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A NOTE ON DOWNDATING THE CHOLESKY FACTORIZATION®*

A, W, BOTANCZY KT, R. P. BRENTY, P. van DOORENT anD F. R DE HOOGH

Abstract. We analyse and compare three algorithms for “downdating” the Cholesky factorization of a
positive definite matrix, Although the algorithms are closely related, their numerical properties differ. Two
algorithms are stable in a certain “mixed” sense while the other is unstable, In addition to comparing the
numerical properties of the algorithms, we compare their computational complexity and their suitability for
implementation on parallel ar vector computers.
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1. Introduction. The Cholesky downdating problem considered in this note is:
given an upper triangular matrix Re R"*" and a vector xe R" such that R"TR—xx" is
positive definite, find an upper triangular matrix U such that

U'U=R"R-—xx".

By our assumption of positive definiteness, U exists and is unique up to the signs of
its diagonal elements (Golub and van Loan [7]).

The Cholesky downdating problem is closely related to that of downdating a QR
factorization. To show this, let

where Ae R™"", m > n and Qe R™™"™ is an orthogonal matrix. The problem is to find
an orthogonal matrix Qe R'™ V™V such that

Thus we have
RR=A"A=xx"+ATA=xx"+U"U

which is precisely the Cholesky downdating problem described previously.

The problem of downdating a QR factorization occurs for example when an
observation (such as an outlier) is deleted from a regression. An algorithm for computing
Q and U has been described by Gill, Golub, Murray and Saunders [5] and it is not
difficult to show that the algorithm is backwdrd stable in the classical sense (Wilkinson
[10]). This rather satisfactory state of affairs is due to the fact that we know precisely
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which row (in our case, the first row x”) of A is to be deleted. However, this is not
the case when downdating the Cholesky factorization. Here x” may bear no relation
to rows of R and the only requirement is that the matrix R"R—xx" is positive definite.
Thus, the best we can expect when computations are performf:d wlth ﬁmtf: pre:.mnn
is that the computed U is the exact Cholesky factor of R7R—%%" where R and % are
close to R and x, respectively. However, Stewart [9] has shown that under certain
circumstances, small perturbations in R and x may lead to large perturbations in U.
Thus, we do not recommend that algorithms based on downdating Cholesky factors
(as described in the present note) be used to downdate the triangular factor in the QR
decomposition.

Nevertheless, the Cholesky downdating problem is important in its own right. Let
B be a positive definite matrix for which a Cholesky factorization has been obtained,
that is

B=R'R.
Now suppose we wish to compuie the Cholesky factors of the positive definite matrix
B=B-xx"=U"U.

Then

U'U=RTR—xx".

This occurs guite often as a subproblem when a positive definite matrix is perturbed
by a matrix of low rank. Often the problem can be solved by a sequence of rank-1
updates followed by a sequence of rank-1 downdates. Such a situation occurs, for
example, in structural problems when elements are added and deleted from a design
(see for example, Argyris and Roy [1]). For another application of Cholesky downdat-
ing, see Bojanczyk, Brent and de Hoog [3].

In & 2a, we describe a method implemented in the LINPACK package, " Algorithm
A" analysed by Stewart [9]. In § 2b we describe a recursive method, “Algorithm B,”
which has some computational advantages over Algorithm A but does not have
comparable stability properties. The recursive algorithm is then modified in § 2c¢ so
that its stability properties are improved. The resulting algorithm will be called
“Algorithm C.”

The main results of this note are given in $ 3, where we present an error analysis
of Algorithms B and C. In particular, we show that Algorithm C is not stable in the
classical sense but does satisfy a “mixed” error bound which shows that it gives forward
errors of the same order as an algorithm which is backward stable in the classical
sense. A similar result was obtained by Stewart [9] for Algorithm A. The best error
bounds that could be obtained for Algorithm B depend on the data and can be arbitrarily
large, from which we conclude that it is probably numerically unstabie.

In § 4 we show that Algorithms B and C are preferable to Algorithm A from the
point of view of computational complexity, as they require about 20 percent fewer
floating point multiplications (2n*+ Q(n) versus 5n°/2+ O(n)). We also show that
Algorithms B and C are more readily implemented on parallel or vector computers
than is Algorithm A. Finally, in §5 some numerical results verifying our stability
analysis are presented.

To summarize, Algorithm C appears the best overall, since it is faster than
Algorithm A and more stable than Algorithm B.
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2. Three different approaches. In this section we compare and relate three different
approaches that can be used for solving the downdating problem.

o  2a. The LINPACK method (Algorithm A). This method is the one implemented

in the LINPACK package and is described by Stewart in [9]. A sequence of (n+1)x

(n+1) Givens rotations of the form

[ cos®, 0 -+ 0 sin®, 0 - 0
0 1 --- 0 0 0o --- 0

Jo=1-s5n®, 0 --- 0 cos®, 0 -+ 0| «(k+1)strow

0 0 -+ 0 0 1 -0
- I -
1
(k+1)stcol
with k=1, -, n are used to compute U via the relationship
-
2.1 | EEN =f s
o [
and since J,, - -+, J, are orthogonal matrices, it is easy to verify that

R R=xx"+U"U.

Although the right-hand side of (2.1) will always be an upper Hessenberg matrix, we
clearly require some restrictions on J,, - - -, J, to ensure that the first row is indeed
the required x". Let

(2.2) I gle =q= H

a

where e, =(1,0,- -+, 0)". Then, from (2.1},
OT
a’R=e/J,- -J,{ ]=xT,

Thus we must have

(2.3) Ra=x
and
(2.4) a‘=1-a'a.

We note that a necessary and sufficient condition for R"R —xx" to be positive definite
is a=0.

The basic steps in the algorithm are therefore as follows. First the n-vector a is
obtained by forward substitution from (2.3) and « is calculated from (2.4) (the sign
of « is immaterial and the positive root of (2.4) is usually taken), Givens rotations
Jy, 000, J, satislying

Jiooo-dag=ey
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are constructed and U is then calculated from (2.1). Note that Algorithm A modifies
the rows of R from bottom to top, whereas Algorithms B and C (described below)
process them from top to bottom.

The algorithm has been analysed by Stewart [9] and his error analysis is sum-
marised in § 3. Roughly speaking, the algorithm performs as well as can be expected
given the potentially ill-conditioned nature of the downdating problem. However, as
discussed in § 4, the algorithm is not particularly well suited to parallel implementation,
the main problem being that the forward substitution (2.3) needs to be completed
before the calculation of (2.1) can commence.

2Zb. A recursive method (Algorithm B). We now describe another standard
algorithm for downdating which may be found for example in Lawson and Hanson
[8]. Although we derive the method from the previous algorithm to show the close
connection between them, the usual derivation is based on completely different ideas.
We begin by rewriting (2.1) as

R
(2.5) [R SRR H
and define
(kT T
(o [ =[S k=0

where we have used the convention that J - - - J{ is the identity when k =0. It is easy
to verify that x”=x, R”=U, x'"'=0 and R =R. Furthermore, the first k com-
ponents of x'*’ are zeros and the first k rows of R™ and R are the same as are the
last n —k rows of R* and U. From (2.5) and (2.6),

r 9 r k=1T 7
(x{m}'.r x({ }
{2"?} | R{k} ) ZJE.- R“g-j_} -! k:l}‘ :nr
which can be shown to be equivalent to
{xth)T' 'x({k—IJ)T“
(2.8) ] Rck—u_ :Sk.. R ] k=1,-+-,n,
where
[ sec®, 0 0 —-tan®, 0 0|
0 1 0 0 0 0
S;=|—-tan®, 0 --- 0 secB®, 0 - 0 | «{k+1)strow,
0 o --- 0 0 1 -~ 0
- 1 =
T
(k+1)st col
From (2.2), cos’ @, > a® k=1,---,n and hence S;, k=1, - - , n are well defined.

To see that (2.8) forms the basis of a recursive algorithm to compute U, let us
focus attention on the first and (k+1)st rows of (2.8). As noted previously, the kth
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row of R™ is the same as the kth row of R and is therefore known. Let us suppose
that in the kth step we also know x'*~". The role played by @, in S, (or equivalently
Jy.) is to ensure that the kth component of x'*' is zero. This can be achieved by setting

(2.9a) cos @, = (r2 — (x{* ")V2r
and
(2.9b) sin@; = xi«k'_“!‘ Fig.

We now calculate x'*’ and the kth row of U (or equivalently the kth row of R"*™")
from (2.8) as

(2.10a) xF=(xF""-r,;sin0.)/cos O, j=k+1,---,n
and

(2.10b) U = (2, — (xiE 1))

(2.10c) uy =(—x{*Vsin @, +ry)/cos O, j=k+1,: -, n

Since x'”=x is known, the relations (2.9), (2.10) yield a recursive method for
calculating U.

Using (2.8), it can be shown that

3]s o]

and it is easy to verify that S,, k=1,-- -, n are Z-unitary with

[ 5}
where a matrix A is E-unitary iff
ATEA=X,
The product
§=85, -8,
is also E-unitary and hence
U'U= [0|U‘"12[(:;] =[x|RT]STES[i],

which is an independent verification that U is the required Cholesky factor. Thus, the
method can be regarded as that of finding a product of planar Z-unitary transformations
to reduce [x|R7]7 to [O]UT]” in the same way that Givens rotations are used to reduce
the matrix in the updating problem (see for, example Gill, Golub, Murray and
Saunders [5]).

The recursive method has a number of advantages over Algorithm A. Since there
is no forward substitution phase, the operation count is somewhat less. In addition
the algorithm is quite well suited to parallel implementation. However, the error analysis
in § 3 indicates that the stability properties of the method are substantially inferior to
those of Algorithm A.

2c. A modified recursive algorithm (Algorithm C). It turns out that Algorithm B
can be modified so that its stability properties are substantially improved.
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At the kth step, consider the (k+1)st row of (2.7). In component form, this can
be rewritten as

(2.11a) ui:k_{rﬂ_{x{k 32
(2.11b) wy = (—x{*"Vsin O +n;)fcos By,  j=kt1,--0,n,

where cos ®, and sin @, have been calculated using (2.9a) and (2.9b), respectively.
Now, consider the first row of (2.7) and rewrite it as

(2.11¢c) Xt =cos @ xt* Y —sin Oy,  j=k+1,---.n

This is clearly a well defined calculation as uy, j=k+1,-- -, n have already been
caleulated via (2.11b).

Thus, (2.9) and (2.11} form the basis of an algorithm for calculating U which
differs only slightly from Algorithm B. However, as we shall see in § 3, this small
modification enables us to establish stability estimates that are comparable to
those for Algorithm A. In addition, we still retain all of the desirable features of
Algorithm B.

3. Error analysis. We denote quantities stored in the computer with a tilde. In
addition, & is the relative precision of the machine considered and terms of order &°
are neglected.

3a. Algorithm A. An error analysis of this method IS to be found in [9]. Tt is
shown there that there exists an exactly orthogonal matrix O (which is not computed)
such that

MR x"+AxT
o o % J=[oraw |
where
(3.2) 1AL = 6nel|[R]l2,
(3.3) |Ax| S [(13n4+5)/2+ (i + 20 ile|[R].].

Here we use [ ]; to denote the ith column of a matrix. From this, one easily obtains
a bound for the total error matrix,

5]

AU J|| -
Notice that errors are not only superimposed on the data—R and x in this case—but
also on the result U. Hence, the bound (3.4) does not guarantee forward or backward
stability of the algorithm, but rather proves what could be called * ‘mixed” stability.
As argued in [9], the forward part of the error, AU, is in fact unimportant since the
“true” forward error (U —U) is usually much larger and mainly depends on Ax, the

backward part of the error in {3.1). The result of mixed stability is thus as satisfactory
in practice as backward stability since error bounds in both cases are comparable.

(3.4) =[n*/2+9nvn+ O(n)]e|R] .

3b. Algorithm B. The error analysis of this method depends on how it is imple-
mented. We therefore write the order of computations for one step, which, without
loss of generality, can be the first step as given in (2.9), (2.10).

Let us denote the elements of the rows involved in this step as follows:

1 =5 [ X e Xl 0 x .- xtY
(3.5) uc,[ '}[ L = ’ "
5 1 Fii Fiz =" Fin Uy Uy 0 Uy,
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Mow the operations are performed in the following order (where we use the fi(-)
notation of Wilkinson [10]):

iy =8V (r = x5+ x17)),
o =HA0ih,/ry),

(3.6) 5 =08(x\"/ i),
iy, =fA((r, — §x")/ &),

ﬂ”=ﬂ{(«'¢5m_§|ru}f51} fori=2,--- n

In the Appendix we show that for this implementation of (3.5), the following equality
holds,

1 - [+ Ax®] [
(3.7) /e, “][ =[]
| — 8 1 rytArg, L My
where
. .-Z'.x‘-c'}] el
3.8 ' =(8e/le _' .
(3:8) H:ﬂﬁf z ( Ff'hl}. Uy Jllz
If we rewrite (3.7) as
1 =5 [ >+ ax® b
(3.9) uc,[ "'][x o P
_'51 1 rh I-!l,-"f'ﬁuij
then for the mixed error one obtains (see the Appendix),
Ao _ m*
(3.10) [ - = (8{1+[xnie/]el) x*,
Awuy; Jila Wy Al
Since this 2-vector is now a subcolumn of the ith column of the matrix [x, U”]7, we have
B T+ﬂ“‘l'xr raln T
(3.11) s A )
L U+AYU R

with J, exactly orthogonal and

Al
[a*”f;].
since the ith columns of R and [x, U']" have the same norms.

Errors in the subsequent step are similarly bounded in terms of the deflated
problem [X'", (R"')T]". Because corresponding columns in (3.11) are related by an
orthogonal transformation, the errors of step 2 cun be mapped backwards onto [x, U"]"

without altering their norms. (This would not have been possible if we had used
backward errors as in (3.7), (3.8).) This now gives

KT_!_&[””T_"_ ﬂﬂ]x'r {iuz}]'r
0400270 || R )

(3.12)

= (81 + s Defle DR,

2

(3.13) JZTJ.T[

where

ﬂ(llx]"_}_ ﬁ[zij
(3.1 AVG+aOD |,

L =8{(1+ s}/ ||+ (1+]so])/ |} e[| [R]]|»
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for all columns i except the first one (since that one is not affected anymore). By
induction we finally have

T T T
T .r|X tax | 1O
s o[
where AU=Y" AU and Ax=Y|_, A'’x are bounded columnwise by
Ax" :
(3.16) = | || =81 max {(1+|s])/lc[tell[RT]l2
ﬂU illz I=j=d

which is significantly worse than (3.3) and problem dependent. For the total error we
obtain

S 1

3e. Algorithm C. Since this method is essentially a rearrangement of the previous
method, one might expect similar bounds for the numerical errors, but this is not the
case because operations are performed in a different order.

Let us again denote the elements of the rows involved in step 1 as

e - [x® x@ ... O S G
(3.18) [5: fjl][HLn “212 uh,]:[r,. AT hn];
then ¢;, 5, and uy;, x;'" are constructed as follows:

iy, = A (ryy = %)+ x17)),

¢ = A,/ ),
(3.19) § = A(xi"/ ry),

dy; = A((r = §x1")/ &),

i?]b=HEE|xED]_§1ﬁ-];) rOTI':I,"‘,i“L

;Snﬂﬂasﬁ {(1+|s/leltelIR] -

The only difference between this algorithm and the previous one is in the computation
of 4", This single difference allows us to obtain the following bound for the mixed
error vector (see the Appendix):
K
1-:."-11' 2.

©
(3.20) [':"x' ] =6.25¢
AxT]
[ ~ |l =6.25iel[R]

(3.21)

&ﬁli 2
Using this, we find by induction that

At J|,

o)

AU

which compares favourably with the two previous methods (see (3.4) and (3.16)).

and for the total error matrix

(3.22) | =dn'ne|R] -
F

4. Complexity. Here we compare the computational efficiency of the different
methods and comment on the possibility of implementing them in parallel.

d4a. The LINPACK method. The method first constructs the vector g which has
length n+1 and is given by (2.2) and (2.3}. This construction is a forward substitution
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process for the triangular system (2.2) and requires n°/2+ O(n) multiplications. Next
the elementary rotations J,, i=n, n—1,- - -, 1, are applied to q and the matrix [O, R"]".
Because of the triangular shape of R, this requires 2n*+ O(n) multiplications giving
a total operation count of

(4.1) 2507+ 0(n)

multiplications. This operation count can be reduced by using modified Givens rotations
instead of plane rotations (see [4]), or by using an LDL" version of the method (see
[61).

Both stages of the algorithm can be paralielized; the first stage, the back substitu-
tion, in 2n parallel steps using n processors and the second stage in 2(n +1) parallel
steps using n+1 processors. The computation of « is performed while a is being
constructed and thus requires only one additional step for the square root. It is this
computation of a that separates both stages in the method and prevents any concurrency
between both stages. In total (n+ 1) processors and 4(n + 1) parallel steps are required.

4b. The recursive Algorithms B and C. Here in each step one essentially constructs
an elementary rotation J, (or equivalently S, ) and applies it to determine x'*’ and the
kth row of U from x'* " and the kth row of R. This is easily seen to require 4(n—i+1)
multiplications for each transformation J; or S;, resulting in an operation count of

(4.2) 20+ O(n)

multiplications for the whole process.

Parallel implementation of these methods would require n processors and 2n steps
which compares favourably with the LINPACK method. Notice also that by using
modified elementary rotations [4] or modified Z-orthogonal transformations, the work
could be reduced and square roots could be avoided.

5. Numerical results. The results of Stewart [9] on the conditioning of the down-
dating problem show that we cannot expect that U, the calculated factor, will be close
to U. However a mixed stability result of the form

R7R—(x+Ax)(x+Ax)" = (U+ a0y T+aln™
where Ax and AU are small does ensure that
R'R-xx"=UUC"+E

where E is small. To demonstrate the superior stability properties of Algorithms A and
C over Algorithm B, we have computed the quantity

IR"R—xx" - 00",
o ulle

R=[1 sin{8/2) ] x:[ sin @ ]
0 v2cos(a/2)) cos (8/2))

which has the solution

for the problem

U_{cusﬁ —sin[ﬂﬁ}]
Lo cos (8/2) |

Results obtained on a Macintosh which has working accuracy of between 7 and 8
significant digits are tabulated in Table 1 for cos #=2"% k=3,6,9,12.
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TasLe 1
cos Alg A Alg B AlgC
i 1.337TE—& 2367E=T LIBIE—7
2 1.210E -7 1.0T3E—6 6939E R
a=9 1.788E -7 1.218E-5 2946E %
212 1.264E -7 1LO1IE-4 146TE=§

The numerical results are consistent with the stability analysis of § 3 and clearly
demonstrate the superior stability properties of Algorithms A and C.

Appendix. Here we derive the bounds (3.8), (3.10) and (3.20) for the numerical
errors incurred in (3.6) and {3.19).

Let us denote by &, and g quantities that are smaller in absolute value than e,
the relative precision of the machine used. Then we have, according to Wilkinson [10]:

(ALY iy =V — )1+ 80 (r + X (14 80 1(1+ 8} + 84) = up, (14 2.5¢,),
(A2) &=t/ r )1+ 85) = (uy/r (1 +3.58,)=e(1+3.5¢;),
(A3) 5 =(x\ r )1+ 8) = (x{ )1+ £3) = 5,(1+ £3),
and for each i,
(Ad) V=[xV = §r (14 810) 11+ 8,))/[6(1+812)]
=[x}~ S+ ) 16 (1 +2e9)],
(AS) iy, =r; = 5xi0(1 + 8,101 + 8,)/[6,(1+ 85)]

=[ry, = §ix (1 + ea) /[ E(1+2e5)].

Multiplying these with their respective denominators vields
-xlim = -"?1 "1-'[:1 + Eé} + X.EI]EN{ 1+2e),
(A.6) - .
r = 51X 1+ eq) + i€ (1+ 264).
Using (A.2) and (A.3), we finally obtain
xlia} - 51 ?'“- = C!.EE” + 2935‘11’” + S.SEQ,‘EE”C, -
(AT

]

Fii— 51X = ﬂ]'}n'+251n-5'1x§m+ 5.565,¢,1y;,

Qr
1 . _‘.li'lh *El'l+ﬁ£-’£|] x'E”*i'ZF» 5 ,"l ¢ ,+5.5 '-fEI]
(A.8) 1;":;]|: ':I[ ]=|:x-u;. = - MEs Jr.:m Eg o
— 5y 1 Fii i+ Ay, 1y + 28008,/ )X+ 5.5, 1

[dentifying the error terms in the right-hand side with the vector [AX{", Ad,,]T we
then obtain from the Cauchy-Schwartz inequality the bounds

N 5.5, v
!ﬂxE”!E{IIICJIJ‘[ = J gfs.smc]l)‘[’ ]
2egry 2 Py -
x{
(A9) =(5.5¢ef|¢,) [., ] +0(&%),
My t

|ﬁﬁ|-|£{”|cl” 3

.

[ Eﬁluxim ]

(0)
= [5.5e;’!c,|]H[": ]
2 Wy
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and subsequently,

AZ X0 X0
[ ]“ =(3. SJlﬁflﬂull‘[ ] = (8e/larf) [ - ]
au'u Uy 2

For the backward and mixed errors one obtams via similar techniques the following

bounds:
Axi® (0}
N A
Hy;
ﬁxi_m x[ﬂ}
2N sise+srien
Auy; Uy
Notice that all three bounds depend on 1/|c,| which is large when the condition number
of §,,
(A.13) k(S =(1+1s)/ (1 =|si) = (1+]s,NY/]al’,

is large.
Now we consider Algorithm C. A similar analysis to that used for Algorithm B
now yields

(A.10)

=(Be/|q))

2

(A.12) ‘

2

Ad) A =[x i1+ 8,5) = §a (14 8,011+ 8,2)
.1
=&xiM(14+26,5) — §,0,,(1 + 26,5},

Together with the second equation of {(A.6) and using (A.2), {A.3), this now lcads to

(A.15) l:ﬂ”} = [c“ —S.][x}"j:l +[ =3ey45 )+ 5, SE'HCIJ:;?}].

Iy 81 y Uy 5. 56.1:3 “I:+251n51x
Identifying the errors terms on the right-hand side with the vector [—AxX", —Ar,]"
and using a similar argument as in the proof of (A.9) and (A.10}, one now finds

[ =eas[ 5]
Al6 '
( ) ‘[ Ary, } E]I 2
From the relation

f.‘ax‘;'”i| [ ¢ ][ﬂx‘”]
A7 o
( ) [ﬁ“n —8& G Ary;

one then obtains a similar bound for the vector [Ax'™, Ad,,]", which completes the
proof.

=6.25¢
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