Comput. Math. Applic. Yol. 14, No. 4, pp. 233-238, 1987 0097-4943/87 $3.00 + 0.00
Printed in Great Britain. All rights reserved Copyright © 1987 Pergamon Journals Lid

A SYSTOLIC ALGORITHM FOR EXTENDED
GCD COMPUTATIONT

A. W. Boianczyk} and R. P. BRENT

Centre for Mathematical Analysis, The Australian National University, GPO Box, Canberra,
ACT 2601, Australia

(Received 28 March 1986)

Communicated by E. Y. Rodin

1. INTRODUCTION

For given positive integers a, b the extended GCD problem is to find integers u, v, g such that
ua +vbh =g, N

where g is the greatest common divisor of @ and b. There are many number-theoretic applications
of the extended GCD, for example in error correcting codes [1] and integer factorization [2, 3]. A
common case [3] is that g is known to be 1 and we want to compute a multiplicative inverse modulo

b, i.e. compute « such that ua =1 (mod b).

We describe an efficient algorithm which requires O(n?) bit operations (where @ and b may be
represented in # bits) but is easily pipelined. Thus, using O(n) pipeline stages or O(n) systolic cells,
the result can be computed in time O(n). Our algorithm is described in Section 2. In Section 3
we discuss an alternative algorithm proposed by Purdy [4]. An algorithm for reducing rational
numbers to standard form is given in Section 4, and some conclusions are stated in Section 5.

2. ALGORITHM PM

In this section we describe Algorithm EPM, which is an extension of Algorithm PM of Brent
and Kung [5-7]. Algorithm PM is related to the binary Euclidean algorithm [8, 9] but is more easily
pipelined or implemented on a systolic array [8, 9].

Given two odd integers g, and b, Algorithm PM applies a sequence of GCD-preserving

transformations
ay a,_,
=T, Lo k=12,...,
[”J &[")x—— t]

until, for sufficiently large m, b,,= 0 and |q,,| =g = GCD (ay, b;). The transformations T, may be
represented by 2 x 2 matrices of the form

S S [

Algorithm EPM proceeds in the same manner as Algorithm PM, but maintains a matrix
L Ay
U, = |:l k ;.:|
Tk Nk

TA preliminary version of this paper was presented at the 9th Australian Computer Science Conference, Canberra (Jan. 1986).
}Present address: Department of Computer Science, Washington University, St Louis, MO 63130, U.S.A.

233

234 A. W. BosaNczyk and R. P. BRENT

a | | a
o[-

W@y + A by = a,, = + GCD(ay,, by).

o1

Before the kth transformation, we have (by induction on k)

o[-l

and GCD (a4, _\, b, _,) = GCD (ay, by). The transformation T, is determined as in Algorithm PM,

and
a; a
=T, .
L’A] ! |:bk- l]
Thus, we can take U, = T, U, _, to maintain equation (2). However, this is only possible if T, U, _,
is an integer matrix. The only case which can give non-integral entries in T, U, _, is T, = M,. Since

ay and b, are odd, this can only arise if @, _, is odd and b, _, is even (since b, = b, _,/2 is an integer).
Hence, we define

of integers such that

Thus, after m transformations

Clearly, we start with

e A . :
, if T,=M, and y,_, is odd,
U, = [m b2 (o — an)fz} o e
T, Uy, otherwise,

and it is easy to verify that U, is an integer matrix satisfying expression (2).

To ensure convergence in O (n) steps, where n is number of bits required to represent a, and b,
in binary, we define o, and f, as in Algorithm PM. That is, we define o, = f{, = # and maintain
o, and fi, so that the conditions |a,| < 2* and || < 2% are satisfied. By considering the effect of
the transformation T,, it is sufficient to define

(ak_hﬁk—])s ierZMl_
(s B) =9 (Bic—1s 0% 1), if T, =M,,
[o _y, max(ey _y, B 1) + 1], otherwise.

We now define Algorithm EPM formally by a Pascal-like procedure in which the subscript &
is omitted. For simplicity we assume that @, and b, are odd; otherwise we may divide by their
common factor 2/, giving a; and b} say, and if a;, or b} is even we replace it by a{ + b,

begin {Algorithm EPM, assuming a,, b, odd}

(HE)
M)

a=n; f=n;
repeat
while even(b) do {transformation M,}
begin
b=bdiv2; f:=0-1;

=
Ll
wh

Extended GCD computation

if odd(y) then [”]::l:” * bo) div 2}
n (7 —ag) div2

else 7. }‘d{VZ
n n div2

end;
if o > p then {transformation M,}
begin
al [b] |« Bl [u 4 Y 0
HEHnEH A
end;
if ((a +b) mod4) =0 then {transformation M;}
51 b1 a7
v =y [t~
[n] Ln] LA]
else {transformation M,}
(6] [b] [a].
= |- e
Ln) Lnd L[4l

B:=p+1 {f =a here}
until b =0 {now GCD (a,, b,) =abs(a), u*a,+ 4" b,=a}
end.

Algorithm EPM

As in Algorithm PM, the variables « and may be replaced by their difference 6 =o — f. It is
clear that the arithmetic operations required by Algorithm EPM can be pipelined if a, and b, are
given in two’s complement binary, least-significant bits first. (For the method by which operations
on & and testing the termination criterion may be pipelined, see Ref. [5, 6].)

Initially o + f = 2n, and each iteration of the “repeat” loop (excepting the first) reduces o + f,
because there are at least two transformations M, followed by zero or one of M, and one of M,
or M,. Thus, m = 8n + O (1) transformations suffice to reduce f to —1, and hence b to 0. In fact,
cach transformation M, can be combined with the immediately following M; or M., reducing m
to 61 + O(1), and from numerical evidence we conjecture that m = 4n + O(1) transformations are
sufficient.

On termination of Algorithm PM it is possible that max(|u|, [4]) = max(|ap|, | bl). However,
it is easy to prove by induction that

max(|], 14]) < (3/2ymax(|ayl, | bol),

so at most one reduction of the form

HEHE

will give max(|u|, 2|) < max(|ayl, |b,|) while maintaining the relation ua, + Aby = £ GCD(ay, by).

3. PURDY'S ALGORITHM
A different method for computing the extended GCD of two n-bit integers a, and b, has been
proposed by Purdy [4], and will be outlined here. For simplicity, we may assume that the GCD
of a, and b, is odd.
Purdy’s algorithm has two stages, a “forward sweep” and a “‘backward sweep”. In the forward
sweep the GCD of 4, and b, is computed by applying a finite sequence of GCD preserving

236 A. W, Bosanczyk and R. P. BRENT

transformations (T, ..., T,,) and a record is kept indicating what transformation was used in each
step.

The transformations are defined as follows:
(a:/2, b;) if a; is even (1°)
@1y bin1) =T (@, b)) = < (a;, b,/2) if b; is even (2%
[(a;+ b)/2, (a;— b;)/2], otherwise (3°).

The forward sweep terminates when one of the numbers g; or &; becomes zero, the other being
1+ GCD (o, by). The type of the transformation T; used in step i is recorded in the (M + 1)-vector
C,ie. C[i]=1,2 or 3if T; is of type 1° 2° or 3°, respectively. In addition, C[M + 1]=1if a,, =0
and C[M +1]=2if b, =0.
Coefficients 1, and v, such that
Aotig — byvy = g,

are computed in the backward sweep. This is achieved by recovering the sequence {(a;, b))},
i=M,..., 1, and computing another sequence {(x;, v;)} such that for each i

au;— by, =g.

The number of steps in both sweeps is the same but the backward sweep is computationally more
expensive. The algorithm for the backward sweep is given below.

Backward sweep
{Given the vector C and g (which is odd) compute w, and v, such that ayty — byvy=g.}
{Starting values for a[M], b[M], u[M], v[M]}
if C(M+1]=1 then

begin
a[M]:=0; b[M]:=g;
uM]:=0;, viM]=-1;
end
else
begin

a[M]:=g. b[M]:=0;
u[M]=1, v[M]=0;
end;

{Main loop}
for k:=M down to 2 do
begin
case C[k] of
1: begin
alk—-1]:==2xalk]; b[k—1]:=b[k];
if odd(v[k] then
begin
ulk=1]=(ulkl+b[k])div2;, v[k-1]:==v[k]+al[k];
end else
begin
ulk—-1]=ulkldiv2, v[k-1]:=v[k];
end;
end;

2: begin
blk—-1]1==2xb[k]; alk—-1]=alk];
if odd(v [k] then

Extended GCD computation 237

begin
vik—1]:==(v[k]+ta[k])div2, ulk-1]:=ulk]+tD[K]
end else
begin
vik=1]:==v[k] div2;
ulk-1]=ulkl;
end;
end;

3. begin

alk—1]:==a[k]+b[k]; blkl=alk]-b[k];

if odd (v [k]—v[k]) then

begin
ulk=1]:=(ulk]l-vk]l+blk—1])div2;
vik=1]=(-ulk]l-v[k]+alk—1])div2;

end else

begin
ulk=1]=(ulk]—-v[k])div2; v[k—-1]:=(—ul[k]—v[k])div2;

end;

end;
end; {end of loop}

Purdy’s algorithm has average running time approximately K -n for some positive constant X,
see Theorem 2 in Ref. [4]. However, the worst case behavior is quadratic in n. To see this take
as input to the algorithm @ =2""'+42""241, b=2""'—2""?+1. Note that after one step
a=2"""+41and b =2""2 after n more steps the pattern is repeated: a =2""2+1 and b =2""".
Thus the forward sweep will need n(n + 1)/2 4 1 transformations.

We have tested both algorithms for all pairs of odd integers in the range from 1 to 2'°. Our tests
have shown that, on average, Purdy’s algorithm requires twice as many transformations to compute
the extended GCD. Also, the average number of additions in Purdy’s algorithm is twice as large
as for algorithm EPM.

The only advantage we have observed for Purdy’s algorithm is that the computed coefficients
u, and v, do not exceed, in absolute value, the greater of |a,| and [,|. In fact the following is true.

Lemma

If {(a;, b;)} and {(u;,v)}, i =M, ..., 1, are the sequences computed in the backward sweep of
Purdy’s algorithm then for i =M, ..., 1

max(|u], [v,]) < max(lal, |b;])

Proof: The proof is by induction and can be found in Ref. [12].

|
Remark
Our tests suggested that the ratio
max(|uol, |vo|)/max (||, |bol)
does not exceed 2/3 except in trivial cases, but we were unable to prove this.
|

4, REDUCTION OF RATIONALS TO STANDARD FORM

When performing rational arithmetic it is usually desirable to reduce a result a,/b, to ag/bg,
where aj = a,/GCD (ay, by) and bj = by/GCD (a,, by). An algorithm similar to Algorithm EPM
allows this reduction to be performed during the computation of GCD (a,, by), without any
division, We simply maintain

My ;'k ay dy
U,= , such that U, = ,
¢ |:J’k ’h:| ¢ [bk] |:bﬂj|

238 A. W. Bosanczyk and R. P. BRENT

by taking Uy=17 and U, =U,_,T;' for k > 1. Then,

[“"] =a, [“] | @l = GCD(ay, by)
bﬂ }'m

S0 ag= *pu, and by = +7y,, where m is the number of transformations required for convergence
(i.e., b, =0).

5. CONCLUSIONS

We have shown that the Algorithm PM of Brent and Kung [5-7] can be extended to solve the
problem (1). The resulting Algorithm EPM requires O (n ?) bit operations and can be pipelined, so
with O (n) pipeline stages or O (n) systolic cells it requires time O (n). A similar algorithm may be
used to reduce rational numbers to standard form without divisions.

The extended GCD algorithm of Purdy [4] appears to be inferior to Algorithm EPM in the
average case, and it is certainly inferior in the worst case, as it may occasionally require of order
n’ stages, and hence of order n’ bit operations.

Asymptotically faster parallel GCD algorithms are known Ref. [11], but Algorithms PM and
EPM appear to be the fastest known algorithms which are practically useful and could readily be
implemented in hardware.

REFERENCES

I. R. P. Brent and H. T. Kung, Systolic VLSI arrays for polynomial GCD computation, /EEE Trans. Comput. C-33,
731-736 (1984).

2. R. P. Brent, An improved Monte Carlo factorization algorithm. BIT 20, 176-184 (1980).

3. R. P. Brent, Some integer factorization algorithms using elliptic curves. Proc. 9th Australian Computer Science Conf.
(Ed. G. W. Gerrity), Canberra, pp. 149-163 (1986).

4. G. B. Purdy G. B., A carry-free algorithm for finding the greatest common divisor of two integers, Comput. Math.
Applic. 9, 311-316 (1983).

5. R. P. Brent and H. T. Kung, Asystolic VLSI arrays for linear-time GCD computation. In VLSJ *83 (Edited by
F. Anceau and E. J. Aas). Elsevier/North Holland, New York. 145-154 (1983).

6. R. P. Brent and H. T. Kung, A systolic algorithm for integer GCD computation. In ARITH-7, Proc. 7th Symp. on
Computer Arithmetie, 1llinois (June 1985).

7. R. P. Brent, H. T. Kung and F. T. Luk, Some lincar-time algorithms for systolic arrays. In Information Processing
'§3 (Edited by R. Mason). North Holland, Amsterdam, pp. 865-876 (1983).

8. R. P. Brent, Analysis of the binary Euclidean algorithm. In New Directions and Recent Results in Algorithms and
Complexity (Edited by J. F. Traub). Academic Press, New York, pp. 321-355. (1976).

9. D. E. Knuth, The Art of Computer Programming, Vol. 2, 2nd edn. Addison-Wesley, Reading, Mass. (1981).

10. H. T. Kung, Why systolic architectures? IEEE Comput. 15 (1), 37-46 (1982).

I1. A. Borodin, I. von zur Gathen and J. Hopcroft, Fast parallel matrix and GCD computations. In Proc. 23rd A. Symp.
on the Foundations of Computer Science, IEEE Computer Society, pp. 65-77 (1982).

12. A. Bojanczyk and R. P. Brent, A systolic algorithm for extended GCD computation. Technical Report CMA-29-85,
Centre for Mathematical Analysis, The Australian National Univ., Canberra (1985).

