,

4 new current page can be selected from 5., S, or 53 if they are
nonempty. However, the MEU strategy chooses ~a “page “in S, if S, 1is
nonempty. If 5. is empty but 5, is nonempty then a page in ~5. is”chosen

{using the atack, i.e. last-in, first-out principle). “Only 1f 3§
and 5, are empty is a current page chosen from S,. The rationale is ‘that
we want to minimize the total number of pages referenced (and hence avoid

using 8. if possible) and also minimize the number of pages on which currently

allocategd blocks reside (and hence avoid using Sl or 52 if 53 is nonempty).

2.5 The MRU strategy

The MRU strategy uses the current page concept. Although the dynamic
storage allocator does not know when a page is accessed, it does at least
know when a block is allocated or freed. The MRU strategy is to maintain
an ordered list of pages In S.; when a block in page P is freed, P is moved
to the head of the list {unlegs $(P) = ¢, in which case P is no longer in 5
When it is necessary to choose a new current page, the page at the head of
the ordered list is chosen (provided the 1ist is nonempty). The rationale
is that a recently referenced page is likely to be in random-access MEMOTY .

37

The MRU strategy can be implemented efficiently by keeping a doubly-
linked list of page headers which correspond to pages in 83: for details
see [4].

3. Experimental rasults

In this Section we report some experimental comparisons of the four
strategies for dynamic storage allocation of equal-sized blocks described



in Section 2. Since we are interested in the effect of each gtrategy on
paging behaviour, we disregard any overheads due to the implementation of
the strategies (i,e. we are comparing strategles rather than algorithms
which implement them: for the distinction see [3,41). To obtain reproducible
results we simulate paging, using a strict least—recently—used paging
strategy [5]. Tor a comparison which includes the owverheads due to the
implementation of the strategies and gives actual rather than simulated
page faults, see [4].

3.1 Results for TRIDIAG

TRIDIAG is a Pascal program which simulates the tridiagonalization of
a symmetric matrix on a systoelic array [2]., In Table 3.1 we guote the page
faults generated when simulating the tridiagomalization of a 128 by 128
matrix, using two different working set sizes (2000 and 4000 pages of 512
bytes). The columns headed "normalized page faults" give the ratioc of page
faults for each strategy to page faults for the RANDOM strategy., "wirtual
size" is the total number of wvirtual pages referenced and "wrorking set" is
the maximum number of pages in random-access memory at any one time,

TRIDIAG is typilcal of many list processing programs in that its ugage
of memory builds up to a peak and never reaches even approximate equilibrium,
The block size is small (6 bytes) as each block contains only a small integer
and a pointer to another block. In all cases TRIDTAG makes 1,803,213 requests
te allocate a block, 1,789,653 requests to free a block, and the maximum
number of allocated blocks is 545,777.

Table 3.1: Results for program TRIDIAG

Strategy Vircual Pape faults Normalized Page faults Normalized

size {working set page (working set page
{pages) 2000 pages) faults 4000 pages) faults
STACK 65423 34695380 0.498 606808 0.406
RANDOM 6423 6969773 1.000 1495095 1,000
HOTREE 21467 72471 ¢.010 21866 0.015
MEH 6423 160555 .023 25089 0.017

Since no effort was made to make the paging simulation efficient, we
do not quote CPU times in Table 3.1. However, when the paging simulation
was turned off the CPU times were 1595 seconds for NOFREE, 2339 seconds
for MRU, and 3093 seconds for STACK, when run on a VAX 11/750 with actual
working set size 3000 pages. We were forced to abandon an attempt to
compare these times with that for VAX WMS Pascal "new" and "dispose" after
running for 72 hours and generating 400,000,000 page faults! For further
comments on YMS rouwtines, see [4].

From Table 3.1 we see that the STACK strategy does not perform very
much better than the RANDOM strategy. NOFREE is the best strategy if the
virtual size required to rum it (21467 pages) is not prohibitively large.
MRU is almost as good as NOFREE and requires a much smaller virtual mize
(6423 pages).

3.2 Results for PQSIM

PQSIM is a Pascal program which simulates dizerete events uging a
priority queue implemented as a "leftist tree" [7]. It is probably typical
of many pregrams which manipulate bimary trees. Each dynamically alleocated
block (actually an unpacked Pascal record) contains five fields: two pointers,

17.5



a key, a priority wvalue, and & small integer giving the distance to the
nearest leaf in the tree, Thus, the block size is 20 bytes.

In Table 3.2 we cowmpare the paging behavicur of several dynamic storage
allecation strategiea when used by POQSIM. The events simulated by PQSIM
had exponentially distributed inter-arrival times and liferimea. The mean
nurber of arrivals per (simulated) second was about 200 and at equilibrium
the mean number of events in the gueue was about 2400: for details see [4].
In all cases the simulated working set size (excluding implementation-
dependent overheads) was 50 pages. POQSIM was run for 2000 (simulated)
seconds, but page faults were only counted after the firat 1000 (zimulated)
seconds, once approximate equilibrium had been reached, Results quoted for
NOFREE in Tables 3.2 and 3.3 are estimated, due to paging file quota
restrictions.

Table 3.2; Results for program POSIM

Strategy Virtual size Page faults Normalized
(pages) page faults
STACK 101 561080 0.71
RANDOM 102 794000 1.00
NOFREE 31360 445709 0.56
MRU 101 374908 0.47

From Table 3.2 we see that the difference between the strategies
for PQSIM is not so marked as for TRIDIAG. Even so, the best strategy
(MRU) generates less than 50% of the number of page faults that the RANDOM
strategy does, MRO is significantly better than NOFREE and STACK. Thus,
the HOFREE stratepy is not always best even if it is feasible, {For more
evidence of this, see [4].)

3.3 The effect of warving the load

In some applications it is desirable to have a strategy which adapts
well to a slowly changing load. TFor example, we expect the response of a
time-sharing aystem to improve when the load decreases. Thus, the simulations
described in Section 3.2 were repeated with the load for the first 1000
gimulated seconds doubled (i.e. mean inter-arrival times halved). The lead
for the second perioed of 1000 asimulated seconds, during which page faults
were counted, was the same as before. The results are summarized in Table 3.3.
The last column of the table gives the ratio (page faults with inirial lead
doubled)/{page faults with initial load as in Section 3.2).

Table 3.3: Results for POSIM after initial load doubled

Stracegy Page faults Normalized Pape fault
page faulrs ratio
STACK 10442135 0.76 1.86
RANDOM 1372438 1.00 1.73
NOFREE 520717 0.38 1.17
MRU 337648 0.25 0.90

From Table 3.3 we see that the STACK and RANDOM strategies do not
adapt well to a decreasing load., This is because blocks are spread over
a large number of pages when the load is high, and meost of these papges
continue being accessed after the load has declined. The HOFREE strategy
adapts reasonably well, in that it performs almost as well after a period
of abnormally high load as afrer a period of normal load. The MBU strategy

17.6



17.7

adapts very well, in faet it performs better after a period of high load
than after a period of normal lcad. Overall the MRU strategy performs
significantly better than the other strategies.

3.4 Comments on the experimental results

From the experimental results gquoted in Sections 3.1-3.3, and similar
results given in [4] but not quoted here because of space limitations, we
conclude:

1. The NOFREE strategy performs well, but not always as well as the MRU
strategy (see Tables 3,2 and 3.3). Thus, even when virtual size restrictiona
do not preclude the use of the NOFREE strategy, it is not necessarily the
best choice.

2. The MBU strategy performs better than the STACK strategy, and the
difference can be dramatic {see Table 3.1}. Hence, the S5TACK strategy is
not to be recommended for use in a virtual memory environment.

3. Other strategles which use use "current page" concept (Section 2.4)
pexform well, but the MRU strategy appears to be the best of the strategies
considered in {4]. This may depend on the paging strategy - it is plausible
that our choice of the least-recently-used paging strategy bilases our
results in favour of MRU,

4. Conclusion

The criteria which should be used to compare dynamic storage allocation
atrategies {and the algorichms which implement the strategles) differ if the
stratepgies are to be used on a2 computer with virtual memory rather than on
one without virtuzl memory. We have preasented a new strategy, the MBRU
strategy, which is intended to be good om a computer with vircual memory.
The new strategy can be implemented efficiently and has good worst-case
behaviour (see [4}). It compares well with traditional strategies, both
in the special case that all blocks have the same size (see Section 3) and
in the general case where blocks may differ in size (see [4]). Even on a
computer without virtual memory, the MRY strategy may be a good choice
because 1t can be implemented so that blocks can be allocated and freed
in constant time (independent of* the total number of allocated blocks) and
gives high storage efficiency (see [4]). Bocause the MRU strategy 1ia only
applicable for blocks of size less than the page size, it has to be combined
with another strategy which is used for large blocks, The first-fit strategy
is a suitable choice, provided that it is implemented well [3,4].

None of the strategies considered in this paper make use of information
about which virtual pages are present in random-access memory, and better
atrategies mipght be feasible if such information iz available. Another
area for future work is the influence of different paging strategies.

The MRU strategy has been implemented in (slightly machine—dependent}
Pascal on a VAX computer running under VMS; readers interested in

cobtaining further information should contact the author.

5. Acknowledgement

The support of the Australian Research Grants Scheme and the Centre
for Mathematical Apalysis at the Australian Natienal University is gratefully
acknowledged,



References

c.

A,

Bays, A comparison of next-fit, first-fit and best-fir, Comm. ACM

20 (1977), 191-192.

Bojanczyk and R. P, Brent, Tridiagonalization of a symmetric matrix

on a square array of mesh-connected processors, to appear in

J. Pargllel and Distributed Computing. Available as Report
CMA~R45~83, Centre for Mathematical Analysis, Australian Hatiomal
University, December 1983.

Brent, Efficient implementation of the First-fit strategy for
dynamic storage allocation, Australian Computer Seience
Comminieations 3 (1981), 25-34. Revision avallable as Report
CMA-R33-84, Centre for Mathematical Analysis, Australian National
University, August 1984,

Brent, Dynamic storage allocation on a computer with virtual memory,
Report CMA-R37-84, Centre for Mathematical Analysis, Australian
Mational University, September 1984.

Denning, Virtual memory, Computing Swrveys 2 (1970}, 153-189.

Hext, A storage management laboratory, Australiagn Computer Science
Comminications 2 {1980), 185-193.

Knuth, The drt of Computer Programming, Vol. 1 (2nd editlom),
Addison-Wesley, Reading, Mass., 1973.

Stamos, Static grouping of small objects to enhance performance
of a paged virtual memory, ACM Transactions on Computer
Systems 2 (1984), 155-180.

Stephenson, Fast fits - New methods for dynamic storage allecation,
Proe. Ninth ACM Symposium on Operating System Prineiples, ACM,
New York, 1983, 30-32. Summary of a paper to appear in ACM
Pransactions on Computer Systems.

17.8



