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We present a linearly connected array of O(n) cells that solves
the linear least-squares problem for an (m + 1) X (n + 1)
Toeplitz matrix in time O(m + n). The total storage required is
O(n)words, i.c., only a constant per cell. The parallel algorithm
described in this paper is based on the sequential QR factoriza-
tion algorithm for Toeplitz matrices recently developed by the
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1. INTRODUCTION

A rectangular Toeplitz matrix isan (m + 1) X (n + 1)
matrix of the form

[t o Lo -t |
Lol [ Lopyy
4 { .
T = 2 lt‘I 0 2 ( 1.1 }
| Ii‘m '{m----l [nr--- 2 Im—n R

We are concerned with the least-squares solution of, possi-
bly, an overdetermined system of equations defined by the
full rank matrix 7 of the form ( I.1)and the (m + 1 )-dimen-
sional vector b, i.e., the minimization of | 7¢ — b|, over ¢
€ R""' where h& R™"!,

The least-squares problem

min| 7¢ — b, (1.2)

can be solved by solving the square system of normal
equations

T'Te= T (1.3)
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or by converting the original least-squares problem into an
equivalent problem

min||Q"Tc — Q"bll (1.4)
by premultiplying both 7T'and b by an orthogonal matrix Q
such that Q7T = R and R is upper triangular.

Note that the covariance matrix 77T is no longer
Toeplitz but has low displacement rank and hence can be
solved in time O(#) using fast algorithms developed in [4].

In this paper we show that it is possible to solve the least-
squares problem (1.2) on a linear array of O(n) processors
in time O(m + ») and storage O( n) without computing the
covariance matrix. The algorithm we use is based on the
OR factorization of the Toeplitz matrix T described in [1]
and solves the equivalent problem ( 1.4).

OQur approach to the OR decomposition of Toeplitz ma-
trices offers an improvement over the pioneering work by
Sweet [9]. Sweet has proposed an algorithm which com-
putes the QR decomposition of a rectangular Toeplitz ma-
trix in O(»nm) multiplications. Sweet’s algorithm generates
R column by column but, to the authors’ knowledge, calcu-
lations for computing column & cannot start before calcula-
tions for column k — 1 are finished. Moreover, elements
within a column have to be generated sequentially. Thus
it seems that Sweet’s algorithm, in its present form, is not
suitable for paraliel computation while our algorithm can
be implemented efficiently in parallel.

2. DESCRIPTION QF THE ALGORITHM

We start with a short description of the algorithm for the
QR decomposition of Toeplitz matrices. The reader is re-
ferred to [1] for a detailed discussion and derivation of this
algorithm.
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Assume that
Q'T=R, (2.1)

where Qisan (m + 1)} X (n + 1) matrix with orthonormal
columns,

QT = {QI s G2, -y QNH]T
q1a q2.1 Am+1,1
g2 q22 Grms1,2
=| - : . (2.2a)
i+ G2n+1 it 1041

and Risan (#n+ 1) X (n+ 1) upper triangular matrix,

na N2 ha Ty s
a2 Fa3 P21
R= (2.2b)
rn«l- L+l

The matrices Q" and R are generated row by row starting
from the top rows. Each row of R (and Q) is calculated
from the previous row after three implicit modifications of
rank 1 to the matrix R, one update and two downdates.

To describe the algorithm we need some auxiliary vectors
and matrices. Specifically, let

X= [xl y X250y xﬂ]T = [zm: 'f-m-—ly NRICE t,,,_,|4.1]T

be a vector consisting of the first » coefficients of the last
rowof T,

y= [yI!yZ'J e 'Jyf!]T:: [‘!—I!{—Zy- . --’I—H]T
be a vector consisting of the last n coefhicients of the first

rowof T, and

.f = [.fl ’f:la e ‘Jj.:l]'[- = [rl.Za rI‘va reey rl,rH-l ]T
be a vector consisting of the last »# coefficients of the first
row of R.

Furthermore, let

na N

rﬂJl _
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and
a2 T3 Ia P2 41 i
I3 g T3ne1
Rb =
| rl'H‘-I.PH—l

be respectively the principal # X n top and bottom subma-
trices of R.
Define three sequences of plane rotations G(«;, ), G(as),

e G(Ck'"), G(-Bl)a G(ﬁl)s L | G(ﬁﬂ)! and G(TI }9 G(’YZ}v
..., G(v,) by the relations

G(a,)G(etn-1)- - Ga)) [y, RI1" = [WT,0]"  (2.3a)
G(.BM)G(.SH—I)' t G(-BI)[):! ZT]T = [WT, O]T (2-3b)
G(v)G(vp1)- - GOy REYT = [Z27,017. (2.3¢)

The transformations G(eay), G(8:), and G(+v;) are rota-
tions in the plane (k, k + 1) and are defined by the cosines
and sines of the angles ay, B;, and v, such that the relations
(2.3a), (2.3b), and (2.3c) hold. It can be shown that the
relations (2.3a)-(2.3c) uniquely define W, Z, G(«,),
G{“Z)s sy G(ﬂf"), G(.BI )9 G(,S;)_), sy G(ﬁn)s and G(‘Yl)s
G(v2)....,G(v,); for details see [1].

The relation (2.3a) is an updating operation following
addition of the row y" to R, while (2.3b) and (2.3c) are
downdatings of W and Z following subtraction of rows x7
and /7, respectively.

Remark. Premultiplication by G( o), G(8), or G(vi)
alters only rows k and k + 1. Thus, when applying G(«;),
G(Bx), or G(v;) to a matrix we shall consider only rows k
and k + |, remembering that the other rows remain un-
changed. Also, we shall assume that the dimensions of
G(ey), G(B:), and G(vy,) are such that premultiplication
by G(ay), G{B:), and G(v,) is feasible.

Relations (2.3a)-(2.3c) are the basis of the recursive pro-
cedure for computing rows of the matrix R. In the kth step
of the recursion we determine, from (2.3a), the transforma-
tion G (o) and the kth row of W from (2.3b), the transfor-
mation G(f;) and the kth row of Z; and from (2.3¢), the
transformation G () and the kth row of R;,. In outline the
kth step of the recursion is the following.

Assume that, prior to execution of the kth step, rows k
and k+ 1 of G(ayg_y)--- G(a)[y, RF]1T are known. (Note
that the (k + 1)st row of G(ey_,)- - - G(a;)[y, RF]" is the
kth row of R,.) The transformation G(e«;) is determined
from the kth elements of rows k and & + 1 in such a way that
premultiplication by G'(«y) annihilates the kth element in
row k + I. Astransformations G(ayyy), . .., G(a,) will not
alter the kth row of G(ay)--- G(a))y, R1", premulti-
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plication by G( ;) gives also the kth row of ¥ (and the (k
+ )strow of G(a)- - - G(e){y, Rf1"). Now, in the rela-
tion (2.3b), we know the kth row of G(8i—1)- - - G(B1)} [ x,
Z 71" (from step k — 1) and the kth row of W. This allows
us to determine the transformation G{8;) and also the kth
row of Z. Similarly, in the relation ( 2.3¢) we know the kth
row of G(yx—1)- - - G(y)fs RE]1T (from step k — 1) and
the kth row of Z. Thus we can determine the transforma-
tion G(v;) and the kth row of R,. But the kth row of R,
(except for its last component) is identical to the (k + 1)st
row of R,. So we can repeat the whole procedure starting
now from rows k + 1 and & + 2 of G(ey)--- G(a)[y,
RT17. As the first row of [y, RT]" is known, and the first
row of R is given by 7| T'/| 7, |, where 7, is the first column
of T, the description of the procedure for computing R is
complete.

In order to compute the matrix Q let us define an
(m + 1) X (n+ 1) matrix P with orthogonal columns by
the relation

G(v2)G(yu-1)- -+ G(v)QT = PT. (2.4a)

Then it can be shown (detailed description is given in [1])
that the following relation holds:

o7
Uner, 01G (@) G tnr)- - Glan ){ ]

T
00 (2.4b)
=L, 01G G y---G 0 1
_[ Hils ] (18:;) (ISN‘"'I {ﬁi)[PT O]
Here, the transformations G{e,), G(ay—y), ..., G(a;),

G(JBH), G(ﬁ”_|), Py G(lsl)'l and G('Yﬂ)s G(-Yﬂ—l)-s fees
G(v,) are those defined by the relations (2.3a)-(2.3¢).

The relation (2.4b) gives us a means for computing the
kth row of P' from rows k — 1 and k of Q. On the other
hand, the relation (2.4a) gives us means for computing the
(k + 1)st row of Q' from its kth row and the kth row of
P*. Thus, together, the relations (2.4a) and (2.4b) form a
recursion for computing Q7 row by row, starting from its
first row, which isequal to 7, /|, |.

Having computed the QR factorization of T, we cbtain
the least-squares solution x to the problem (1.2) in two ad-
ditional steps. First, we premultiply the right-hand-side vec-
tor bby Q" togetan (n + 1) vector a,

a=Q%. (2.5a)

Next, we soive an (n + 1) X (# + 1} upper triangular system
Re=a. (2.5b)

The complete, sequential, algorithm SLLS for solving the
least-squares problem ( 1.2) is given in Appendix A.
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On inspection of Algorithm SLLS, it is easy to see that,
except for determination of cosines and sines of the appro-
priate angles, all operations performed are vector opera-
tions. Moreover, every vector operation can be executed
componentwise in the direction of increasing indices. This
means that vector operations can be pipelined in the sense
that the loop for step & + 1 can start immediately after only
a few components of each vector have been computed in
step k. Thus, by multiprocessing and pipelining, we can
achieve the execution time of order O(m + n) with O(n)
processors, instead of O(mn) for the sequential calcula-
tions. This is indeed the case, as will be shown later on.

Because R is not Toeplitz it would seem that (n + 1){n
+ 2}/2 coeflicients of R have to be stored. However, in or-
der to determine successive components of the solution vec-
tor, during the backsubstitution process, only one row of
the matrix R is needed at a time. But row & of R can be
recovered from its last element and row k + 1 by applying
inverse rotations, i.e., by running Algorithm SLLS back-
ward. Thus, by regenerating rows we are able to reduce stor-
age to O(n) at the expense of some extra computation.

The modified (O(n) storage) backsubstitution phase is
given in Appendix B.

3. PARALLEL IMPLEMENTATION

In this section we describe a one-dimensional array of
processors for computing the solution of the least-squares
problem ({.2). We consider the case when the problem
“fits” the array, i.€., the dimension » of the problem is equal
to the number of processing cells.

We assume that we have at our disposal a synchronous
system of linearly connected microprogrammable cells.
This allows us to change the set of operations performed by
each cell when necessary. Our approach is similar to the one
adopted in the PSC project [6].

The complexity of the parallel algorithm is measured in
units of time. A time unit is the maximal time that is neces-
sary for a processor to perform the most time consuming
set of operations (specified below) together with transfer-
ring data to and from neighboring processors. A synchroni-
zation mechanism allows processors to exchange data at
{imes separated by integer multiples of a time unit.

The parallel implementation consists of the following
steps.

Step 1.
the vector

Given the matrix 7 = [{, ..., {4+ ] compute

r=07T/4l.

Step 2. Given the vectors v, x, r, f, compute the trans-
formations G{«;), ..., G(a,), G(B)), ..., G(8,), G(v),
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..., G(v,) and the last column of the mairix R, i.e., the
vector

n= Ren-i-l *

Step 3. Given the vectors ¢, v, u, b, the scalar ry,, and
the transformations G{ e, ), ..., G(a,), G(8:),...,G(B8.),
G{v.), ..., G(vn), compute the modified right-hand-side
vector d,

a=Q",
and the first column of O, i.e., the vector
g=1t/lul.

Step 4. Given vectors p, ¢ and the transformations

G(al)s LI G{Ct’,i), G(.BI }9 sy G(Jﬁn)s G(’YI )9 ey G(Tﬂ)a
compute the solution vector x.

To simplify the description, different arrays will be used
for the realization of Steps 1 to 4. In practice the arrays
could be combined. It will be shown that each step can be
executed on a linear array of at most » + | processors in
time O(m + n) and the storage O(n), vielding a total time
of O(m + n) and total storage O(n).

Step 1. There are many possibilities for a realization of
the first step as it can be formulated as a convolution com-
putation. A broad discussion of design for the convolution
problem is given by Kung [7]; we have chosen design R2
from that paper. The systolic array and its cell definition are
depicted in Fig. 3.1. This design is one in which the partial
results stay at a cell to accumulate their terms while inputs
move in the same direction but at different speeds.

The array consists of n + [ cells arranged from left to
right. Every cell has two registers, ¢ and r. Register r of the
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cell / — 1 accumulates the partial result of the inner product
r; = {1t;. The data vectors ¢ = [t_,,, ..., lg, -~ - t,] and ¢
= [ty,...,!,]enter the array through the rightmost cell and
move from right to left, but the latter moves at half the
speed of the £’s; i.e., each ¢ stays inside every cell it passes
for one extra cycle. This produces a delay corresponding to
the “shift down” operation and guarantees that terms in cell
i are accumulated correctly. Cell i is initialized when it re-
ceives the first component of the ¢ datastream, i.e., at time
2(i— 1).Itis easy to see that after mm + 2n cycles every inner
productr;, i=1,...,n+ 1, is known and stored in register
rofcell .

We still have to divide each r; by (r;)'/2. One way of
achieving this is by shifting r, from the leftmost cell to
the right through all cells and performing the division by
(r1)"/? while r, moves to the right. As r, has to pass through
all cells, this operation requires an additional n + 1 units of
time. Thus the overall time for computing the vector ris m
+ 3n -+ | units.

Step 2. Remark. Steps 2 and 3 implement the triangu-
larization phase. For the sake of clarity we describe the pro-
cess of generating the last column of R and the process of
modifying the new right-hand-side vector « separately, al-
though it is possible to combine these two processes.

The array for computing the last column of R consists of
n + 1 processors Py, Py, . .., P,, arranged from left to right.
All processors are identical except for the leftmost processor
Py. The processor P, generates all transformations G(«),
G(B), G(v), while remaining processors propagate them.
Each processor has 12 registers, 6 for storing parameters of
the three transformations G(«), G(8), G(+) (this can be
decreased to 3) and 6 for storing components of the inter-
mediate vectors y, x, w, r, f, z. Data flow in both directions
between adjacent processors, but parameters of transforma-
tions flow from left to right and the intermediate results flow
from right to left. The cells are illustrated in Fig. 3.2.

r=r+“,-,,tm
— r==A - - —
L gt e— : ¢ : e[ Logt =lin
r e
bt 1| T | fe—1, tou =t
(I
f——“tl',,
r——" r==A re=="
"!—'—m: t :- : t e bt :"‘—t—n-t—u+1"—n+2-t—n+3
|
i i oo T
-1 T P e T S S A S S
b Leed L

FIGURE 3.1
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Cpy Gy Cgm—3 P77 7777 >y, Cg C3
81, 89 83— | €1 €2 €3 | 34, 45 84
1 8 85 83 ]
T ] e e e o fe———z Processor P,
ye—i! v v z | le——y
T ——— | ¢ z [ | |*® r
J— e _______ 1 e f

c I,CQ,CS
8,399,483
Processor P,

e -

FIGURE 3.2

Before iterating, we feed data vectors

X = [y biimts « = 2 bi—nti lT
y=1lt,ta, ooy onl”
r=1[rn, 2o s Finlt
S=1na s o maal’

into the array so that the kth components are stored in the
corresponding registers of the (k£ — 1)st cell. Cell k is initial-
ized at time & and is active on alternate cycles only. This
delay is caused by the fact that data can travel only with
unit speed and cannot be broadcast to all cells at the same
unit of time as we do not have global communication.
When active, the processor P, executes the short program
shown in Fig. 3.3. Similarly, when active, each processor
other than P, executes the program shown in Fig, 3.4, Hav-
ing completed the execution of their programs, the proces-
sors finish a cycle by transferring data to and from neighbor-

begin
w= (e,
Cyi=yiw,
syi=riw,
z:=(wi-x)"2;
Coi=x[w,
Sz:=2Zfw;
ri={(z?- {22,
ca:=ffz:
s3=rfz;

end

FIG. 3.3. Program executed by £y,

ing processors. The vectors x, y, r, f move from cell to cell
from left to right. The parameters of transformations ¢y, s,,
€2, $2, €3, §3, which are generated in the leftmost cell, move
in the opposite direction meeting consecutive components
of the transformed vectors x, y, r, f in the appropriate or-
der for the following cycle.

When the parameters of the kth transformations reach
cell n — k, the cell executes its program for the last time and
then is disabled. Then the registers ¢,, 5, ¢, §», C3, §3 CON-
tain the parameters of the transformations G(ey.), G(8:),
G(v.) and the register r contains the last element of the
(k + 1)st row of R (or equivalently the (k + [)st element
of the last column of R).

It is easy to see that after » iterations all processors are
disabled. As each processor is active only every second cy-
cle, Step 2 requires 2»# — | units of time.

Step3. The array for modifying the right-hand-side vec-
tor also consists of n + 1 processors Py, Py, ..., P,. All
processors are identical except for the rightmost processor
P,. The processor P, computes the first column of the ma-
trix @ while the processor P,_; computes the (i + 1)st col-
umn of @. In addition all processors form the inner prod-
ucts of the vector b with these columns of the matrix Q

begin
1=y YhEy
Y= —§+eyr;
Z = (w=XxCz}/S2;
X 1= ~8aX+0CpZ;
r:=(z—fcz)/sa;
f = —sgf-+tcsr;
end

FIG. 3.4. Program exccuted by P, k> 0.
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Processor P,

o= ]

g ey ¢g €3 | g
Y et | bae————— 1
1 8, 8o 83 }
| RS [ R
i |
v-z—--——-—lvupal-q—u
RS R I ) S

Processor P,

FIGURE 3.5

which the processors compute. Specifically, the processor
P,_; calculates the inner product of b and the (i + 1)st col-
umn of Q, i.e., the (i + 1)st components of the new right-
hand side.

Prior to execution of Step 3 the parameters of transfor-
mations G(«;), G{B;), G(+,) are stored in the registers of
the (i — 1)st cell. {Note that this is the way in which the
parameters are stored after Step 2 is completed. Thus we
can starl Step 3 without any I/O delays.) Data vectors ¢;, v,
i, b enter the array through the rightmost processor P, (see
Fig. 3.5). Before the computation starts, the register ¢ of
each processor is set to zero (this corresponds to the fact
that in stage 3 of the algorithm SLLS from Section 2, the
components of the vector ¢ are shifted to the right before
they are combined with the components of the vector v).
The modified vectors v, u, ¢, s move from right to left.

On each cycle the processor P, executes the program
shown in Fig. 3.6.

Similarly, each processor P;, i = n — 1, ..., 0, executes the
program shown in Fig. 3.7. Having completed the execu-
tion of its program, each processor shifts the modified vec-
tors v, i, ¢, s and the vector b to the processor on its left
and simultaneousty receives new data for processing from
the processor on its right,

As the processor P, is active on the nth cycle and has to
process vectors of length m + 1, Step 3 requires n + m + 2
units of time.

When the computation is finished the processor P; stili
contains the parameters of the transformations G(«;),
G(8;), G(v;) and in addition the (# — i + 1)st component
of the new right-hand-side vector 4. At this point we are
ready to start Step 4.

Step 4. Step 4 is similar in structure to Step 2 but is run
backward. In Step 4 we regenerate the matrix R using only
its last column and the transformations G(a), G(3), G(v).
The elements of R are regenerated in the exact order re-
quired by the Kung-Leiserson array for backsubstitution.
Thus the regeneration and backsubstitution processes can
be overlapped.

begin
p = ciutsg;
vi= 50+
pi=(p-ucz)/s:;
U= =gyl + Cap;
g:=tfr;
a:=atbg;
s:=q
q = (p—SC3}/Ss;
§ 1= —g55+Caq;

end

FIG. 3.6. Program executed by P,.

FIG. 3.7.

begin
pi=C0+5q;
vi= —s 0o
p = (p—ucz}/s2;
U= —Sau+Cap;
g:=q; )
a:=atbq;
q:=(p—sC3)/s3:
§ 1= —§38+Caq;

end

Program executed by P, i < n.
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€1, Cgy C3 = r-TT T T n
8y, 8g, 83 =e—— ! €y Cg C3 !
T et 8 49 83 i
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o0 1, €y €3
1 3y, 89, 83
7
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fe—1 f 2y a1} —=f
C-e—— | z w r ¢  [—>C
q ] L e e = Jd > 4a

€1,C0,63
81,39,93
Processor P,

I

Y

J

c

FIGURE 3.8

The array consists of # + | processors Py, Py, . .., P,, which Vi=ow;
are identical except for the leftmost processor Py (see Fig. Fi= 5wy
3.8). All processors regenerate rows of R. Additionally, pro- end

cessors Py, P, ..., P, compute partial sums of the inner
products in the backsubstitution process while the proces-
sor P, performs the division which gives the components of
the solution vector,

Before iterating, we store the ith components of the vec-
tors

p= {rl'rrZ'}""JrFH-l]

a=la,a,...,a.]
in the registers of the processor P;.,. The parameters of the
transformations G(«o;), G(B8;), G(v;) are stored in the pro-
cessor P;.,. (Note that this is exactly how these quantities
are left in the processors after Steps 2 and 3 are completed.)
Cell i is initialized at time / and is active on alternate cy-
cles. The parameters of transformations and the partial sum
of the inner products a flow from right to left. The interme-
diate results /, x, y and the components of the solution vec-
tor ¢ flow from left to right.
When active, the processor P, executes the following pro-
gram,

begin
c:=aflr
Ji=car/ sy
Z:= 0y fsar;
X 1= 02/ 54,

W= € X+ 8,2

Similarly, the processor P;, i > 0, executes the following pro-
gram:

begin
a = a—re,
[i==(f—cr)/ss;
Z:= ¢y f+sar,
X 1= = (X—02)/ 825
W= (X +85:2)
yi=owts y;
ri=—spwte y;
end

It is easy to see that the processor P, computes successive
components of the solution vector ¢ every second unit of
time. Thus Step 4 requires 2# -+ 1 units of time.

Adding the execution time for Steps 1 to 4, we conclude
that the least-squares problem (1.2) can be solved in time
O(n+ m). Note that all arrays used require only a few regis-
ters per cell and that data enter the arrays only through one
boundary cell.

APPENDIX A: ALGORITHM SLLS

Data: T=[¢4,...,
matrix 7.

After step k of the triangularization we store the following
quantities:

1,411, where ¢; is the jth column of the
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P=Verise s Var] (k+ 1)strow of Main loop:
G(ag)--- Gla)[y, RI1T

w=[we, ..., W] kth row of W Fork_=i,2,...,ndo ) .

2= Xty e e s Xust] (k + 1)st row of 1. {First up?a}}c. Compute [w, 7] = [er, €xs1]TG(aw)- - -
G(BY---G(B)[z,zT)"  Cle)ly, RIS

ZZ[ZI\'+11‘--,ZN-1-I] kth row of Z

= [pl EEE pm-i-l} k{h row OfP Wi i = (.Vi + rf%.k)uz

u=[u, .., tUpi] (k+ 1)strowof )
G(B)- - GBI U] COS @y 1= Vi/ Wi, S0 ag = e/ Wi

v=[, . Vet ] (k+ 1)strowof . i
Glve)- - Gy gTT} [w,\_,,.,, Cees w,,}:z [ COoS o SN ay ][ VidlseesVn ]

f = [Sierrs oo oo Sus1] (k+ 1)st row of -, YVitrs oo s Va =8I & COS & §| Thk+is-- -9 Tk
G(vi)- - - G(y)Lfs R3T

Z""" Z[[z;"“-“" n ';}”""""’*1]1 EE: i;z: ;2: E?ST Z.T {First downdate. Compute z = efZ and X' =

Sk;-l{s‘ k+1.1;..l.], ket Lamt 1 (k+ l)strowof e;\-+|G><(ﬁU---G(ﬁ,)[x,é‘}"}

R U

the parameters of the transformations G(«, ), G(az), ...,

G(vi)--G(y)QT

z=(wi — xp)'"?

CoS By 1= X/ Wi, Sin Br = zZi/ Wi

G(ka}, G(lﬁ])s 0(182}1 ey G(Iﬁﬁ)s and G(Tl)v G(‘Yﬁ)a ceeg

Gy, le., [Zkats e e - Zn)
[COSC\‘;,COS(\';,...,COSG;‘-‘ :=([Wk+ly--'s W,,]—[x;..+.,...,x,,]cosﬁ;\.)fsinﬁk
sin o, Sin a3, . . ., SiN ay ) Xitts ooy Xn
) [Xks1s oo Xp]i= [—sin By cosﬁk][_"“ ]
cos 3, cos B, ..., C0S B Ziats v oo s Xn
sin B8y, sin B, ..., sin B |
COS Y1, COS Y2, . « - 5 COS Yy | 3. {Compute p = Pe(',’«.-”,z ek Gey)- -~ Gla)[§ or] and
. . . =Glay) -+ G T
[Sln'y.,sm Yar ... sinyy | i (o) (a)l; 0]}
Initialization: Prseees P | _ | COS sin oy [ V1, V25 -« o s Vi
Viyeoosbmar | SN cosay || 0,41,...,Gm
. T .
J"_[_Vh---,yn] . [’—Is{—E,---yz—n] [pl!"-spm-l-l]:t
ol - . 9T T
a\‘= -’\ LR !“' := I” - ')lHJ""'H" i
Lx g - L ”‘? ([P« s Pmar] = [t .. ., Uper]OS Bi)/siN By
v=1[v1,...,vm] :=1[1,0,...,0]
. Uy oony Ups
. 1 07 [tty, vy Uy ] 2= [—sin By cosm}[ ! "
(ulsthe ﬁrstrowof[o or ) Ls oo o5 Pmtl
— T..- T -
u=lu, ...y} =10,0,...,0] 4. {Second downdate. Compute ryy = ey and [ =
] 0T 17 erngX(v)- -Gy, R
uis the first row of | .
P 0 2 ] 2
- i Fragi=(z2 = DY?
r = (i)' o= (25— S%)
IR N A T U A I COS ¥i 1= o/ Zks  SIN YL = Mk / 2k
=l naal = na S [Metkizs ooos Tranmin ] 1=
@ =1G1, sG] =0 ([Zests - - s Zn] = Ufeats - - 2 Sp]COS ¥i)/sin 7,
(g is the first column of Q)
T [foers - - o Sul = [—sin v, cosvi] Juets ool
§= {-"‘Is +en ,A‘m.{.|] = Prat g2 v« =5 Pl inet
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5. {Compute ¢ = Qeyyr and s = e, G(v)--- G(v1) Q" }

s Qi1 me1 ]

ypm'I-I] - [311 .

G’T = [Qk+|,|, -
={[p,--- o5 Sm1]COS Y& )/ sin vy

Sty :Sm+l:|

[Sl yrey Sm‘l‘l] = [_Sin Yr COS Ti][
Grs---s q:n+l

end of the k loop

APPENDIX B: BACKSUBSTITUTION IN O(n) STORAGE

Data:

a -new rhs
p=1I[p1s...,par1] -lastcolumn of R
all transformations

After step k of the backsubstitution phase store the foil-
lowing quantities:

p=1p1s...,pux] firstn—k+ | clements of the last
column of R
F=[Fpkserrstur] (= Kk)throwof R

F=Ustr- - (n— k)throw of o
G(Yﬂ—k—l)' nt G('}'l)iis R-‘IJ] !
(n— kythrowof Z,z=
erl!—kG X (‘Yﬂ'"'f\')' - G('Yl)[ja R:"}: T
(n — k)th row of

G(Bpsr-1)--- G(BIx, ZT)T

s Jn]

z= [zﬂ—ks s e e ZH-M]

xX= {X,,_;.-., Cae ,.,\'"]

W= [H"n--vka aeay M’n] (” “ k)th row Of W, W=
();I:‘"RG X (ﬁn—k)' . G(.B: )[X, ZT]T
.ﬁ= [)}JI—.’H‘ .- syu] (H_n"l\:)lh row Of

G(aﬂ—k-i-i)' e G(“l ){J’s R!I}l

[ COS aty, COS @a, . . ., COS gy
| sin o, sinag, ..., S0 @, 4
[cos 81, COS f32, . . ., COS Byt
| sin 8, sin B, ..., 8in B4

[COS ¥y, COS Y2, - -+ 5 COS Ypk—1
| Sin vy, Sinya, ..., SIN Yooy

Main loop:

Fori=0,1,...,n—1do
6. {Compute the (# — k -+ 1)st component of ¢}
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Co—kt1 2= (an—k+l - [rn—k+3-: reny r:H-l}

X {Crks2s 0 v s Cu+1}T)J"rrn—k+|

7. {Compute f = €} xG(Vus1)- - - G(v1)[f; R;]" and z
= eI——kG{‘Yn—k)' . G(‘Yl){ﬂ R-EIJ]T}

Fog1 -= Pa—k+1

.f;r-—k = 0
{ﬁr—kv e &ﬁr} = _({f;r—ka v v.ﬁx]
- {rn—kﬂ EIEC .",,.H]COS ’Yn—k)a"{Sin Y-k
5 . - f;_k""",.,{;r
{f"—ka S !JIH} = [COS Yu—k» SIN Tﬂv-k][ ' R
Fr—kits s ey

8. {Compute X= e;l:—--kG(.Bn—k—“I)"_' . G(ﬁ| )[):, ZT}T and w
= ez—kG(.Buwk)' i G(ﬁ})[x, Z ! ] I }

Xy =0
[Xn—k-: ey ‘xn]
= _([Xn—ks BRI X,,] - [Zn---k9 ey Z,,]COS JBH—A')J"{Sin ﬁ!l"k
. Xn—ky o« s Xn
[wn—ks LR “Jn] = {COS -Bnmks s ﬁn—k][ _:I ~r ]
“p—ky e s 00 fn

9. {Compute r = ¢, 4R, and § = €, 1 G(a4-1)- - G(ay)
X[y, RF1"}
Vot = 0

Viekr+- > Vn] [ COS@ux  SIN g [ Wags - oo, Wa
Foabiyoosstn —sin Oy p COSQyy Voksuos Va
end of the k loop

Fagr 5 M

cii=(ay—[ra,....malle, ...

s Cn ]T)J'”‘I

end of the backsubstitution phase.

Note added in proof.  Since this paper was submitted for publication,
related work has been published by Chun, Kailath, and Lev-Ari [4] and
Cybenko [5]. In particular, Chun ef a/. present a family of QR algorithms
for matrices of low displacement rank, and Cybenko presents a generaliza-
tion of the lattice algorithm for computing the inverse of the triangular
matrix R in Eq. {2.1). For a survey of these and other recent results, see
Brent [2].
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