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Summary. This paper presents a new algorithm for computing the QR
factorization of an m xn Toeplitz matrix in O(mn) operations. The algo-
rithm exploits the procedure for the rank-1 modification and the fact that
both principal (m —1) x (n — 1) submatrices of the Toeplitz matrix are identi-
cal. An efficient parallel implementation of the algorithm is possible.
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1. Introduction

A matrix T is Toeplitz if the elements on each diagonal are constant. Toeplitz
systems of linear equations and Toeplitz linear least squares problems arise
from many sources, see [2], and it is important to be able to solve such
systems in as few operations as possible. As a square Toeplitz matrix is
determined by at most 2n—1 numbers, it is not surprising that there are
algorithms which solve Toeplitz systems of linear equations using only O(n?)
operations or even O(n log® n) when fast techniques are applied.

Most algorithms for solving Toeplitz systems require that all principal
submatrices of T are well conditioned. For example, well conditioned positive
definite matrices possess this property. If some principal submatrix is singular,
the algorithms may fail. This difficulty could be circumvented if the orthogonal
decomposition of the matrix T were available. Recently, Sweet [6] has pro-
posed an O(n?) algorithm which computes the QR decomposition of a square
Toeplitz matrix. His algorithm essentially calculates the Cholesky factors of
TTT without explicitly forming T™T and requires 10n%+O(n) multiplications
to compute R and 25n? + O(n) multiplications to compute both Q and R.

In this paper we present a simpler and slightly faster algorithm for the QR
factorization of Toeplitz matrix. Our algorithm exploits principles similar to
those used in Sweet’s algorithm but is applicable to rectangular matrices and
requires only mn+6n?+ 0(n) multiplications to compute R and 13mn+6n?
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+ O(n) multiplications to compute both Q and R. The matrix R is generated
row by row and the matrix Q column by column, starting from the first row
and column respectively. Each row of R (column of Q) is calculated from the
previous row (column) after three implicit modifications of rank-1 to the
matrix R, one updating and two downdatings. The procedure for rank-1
updating is as in Gill, Golub, Murray and Saunders [3], while that for rank-1
downdating can be regarded as the reverse of rank-1 updating. Both updating
and downdating operate on rows of R (columns of Q) from left to right
(from top to bottom) which makes efficient parallel implementation possible.
This is explained in detail in [1].

Section 2 contains a description of rank-1 updating and rank-1 downdating.
In Sect. 3 an algorithm for the QR decomposition of a Toeplitz matrix is given.
Some concluding remarks are made in Sect. 4.

2. Methods for Rank-1 Modification

Our method for the QR decomposition of a Toeplitz matrix uses procedures
for the rank-1 modification of a Cholesky factorization. In this section we
describe algorithms for rank-1 updating and rank-1 downdating. The deriva-
tion of the first algorithm is taken from Gill et al. [3] while the derivation of
the latter follows the one given in Lawson and Hanson [4]. We start with the
description of the updating procedure.

Let R be an nxn nonsingular upper triangular matrix with positive ele-
ments on the diagonal. For a given n-vector x consider the matrix X,

X=RTR +xx". (2.1)
As X is positive definite the matrix X can be uniquely factorized in the form
X=RTR (2.2)

where R is upper triangular with positive diagonal elements. We want to find
the matrix R. This problem is usually described as that of updating the
Cholesky factors following a rank-1 modification. Clearly, we should be able to
calculate R from R and x using fewer operations than the Cholesky factoriza-
tion of X would require. This is indeed true and the matrix R can be de-
termined by the following procedure.

Consider the augmented matrix Y of dimension (n+1) xn

T

Y= [’; ] 2.3)

and premultiply Y by an orthogonal (n+1) x (n+ 1) matrix U which transforms
Y into upper triangular form [RT, O]7 with positive diagonal elements. The
matrix R is the desired matrix R. To see this consider the product Y”Y and
the following calculation

Y?Y=YTUTUY=[R7,0][R7,0]"=R"R. (2.4)
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On the other hand we have
Y'Y=RTR+xx"=X=RTR. (2.5)

From the uniqueness of the Cholesky factorization, the matrices R and R are
identical.

The matrix U can be chosen as a product of n plane rotations U, ,, ,,
k=1,...,n, where U, ,, , is a rotation in the (k,k + 1) plane such that

R
Un,n+ 1Un— 1,n°"* U1,2Y= [OT] .

The matrix U, , ,, has the following form

«—kth row (2.6)

1

where scalars ¢, and s, are chosen so that the (k+1,k) element in
U,_1x---Uy,Y is reduced to zero. Note that the matrix U, ,,, operates only
on the kth and the (k+1)st row of the product U, _, ... U, ,Y, so the (k+1)st
row of the product U,_, ;... U, ,Y is the same as the kth row of the matrix R.
If we denote the kth row of U,_, ,...U_,Y by [0,...,0,4, ,...,d, ,] and the
kth row of R by [0,...,0,7,,...,n ], then for rows k and k+1 we have

~

( ck Sk) (07--'50, ak,k’---aak,n)_(07"':Oark,k’rk,k+17---9rk,n ) (27)
= R .
n

A A
—Sk Ck 0,...,0, rk’k’...,rk’ 0,...,0, 0, ak+1’k+1,...,ak+1,n

where
=, )i+ (., D),
Ci ::aAk,k/'fk,k’

St =N /T ko

(2.8)
and for j=k+1,...,n

~ A
N, i =Ck G, j+ STy, j

Here [0,...,0,% 4, % 411, ---» e o] denotes the kth row of the desired matrix R.

The above calculations are repeated for k=1,...,n. Thus the overall updat-
ing procedure requires 2n? + O(n) multiplications.

Now we proceed to the description of the downdating procedure. Two
approaches will be presented, both leading to the same algorithm.

As before, let R be an nxn nonsingular upper triangular matrix with
positive diagonal elements. For a given n-vector x we want to find the Chol-
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esky factorization of the matrix
X=RTR—xxT, (2.9)

where it is assumed that x is such that X is positive definite. The Cholesky
factor R is unique if we impose the condition that R has positive diagonal
elements. We shall refer to the problem of finding the Cholesky factor R for
the matrix X as the downdating problem.

Once again it is possible to calculate R directly from R and x in a more
efficient way than by explicitly forming the Cholesky factorization of X. Let i
denote the imaginary unit (i = —1). Then (2.9) can be rewritten as

X=Y"Y, (2.10)

v [i XT]
R
is an (n+ 1) x n matrix. N
Now consider an (n+1) x (n+1) matrix V, ., of the form

where

1

. i, P,

Viks1= B ia «kth row (2.11)
k k

1.
where o, and , are real and Vk, «+1 has the property that
Vkl:k-i»lvk,k—l—l':l‘ (2.12)

Note that Vk, v+ 1 operates exclusively in the plane (k, k+1). Thus premultipli-
cation by V, , ., alters elements only in rows k and k+ 1.

Consider any (n+ 1)-vector which in rows k and k+ 1 has elements iy and ¢
respectively, y and o real. If

02> 9?

then it is possible to choose o, and f, in such a way that in rows k and k+1

we have . p .
iog ) iy )
(——Bk icxk) (5)3(0)' @13)

Indeed if

w=(6*—y%)*
then

o, =y/@

B =0d/w

satisfies both (2.12) and (2.13).
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We can formally define a sequence of matrices Vn - I,Vn " ...,V , which
triangularize the matrix Y=[ix,R"]". Let [0,...,0, id, ,....id, ] denote the
kth row of the matrix V,_,,...V, ,Y. The (k+Dst row V,_,,..V, ,Y is
identical to the kth row of R and has the representation [0,...,0, 1 ,,..., 1 n]
The transformation V, , 1 is chosen so as to annihilate the (k+1 k) element in
the matrix V,_,,..V,,Y. The rows k and k41 of the product
Vekitr-r VY are obtained from the formula

~

( iy ﬁk) ( , 1ak s - .,1ak,n)__(0,...,O,rk,k,rk,k“,...,rk,n

—B. i O,...,O, T ks s Teom

where

. A ), (2.14)

0,...,0, 0, idy 1 y1>---ril 1,

Tk = (rkzk dl%,k)%’

o =ak,k/rk,ka

By =" /T ks (2.15)
and for j=k+1,. '
i = —“kdk,j+ﬁkrk,j

Here [O,...,0,% ,,...,% ,] denotes the kth row of the matrix R. It can be
shown that our assumption that X =RTR —xx” is positive definite implies that
Fi,x 18 real. Thus (2.14) can be performed entirely in real arithmetic. The matrix
v .V VY= [RT O]7 is real and upper triangular.

n,n+1 "'n—-1,n""
Let V=V ..V .. Vl,2 Then using (2.11) we see that

,n+1
X=YTY=YTVTVY=RTR,

i.e., R is the desired Cholesky factor of X. As Calculations (2.14) and (2.15) are
to be repeated n times, the cost of obtaining R is 2n% 4+ O(n) multiplications.

The structure of the downdating procedure is analogous to the structure of
the updating procedure. The significant point is that in both cases the matrix R
can be generated from the matrix R and vector x, row by row starting from
the top row, and that each consecutive row of R is computed using knowledge
of only two other rows: see (2.7) and (2.14).

We now describe a conceptually different but algebraically equivalent ap-
proach to the downdating problem. Recall that we want to find the Cholesky
factor R of the positive definite matrix X defined by (2.9), where R and x are
given. For the sake of uniqueness we assume that R has positive diagonal
elements.

Suppose for a moment that R is known and that we want to find R. The
Relation (2.9) is equivalent to

RTR=RTR+xx". (2.16)

Thus we have the updating problem.

Let U=U, ,,,... U, , be a product of a sequence of plane rotations which
transform Y= [x,R ™" into upper triangular form [R7,0]". Denoting by
[,...,0,4, ,,....4,,] the kth row of U,_,,..U ,Y and by
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[o,...,0,% 4,...,% .1 and [0,...,0,% ,,...,7 ] the kth rows of R and R respec-
tively, for rows k and k+1 we have relations similar to (2.7) and (2.8), i.e.,

( Ch Sk) (0,...,0,ﬁk,ka..-,&k,n).__(0’""O’rk,k’rk,k+1’""rk”' ) (2.17)

A

—'Sk Ck 0,...,0, ’fk,k""’rﬂk,n 0,...,0, O, dk+1’k+1,...,ak+1,n
where
T = (@ H e (2.18a)
Ce =0 /T 1o (2.18b)
_ Sk = Tie, 1/ T, 10 (2.18¢)
and for j=k+1,...,n
Ty =Gl j S T s (2.18d)
Ay 1,j< ——Skék,j+ck7k,j' (2.18¢)

Now return to the downdating problem. Assume that [0,...,0,4, ,,...,4, ]
and [0,...,0, r ;,...,7 ] are known. By solving (2.18a) and (2.18d) for [0,...,0,
Tiks > Ty o] WE Obtain

P =0y — a5, K (2.192)
and for j=k+1,...,n
P, ;=" ;= Cic G, )/Sk- (2.19b)

Relations (2.19a), (2.19b) and (2.18¢) give us an alternative way of computing
the matrix R from R and x.

Relations (2.19b) and (2.18¢) are algebraically equivalent to the Relations
(2.15). When we express ¢, and s, in (2.19b) and (2.18¢) by (2.18b) and (2.18¢)
we get exactly the same formulae for # ; and 4, ; as in (2.15). However, we
prefer to use Formulae (2.19b) and (2.18¢) for considerations related to their
stability.

We conclude that one can treat the downdating problem as the reverse of
the updating problem, and that there is a one-to-one correspondence between
the matrix U, ,,, defined by (2.17) and the matrix V, ,, defined by (2.14);
each uniquely determines the other.

In the next section we make use of both downdating techniques described
here.

3. An Algorithm for the QR Decomposition of a Toeplitz Matrix

Let T be a full rank m x n Toeplitz matrix, mn,

tO t—l o-.t___n+1
t, to ool_pin
T= to
tl
tm~1 tm—2 tm—-n
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Using the shift invariance property of Toeplitz matrices we can partition T in

two ways:
to y’
T=(" ) 1
(i . (3.1)
and
T yR
T=(XR; t,.._,,)’ (32)

where T_, is an (m —1) x (n—1) principal submatrix of T,

xT=[ty,t5,.0st,_ 4],
XRT=[tm_l,...,tm_.,.+1],
Yi=[t_1seent_piql,
yRT[t—n+ 1> ""tm—n——l]’

3.1. Calculation of the Triangular Factor R

Let R be an upper triangular factor of the Cholesky decomposition of TTT,
1e.,
RTR=TTT. (3.3)

It is well known that matrix R is the upper triangular factor from the QR
decomposition of T.
In a similar manner, we partition R in two different ways

_ (M1 rfr) 4

where r,, =[r, ,,...,r ,] is the first row of R except for its first element, R, is
an (n—1) x(n—1) principal bottom submatrix of R, and

R— (1(‘) ), (3.9)

n,

where r;,=[r ,,...,7,_1 ,]" is the last column of R except for its last element
and R, is an (n—1) x (n —1) principal top submatrix of R.
From (3.1), (3.4) and (3.3) we get

( 2, | rarg, )_( 2+xTx | toyT+xTT_, ) (3.6)
l'fTr"1,1 | rfr'rfr+RgRb t0y+T_T1x ‘ ny+Tf1T_1 ’ .
Similarly, from (3.2), (3.5) and (3.3) we obtain
(RtTR,| Rr,, )_(TflT_1+xRxRT | TTyR—I—xRtO) (3.7)
l.chllt | rchrlc+rn2,n - yRTT—l +tm—anT ' yRTyR+tr%1—n . .
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Comparison of the upper left submatrices on both sides of (3.7) gives
RIR, =TT, T_, +x®xRT (3.8)
while comparison of the lower right matrices on both sides of (3.6) gives
RyR,+rfr, =TI, T_ +yy" (3.9)
Finally, (3.8) and (3.9) give the main relation
R{R,=RR,+yy" —x*x*T —rlr,, (3.10)
where, from (3.6), r, is given by
r, =ty +x"T_ )/t +x"x)% (3.11)

Relations (3.10) and (3.11) form a base for computing R. Relation (3.10) says
that matrix R, can be obtained from matrix R, following a rank three modifi-
cation. When implemented as a rank-1 update followed by two rank-1 down-
dates, Relation (3.10) gives us a means of calculating the kth row of R, from
the first kK rows of R,. However, the kth row of R, is identical to the (k+ 1)st
row of R,. As the first row of R, is defined by (3.11), we have a recursion for
calculating the rows of R.
We write (3.10) as a sequence of three rank-1 mofifications

RIR, =R/R, +yy’, (3.12a)
RIR,=RTR, —x®xET, (3.12b)
R’R,=RIR,—rlr,,. (3.12¢)

Define U, V and W by the following relations

U [yT]=[R1], (3.132)

R ]~ LO7
*+ oRT
V[‘E ]:[gi], (3.13b)
1
W [‘l;f'] - [g';] , (3.13¢)
2
where
u=u,_,,..U,,

is a product of plane rotations of the form (2.6), and

V=V,_.,..V\,

_1’n .
and
W=W,_,,.. W,

are products of transformations of the form (2.11).
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In the Relation (3.13a) the vector y is known, and from (3.11) the first row
of R, is known as well. Thus we know the first two rows of the matrix [y,R/]".
This allows us to apply to [y,R7]" the first rotation U, , from (3.13a). As
U, , is the only rotation which operates on the first row of [y, R;]", multipli-
cation by U, , gives the first row of the matrix on the right hand side of
(3.13a), i.e, the first row of R,. The second row of the product plays the role of
y in the subsequent calculations. Now in the Relation (3.13b) the first two rows
of [ix® RT]T are known: we know the vector x® and, from the previous
calculation, the first row of R,. This is sufficient to apply the first transfor-
mation V, , from (3.13b), Wthh gives the first row of the matrix R,. Finally, in
the relation (3.13¢) we know the first two rows of the matrix [i rf,,RT]T the
vector 1, is that given by (3.11) while the first row of R, is known from the
previous step. Thus we can apply the transformation W1 , which gives us the
first row of R,. The first row of R, is identical to the second row of R,, so we
can repeat the whole procedure to get the second row of R,, then the second
row of R,, and finally the second row of R, which is identical to the third row
of R,. By applying this procedure to successive rows of R,, R; and R,, we
obtain all rows of R, which, together with (3.11), gives us the matrix R.

The kth step of the procedure for computing rows of the matrix R is
described below.

Let us denote rows k and k+1 of Uy, ;... U, ,[y,R/]" by

[Oa ---301 ?k,k’ ""Fk’"—l]
and
[0, ...,0, rk,ka“"rk,n-—l]’

rows k and k+1 of V,_ ...V, ,[ix®,RT]" by
[0,...,0,id, ,,...,iq ,_]
and
[0,...,0, a s> .- 11>
and rows k and k+1 of W,_, ... W, ,[ir},R}]" by
[0,..,0§dy g-vridy y_1]
and
[0,..,0, i grovesFo .

In the kth step of the recursion we perform the following calculations for
rows k and k+1 (corresponding to multiplications by U, .., V. ,,, and

Wk,k+ )

- multiplication by U, ,

( Cy Sk) (0,...,0,T'k’k,...,?k,n_l)z(O,---,O,ak,kaak,k+1"--aak,n—i ) (3.14a)

—Sk Ck 0,.-.,0, rk’k,...,rk’n__l 0,-o.,0, 0, rk+1’k+1,...,rk+l’n__1
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- mu]tiplication by Vk,k+ 1

( o ock) (0,...,0,1ak,k,...,1ak,n_1)

0,....,0, a4 s,y O _ 4

(0,...,O,ﬁ‘,k,"';c,k+1a""fk,n—l ) (3.14b)

0,...,0, O, lak+1,k+ 19 ~°-’lak+ 1,n—1

~ multiplication by W, ., ,

( iy, 5k) (0,...,0,iék,k,...,iék,,,_l)

. A A
-0, iy, 0,...,0, s ooy Frm1

(3.14¢)

_ (07'-'503 rk+1,k+ 1 Ty 1,k+2° ...,rk,n-l)

0,...,0,0,id; | jyq5--sllyyq

As Steps (3.14a)-(3.14c) are to be repeated for k=1,2,...,n—1, the cost of
obtaining R from y, x® and r,, is 6n*>+O0(n) multiplications. Because the
calculation of the vector r,, requires an additional mn+ O(n) multiplications,
the cost of obtaining the upper triangular factor R in the QR decomposition of
the matrix T is mn+ 6n* 4+ O(n) multiplications.

3.2. Calculation of the Orthogonal Factor Q

Next we describe a procedure for generating an m x n matrix Q with orthonor-
mal columns such that T=QR. We assume that the transformations U, V and
W defined by Relations (3.13a)-(3.13c) are known from the first algorithm
which computes the matrix R. This in turn means that the sequence
U,_yn---»Uy , of plane rotations which define the transformation U, and the
sequences V, _; ,,...,V, , and W, _, ....,W, , of plane rotations which define
transformations V and W corresponding to transformations V and W, are also
known.
Let the matrix T=[¢t,t,,...,t,] be partitioned as follows:

T=[C,t,]=[t, D]. (3.15)

Using the Definitions (3.1) and (3.2), matrices C and D can be partitioned in
the following way:
C=[T7,xM", D=[y,TI ]~ (3.16)

We want to find an m x n matrix Q, with orthonormal columns, such that

Q' T=QICt]= (g f)

(0]
—0T7 _ (" T\
b

where r,,, R, and R, are defined by (3.4) and (3.5), z is the last column of R
(except for the last element 7, ), and r, , and r, , are elements of R.
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Assume for a moment that we know an n x m matrix QT with orthonormal
rows such that

R
Qre=| | (3.18)
and
T
Q'D- f’]. (3.19)
R,

Comparing (3.17) with (3.18) and (3.19) we see that the matrix Q, is the
required matrix Q.
Premultiplying Q7 D by a sequence of plane rotations W, ,,...,W,_, . the

matrix Q7 D can be transformed into upper triangular form R, (see (3.13¢)),

R
W,,~1,,,...W1,2QCTD=[OZT]. (3.20)

If we denote by W the product of plane rotations W,_; ,,...,W, ,, and
define

Qi =WQ, (3.21)

then we see that we have the following relation:
R
QiD= [OzT] . (3.22)

Note that the matrix W corresponds to the matrix W of (3.13¢).
To get the second relation, which will give us a means of calculating the
matrix Q, consider an (m+1) x(n—1) matrix B:

af y' y? D
BE(T | =(c)=(x”)‘ (3.23)
XRT
Define two (n+ 1) x (n+ 1) orthogonal matrices Q and Q by
R 1 Of
= 3.24
=5 o) (3:24)
and
. (0T 1
= 3.25
2=(or o) (3:29)

and form two products Q B and QB. From (3.18) and (3.21) we have

yT
QB= R,) (3.26)
OT
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XRT
QB=(R2>. (3.27)
OT

Let U_;=U,_,,...U, , denote the product of the sequence of plane rotations
which transform the matrix [y,R7]" into upper triangular form R, (see
(3.13a)). Then for the matrix

and

Uu., o
UZ(OT 1)
we have
Rl
UQB=| 07 (3.28)
OT

The matrix U corresponds to the matrix U in (3.13a).

Similarly, let V_, =V, _, ...V, , denote the product of a sequence of plane
rotations which transforms the matrix [x® R]]" into upper triangular form
[RT,0]7. Then for the matrix

V., O
V‘(OT 1)
we have
Rl
VQB=|0OT|. (3.29)
OT

The matrix V corresponds to the matrix V in (3.13b).
Comparing (3.28) with (3.29) we obtain a relationship between the first n—1
rows of UQ and VQ:

[1,.0]U (

T T
1 O o 1) (330)

o Q/ Q; O/
Relations (3.22) and (3.30) form a base for the algorithm which calculates the
orthogonal matrix Q.

We describe the procedure for computing Q =Q, by considering the kth
step of the algorithm. Recall that the sequences U, _, ,,..., Uy ,, V,_; ,,.-., V¥,
and W,_, .,...,W, , of plane rotations that define transformations U, V and W
are known from the algorithm for computing the matrix R. Assume that prior
to the kth step the first k rows of QT and the first (k—1) rows of Q] have been
computed. In the kth step the kth row of QF is determined from the Relation
(3.30) and knowledge of U, ,,; and V,, ,, and the (k+1)st row of Q] is
determined from the Relation (3.22) and knowledge of W, , . ;.

Let QT have kth row [qy ,,...,4q:n] and Q] have kth row [y 1,.. )3 m]
Denote rows k and k+1of U, _, ,...U,; ,Q by

)=[1,,,0]v(

(ék,l,...,ék,,,,,dk,mﬂ), (3.31)
0, 4t 15> Qym



OR Factorization of Toeplitz Matrices 93

rows k and k+1 of V,_, ...V, ,Q by
(&k’i,...,&k‘rf, ak’m+1), (3.32)
qk,19"'7qk,m9 0
and rows k and k+1 of W,_, . ... W, , Q] by
( Prots e Piom ) (3.33)
Qe+ 1,104k +1,m
Premultiplying (3.31) by U, ., and (3.32) by V, , , ;, and using (3.30), we have
Ay yseensy A Ay 15 eeesQy s
U (k,l’ sYk,n> k,m+1)=V (k,i’ ’ k,r:l’ k,m+1). (334)
TN 0,90 10 Gim ST Gt G O

Comparing kth rows on both sides of (3.34) we get an equation which can be
solved for the vector [§, i,...,q, ] as the other quantities involved are known
from step k —1. Indeed, if

cosa, Ssina,
Uk,k+1=( . ),
—sino, C€OSo,
v ( cos fB, sinﬁk)
k1 \ —sinf, cosB,/’

then g, ;, j=1,...,m, satisfies the relation
dy. jcos o +q, ;_; sinoy, =, ;cos B, +§, ;sin f,, (3.35)

from which g, ; is easily determined.

Now, premultiplying (3.31) by U,,., and (3.32) by V,,,, we obtain
[dis 150 Gks me 1] @D [y 15ees By 1 men], 1€, the (k+1)st row of
U, ii1---Uy,Q and the (k+1)st row of V, ;. ...V, , Q.

Knowing the kth row of Q7, the kth row of Q] and the rotation W, ,_ ,,
the (k+ 1)st row of QT can be determined from (3.21). Premultiplying (3.33) by
W, .1 and comparing kth rows on both sides of (3.21), we obtain an equation
similar to (3.35), from which [q,., ;,...,4,, ] can be easily computed. In-
deed, if _

COsy, sin yk)

\“ =( )
k1 \ —siny, cosy,

then g, ;, j=1,...,m, satisfies the relation

i, CO8 Vit iy 1, SIN Y, =G, (3.36)

which uniquely determines g, ;. Now knowing [q,, (,---»4;41,m] W€ can
compute [P, 1 1»--sPis 1,m] Which will be required in the next step.

The Relation (3.34) gives us the kth row of Q] and vectors
(Gt 110>y tme1] @0d [,y 1se-5 841 me 1], While the relation (3.36) gives
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us the (k+1)st row of Q] and the vector [p,, ; 1,-... Pk, 1m]- Thus we have all
the data needed in step (k+1). As the first row of QT is equal to t /r,,, the
description of the algorithm for computing Q is complete.

It is easy to see that computations implied by (3.30) require 8mn multipli-
cations while those implied by (3.21) require 4mn multiplications. We conclude
that our algorithms for computing R and Q require 13mn+ 6n? + O(n) multipli-
cations. This could be reduced by the use of “fast” Givens transformations.

4. Concluding Remarks

We have presented an algorithm for the QR factorization which is somewhat
more efficient than Sweet’s algorithm [6] and is able to deal with rectangular
matrices. Furthermore, the implementation of the algorithm has indicated that
it performs at least as well as Sweet’s algorithm and is substantially more
accurate on some examples. However, when the condition number of the
Toeplitz matrix is large, we have observed that the decomposition obtained by
our algorithm does not compare well with the decomposition obtained using
standard O(n?) algorithms. In retrospect this is not surprising since the down-
dating of Cholesky factors (which is a key part of the algorithm) has been
shown by Stewart [5] to be a poorly conditioned problem. Nevertheless, the
proposed algorithm appears to compare very favourably with the other O(n?)
algorithms available.
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