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ABSTRACT

Lenstra's integer factorization algorithm is asymptotically one
of the fastest known algorithms, and is also ideally suited for parallel
computation. We suggest and analyse two different ways in which
Lenstra's algorithm can be speeded up by the addition of a second
phase. The first way is related to the Pollard "p=1" algorithm,
while the second way is related to the Brent-Pollard "rho" algorithm.
Under some plausible assumptions, the speedups over Lenstra's single-
phase algorithm are of order lnln{p) and lni{p} respectively, where p
is the factor which is found. In practice, for p = 1@20; the speedups
are about 3 and 4.5 respectively. The results of scme numerical

experiments confirm our predictions.



1. Introduction

Recently H. W. Lenstra Jr. proposed a new integer factorization
algorithm, which we shall call "Lenstra's algorithm" or the "one-phase
elliptic curve algorithm” [2,15]. Under some plausible assumptions
Lenstra's algorithm finds a prime factor p of a large composite integer H
in expected time

- 1/2
Tl{p} = exp{{21ln{p) Inlnip}) (L + (1)), (1.1}

where "o(l)" means a term which tends to zero as p + ©. FPreviously

1/

algorithms with running time exp((ln(N] lnln{N}) 2{1 + o(l}} were

known. However, since p2 £ M, Lenstra's algorithm is comparable in the
worst case and often much better, since it often happens that
2in(p} =< ln{W).

The Brent-Follard "rho" algorithm [5:19] is similar to Lenstra's
algorithm in that its expected running time depends on p, in fact it is
of order plfz. Asymptotically Tlip] < plfz, but because of the overheads
associated with Lenstra's algorithm we expect the "rho" algorithm to be
faster if p is sufficiently small. The results of Section 9 suggest
how large p has to be before Lenstra's algorithm is faster.

After some preliminaries in Sections 2 to 4, we describe Lenstra's
algorithm in Section 5, and outline the derivation of (1.1). Then, in
Sections & and 7, we describe two different ways in which Lenstra's algorithm
can be speeded up by the addition of a "second phase" after Lenstra's
"first phase"”. In Section 6 we describe the "p-1 two-phase algorithm',
so called because of its analogy with Pollard's two-phase "p=1" algorithm [1g].
In Section 7 we describe the "birthday paradox two-phase algorithm", whose
name comes from the fact that it is based on the same idea as the well-known
"paradox" concerning the probability that two people at a party have the
same birthday [20]. The two-phase algorithms have expected running times

D[Tlip}flnln{p)] and D{Tliplflnﬂp}] respectively. In practice, for p around



2 . .
10 G, the "p-1 two-phase algorithm"™ is about 3 times faster than Lenstra's

{single-phase} algorithm, and the "birthday parodox algorithm" is about
4 times faster. The performance of the various algorithms is compared in
Section 9.
our conclusion is that, although (1.1) is not a polynomial in lnip),
it ig a sufficiently slowly growing function that factors p = 1I:]]2|:I are accessible
at the expense of a few hours of computer time, and we can forsee that
p around 105D may be accessible in a few years time. This has interesting
implications for the sscurity of the RSA public-key cryptosystem [21],

which depends on the assumed difficulty of factoring large integers.

2. Oour unit of work

The factorization algorithms which we consider use arithmetic coperations
modulo W, where N is the number to be factorized. We are interested in the
case that W is large (typically 50 to 200 decimal digits) so multiple-precision
cperations are involved. As our basic unit of work (or time) we take one
multiplication modulo N {often just called "a multiplication" below). More
precisely, given integers a, b in [0, H), our unit of work is the
cost of computing a*b mod N. Because N is assumed to be large, we can
simplify the analysis by ignoring the cost of additions mod W or of
multiplications/divisions by small (i.e. single-precision) integers, so long
as the total number of such cperations is not much greater than the number
of multiplications mod N. See [11, 17] for implementation hints.

In some of the algorithms considered below it is necessary to compute
inverses modulo N, i.e. given an integer a in {0, ¥), compute u in (0, N)]
such that a*u = 1 (mod N). We write u = a_l fmod H). u can be computed by
the extended GCD algorithm [11], which finds integers u and v such that
au + Wv = g, where g is the GCD of a and N. We can always assume that
g = 1, for otherwise g is a nontriwvial factor of N, and the factorization

algorithm can terminate



Suppose that the computation of a_l {mod N} by the extended GCD
algorithm takes the same time as K multiplications (mod N). Our first
implementation gave K =~ 30, but by using Lehmer's method [14] this was
reduced to 6 = K = 10 (the precise walue depending on the size of N).

It turns out that most computations of a-l {mod N} can be avoided at the
expense of about B multiplicaticons (mod M), so we shall assume that K = B,

Some of the algorithms require the computation of large powers (mod N),
i.e. given a in [0, W) and b == 1, we have to compute ab {mod H). We shall
assume that this is done by the "binary" algorithm [11] which reguires
hetween lcgzh and 2.1cgzh multiplications {mod N} - on average say
{3{2}1ug2h multiplications {of which about lngzb are sdquarings). The

constant 3/2 could be reduced slightly by use of the "power tree" or

other sophisticated powering algorithms [L17].

3. Prime factors of random integers

In order to predict the expected running time of Lenstra's algorithm
and our extensions of it, we need some results on the distribution of prime
factors of random integers. Consider a random integer close to M, with

prime factors n, E n_ £ ... For o = 1, define

1 2
gla) = lim Prob {nl - leu]'
and for o - 1 2 B 2 1, define
i, B) = lim Praob {nz = le& and n, < HEXHJ.

D

(For a precise definition of "a random integer close to M", see [12). It is
actually sufficient to consider integers uniformly distributed in [1, M].)
Several authors have considered the function pln), see for example
(6,7,11,12,16] . It satisfies a differential-difference eguation
ap'la) + pla - 1) =0

and may be computed by numerical integration from



1 iflsoas 2

1

pioa) = o
= /7 pitydt if o = 2.
o u=-1

We shall need the asymptotic results

1n pi{a) = =o{lnd <+ Inlndx - 1) + ofx) (3.1)
and

pla - 1)/p(x) = a{lne + O(1nlnx)) (3.2}
as ¢ > @,

The function pi{x, B) is not so well known, but is crucial for the
analysis of the two-phase algorithms. Knuth and Trabb Pardo [12] consider
Mie, 2) and by following their argument with trivial modifications we find
that

_ 1 peoyat
wia, B) = play + ST BT (3.3)

When comparing the two-phase and one-phase algorithms the ratio
plo)/ula, B) is of interest, and we shall neesd the bound

B

pla) /uie, B} = O(Lnd(uln) ©) (3.4)

as o + =, for fixed B = 1.

4. The group of an elliptic curve {(mod p)

In this section we consider operations mod p rather than mod N,
and assume that p is a prime, p = 5. When applying the results of
this section to factorization, p is an (unknown) prime factor of N,
so we have to work mod N rather than mod p.

Let S be the set of points (x, y) lying on the "elliptic curwve"
2. x3 + ax + b {mod p), {4.1)
where a and b are constants, 4a3 + 27k # 0. Let

G=5U/{1},
where I is the "point at infinity" and may be thought of as (0, =}.
Lenstra's algorithm is based on the fact that there is a natural way to
define an Abelian group on G. Geometrically, if Pl and Pze: G, we define

P3 = Pl*P2 by taking P3 to be the reflection in the x-axis of the peoint



0 which lies on the elliptic curve {4.1) and is collinear with Pl and P2+

1, 2, 3. Then P_ is

Algebraically, suppose Pi = {xi, yi} for i 5
defined by:
i f = h P, =P
if Pl I then 3 2
if P = I the P = P
else 1 o en 4 1

else if (x=x_, yl} = {xz, -Y2] then P3 = I

1
else
begin
if X, = %, then A := (Zyl)- (3xf + a) mod p
else & := {xl - xz}_ [yl - y2) mod p;
{ A is the gradient of the line joining Py and P2 1
2
Xy 0= (A7 — x, - le mod p;
¥y = [l{xl - x3‘1 - 5'1} mod p
end.

It is well-known that (G, *) forms an Abelian group with identity element I.
Moreover, by the "Riemann hypothesis for finite fields" [10], the group
order g = |G| satisfies the ineguality
g-p-1 < 2/h . (4.2)

Lenstra's heuristic hypothesis is that, if a and b are chosen at random,
then g will be essentially random in that the results of Section 3 will
apply with M = p. Some results of Birch [3] make this plausible.
Nevertheless, the divisibility properties of g are not gquite what would be
expected for a randomly chosen integer near p, e.g. the probability that
g is even is asymptotically 2/3 rather than 1/2. We shall accept Lenstra‘s
hypothesis as we have no other way to predict the performance of his algorithm.
Empirical results described in Section 9 indicate that the algorithms do
perform roughly as predicted.

Mote that the computation of PI*FE reguires (3 + K} units of work
if Pl # P and (4 + K) units of work if P. = P_. (Sguaring is harder than

1 2

multiplication !) If we represent Pi as Exijzi, yifzi} then the algorithm



given above for the computation of Pl*P2 can be modified to avoid GCD
computations: assuming that z, = 2, (which can usually be ensured at the
expense of two units of work), a squaring then reguires 11 units and

a nonsquaring multiplication reguires 9 units of work. Possibly some
clever recrganisation of the computation would reduce these numbers
slightly.

The reader who is interested in learning more about the theory of

elliptic curves should censult [9], [10)] ox [13].

5. Lenstra's algorithm

The idea of Lenstra's algorithm is to perform a seguence of pseudo-random
trials, where each trial uses a randomly chosen elliptic curve and has a
nonzero probability of finding a factor of N. Let m and m"™ be parameters
whose choice will be discussed later. To perform a trial, first choose
P = (x, v} and a at random. This defines an elliptic curve
YE = x3 +ax + b (mod W)

{(In practice it is sufficient for a to be a single-precision random integer,
which reduces the cost of ¢perations in G; also, there is no nsed to

check if GCD (N, 4a3 + E?bzl # 1 as this is extremely unlikely unless N

has a small prime factor.) Next compute Q = PE, where E is a product of

primes less than m,

e
E = Il Pii ;
ime, p.< M
Pi prime pl

where

e, = _l__.}n{m'}lfln(pi]l_l .
Aotuwally, E is not computed. Instead, O is computed by repeated operations
of the form P := Pk, where k = p:i iz a prime power less than m", and the
operations on P are performed in the group G defined in Section 4, with one
important difference, The difference is that, because a prime factor p of
W is not known, all arithmetic operations are performed moduloc N rather

than modulo p. Conseguently, elements of G are not represented uniquely.



Suppose initially that m' = N. If we are lucky, all prime factors of
g = 1GI will be less than m, S0 g|E and PE = I in the group G. This will
be detected because an attempt to compute t-l {mod H) will fail because
GCD (N, t)} = 1. 1In this case the trial succeeds. (It may, rarely, find
the trivial factor MW if all prime factors of W are found simultanecusly,
but we neglect this possibility.)

Making the heuristic assumption mentioned in Section 4, and neglecting
the fact that the results of Section 3 only apply in the limit as M (or p)
-+ @, the probability that a trial succeeds in finding the prime factor p
of N is just pla) ., where g = In(p)/Inim}.

In practice we choose m" = m rather than m" = M, because this
significantly reduces the cost of a trial without significantly reducing
the probability of success., Assuming m" = m, well known results on the
distribution of primes [ 8] give 1ln(E} ~ m, so the work per trial is

. 11
approximately c.m, where c. = [— 4+ K}

1 1 3 Here ¢, is the product of

3
21nz ° 1

the average work reguired to perform a multiplication in G times the

constant which arises from our use of the binary algorithm for

21ln2
computing powers (see Section 2}. BSince m = plfu, the expected work to
find p is
1/o !
W m}'vcp’:fp{ul . (5.1)
1 1
To minimize Wliul we differentiate the right side of (5.1) and set
the result to zero, obtaining lni{p) = -azp'{a}jp{ul, or {from the differential
equation satisfied by P},
Intp) = apla - L)/ pla) . (5.2}

In practice p is not known in advance, so it is difficult to choose g
so that (5.2) is satisfied. This point is discussed in Secticon 2, For the

moment assume that we know or guess an approximation to ln(p}, and choose

o 50 that {5.2} thdSJ at least EPPrQX.i.mﬂtEly. From f3'2}‘



In(p) = ﬂziln& + 0{1nlno)) (5.3)
50
@~ (2ln(p)/lnln(p)) /2 (5.4)
and
anl{ﬂ}‘” Eé%af—ll - lnp{o) ~ 2Zolno {5.5)
*w'[21:0,'[1?}J.n.'l.nfl;nll]'l”r2 {5.6]
Thus

/

T, (p) = W (&) = exp((2ln(p)Inln(ph) (1 + o(1)) (5.7)

1
as stated in Section 1. It may be informative to write (5.7) as

2/0 + oilfﬁ]r (5.8)

T =W =
l{pl lia} he]
so 2/ is roughly the exponent which is to he compared with 1 for the
methoed of trial division or 1/2 for the Brent-Pollard "rho" method. For

lﬂlﬂ < p= lﬂaﬂ, o is in the interwal (2.2, 5.0).

6. The "p=-1" two-phase algorithm

In this section we show how to increase the probability of success of
a trial of Lenstra's algorithm by the addition of a "second phase". The
idea is the same as for Pollard's two-phase "p-1" algorithm [18]1, the
only difference is that we work in the group G of an elliptic curwve
instead of in the multiplicative group of integers modulo p.

Let m = plfﬂ be as in Section 5, and m' = rnE > m. Let g he the order
of the random group G for a trial of Lenstra's algorithm, and suppose that
g has prime factors n, = n, Z ... Then, making the same assumptions as
in Section 5, the probability that n, < m* and n, < m is ple, B}, where
U is defined by (3.3). Suppose we perform a trial of Lenstra's algorithm,
computing Q = PE as described in Section 5. With probability pix, B) - pio)
we have m:?nlcqm‘ and n, <M, in which case the trial fails because O # I,
but in =IinG. (As in Section 5, g should really be the order of P in G

rather than the order of G, but this difference is unimportant and will be

neglected.)



The idea of the "p-1" two-phase algorithm is to compute Qk for each
prime k in [m, m'). If, for some such k, Qk = I in G, then the factar p
of N will be detected (during a GCD computation, as for Lenstra's algorithm).
We can save work by precomputing a table of Qj for all {or most}) j which
6

occur as differences p, - p, for prime p, <= m'. For example, if m' = 10
Pisv1 i P i

then it is sufficient to compute QJ for even j £ 114 {see [20]). Then

B, B. P, - p.
0 1+l =0 1*Q ikl Y can be computed with just one multiplication in G,

i.e. with cost cz = 3 + K multiplications (mod N).

There are approximately (m' - m)/lni{m'}) primes in [m, m'), so the cost
of one trial ¢f the "p-1" two-phase algorithm is about cm + czim'—m}jln{m'].
and the expected cost of finding the factor p of H is

Wzi&, B) ~ Eclm + czim'-mlfln{m'}}fuiu, g) . {6.1)

The optimal choice of o and £ to minimize WZ{H. B) is more difficult
than the choice of ¢ for Lenstra's algorithm. However, we can cbtain an
order of magnitude estimate of the improvement due to use of the second
phase by supposing that ¢ is chosen as for Lenstra's algerithm (defining

1
m=p Ka}, and then m' is chosen so that the work for each phase is about

equal, i.e. clm'ﬁ czim‘ - m)/1nim'}. Thus m" = pﬁfm = {clfczlplfaln{pﬂf&

and from {(5.2) we have

Y.

1 1
E—-l+&—+0fgl . {6.2)

plo - 1)

1
How, =} =
ow, from (3.2) and (3.3), Mo, 1 + a} = pla) + P

D {u—j lﬂu:

50

It

Wzm‘ B:l,a’wl{u:- Olp o) i, B))

0(1/1ne) = O(1l/1nlnip)} (6.3)
In other words, we obtain a (theoretical) speedup of at least order

Inln{p). Clearly the speedup is at most of order ln{p), for without
decreasing the probability of success of a trial we could just perform
Lenstra's algorithm with m replaced by m', which increases the cost of a
trial by a factor O{ln{m'}} = O{ln(p}). 1In fact, a more detailed analysis
shows that our lower bound 1lnln(p) gives the correct order of magnitude of

the speedup. In practice, the speedup is about 3 (see Secticon 9).
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7. The "birthday paradox" two-phase algorithm

The "hirtbday paradox" algorithm, like the "p-1" two-phase algorithm,
is intended to find a factor p of N if n,< m' and n, < m, where
n, 2 n_# ... are the prime factors of g = EG| and G is a randomly chosen

1 2
B, 2

''=m5m,

group, as in Lenstra's algorithm. We assume that m < m
gso 1« B = 2,
As in Section 6, let Q@ # I he the result of an unsuccessful trial of
In
Lenstra's algorithm, and suppose that Q L I in ¢ for some {(unknown) n, < m'.

Let H = =0= be the cyclic group generated by Q. A nice idea is to take

some pseudo-randem function £: Q + Q, define Q; = Q and Qi+1 = f{Qi) for

1l

L = 2, ... ' P e i . i . j

i 1, 2, , and generate Ql Qz until Qzl Qi in G. As in the
Brent-Pollard "rho" algorithm [5], we expect this to take Otfﬂij steps.

The only flaw in this nice idea (which would allow us to take F=2in

the analysis below) is that we do not know how to define a suitable pseudo-

random function f. Hence, we resort to the following (less efficient)

algorithm. r is a parameter whose choice is discussed laterx.

Define Ql = and
Qj*gk « where kK = k{4) is.a randomly
% =4

chosen integer in [1, j],
for j =1, 2, ... , -1, so Ql, cee Qr are essentially random points
in H and are generated at the expense of O(r) group operations. Suppose

= (x_ .} and let
o Jr Yj

E r-1 r
d= 1 n {y., = y.} {(mod N} {7.11
i=1 =i+l 4
If, for some i < j £ r, Q, = Qj in G, then p[{yi - yj} so p|ld and we can find
the factor p of B by computing GCD (W, 4). (We can not find i and j by the

algorithm used in the Brent-FPollard "rhe'" method because Qi = Qj does not

imply that Qe = Qj+1-)

The probability PE that p|d is the same as theprobability that at least

two out of r people have the same birthday {on a planet with n, days in a

1

yvear). For example, if nl = 365 and r = 23, then PE =1/2.
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In general, for r =< nl;

r=1 2

_ - _ s = - X
PE = 1 .H {1 ]fnl} = 1 exp ( o - (7.2)
j=1 1

so we see that PE £ 1/2 if r 2 (2(1n2]nl]lfz.

We can obtain a good approximation to the behaviour of the "birthday
paradox" algorithm by replacing the right side of (7.2) by a step function
which is 1 if r2 = E{lnEJnl and 0 if rz = E{lHZ}nl‘ Thus, a trial of the
"birthday paradox" algorithm will succeed with probability approximately
uia, B), where B is defined by r2 = zflnzjmﬁ. i.e.

B = 2lnlr)/In{2{1ln2)m) {7.3)

and u{u, B) is as in Section 3. A more precise expression for the

probability of success is
x-1 Lt + B - o)jo
pla +J {1 -2 P 128 ae (7.4)

o -t
Computation shows that (7.3} gives an estimate of the probability of
success which is within 10 percent of the estimate (7.4) for the values

of p, @ and B which are of interest.

. . . 2 ]
A worthwhile refinement is to compute yj {moed W) for =1, ... , ¢

(at the cost of r units of work), and replace 4 of (7.1) by

r-1 r 3 9
d' = 1 n {y. = ¥.) (mod M) . {7.5]
i=l §=is1l T J

Since {xj, —yj} is the inverse of {xj, yj} in H, this refinement effectively
"folds" H hy identifying each point in H with its inverse. The effect is

that (7.2) becomes

2
4 - - r
PE = 1 exp ( 'n ] (7.6)
2 £ 1
and (7.3} becomes r” = (1n2Im ; 1.e.
B = 2lnl{r)/In{{ln2}m) . (7.7}

i.d std . .

{ } still helds so long as f is defined by (7.7) instead of (7.3).
Comparing the "birthday paradox" algorithm with the "p-1" two-phase

algorithm, we see that they give essentially the same probability of

success per trial, for the same p, ® and B. Thus, we prefer the algerithm



1z

which costs least per trial, The cost of the "birthday paradox" algorithm

. 2 2 .. . . .

iz r /2 + 0fr) = mﬂilnz}fz + (}meﬁ*"z ] multiplications per trial {(using (7.7}},
while the cost of the "p-1" two-phase algorithm is czmﬂﬁln{mﬁlil + a(l}}

per trial, where cz = 3 4+ K is the cost of a group operation. (For both

™ of the first phase, which is the

same in each ecase.) Thus, the "birthday paradox" algorithm is preferable

algorithms we have omitted the cost ¢

. . . 11 . ,
if 1n{m} = ECEKEBlnE}. i.e. ifmg 10 {using K = B and a typical value
11 50 .
of PB= 1,25). However, m << 10 for p <= 10 {see Section 9), so the
"birthday paradox" algorithm is always preferable to the "p-1" two-phase
algorithm in practice.
Qur comparison indicates that the "p-1" two-phase algorithm is
preferable to the "birthday paradox" algorithm if p is sufficiently large
50 . .

{p == 10"}, However, this is not the case, because for such large p
{and hence large r] the cost of the second phase of the "birthday paradox"

. 2 1+e .
algorithm can be reduced from O(r ) to Ofr 1, for any € = 0. We discuss

this theoretical improwvement in the next section.

8. The use of fast polynomial evaluation

Let P{x) be the polynomial with roots yi, ee s Yi, i.e.

r 2 r=1 3
F{x) = I (®-y.} = L a,x {mod M) (8.1}
4=1 J j=0

and let M({r] be the work necessary to multiply two polynomials of degree
r, obtaining a product of degree 2r. As usual, we assume that all arithmetic
cperations are performed module M, where N is the number which we are trying
to factorize.

Because a suitable root of unity (mod M) is not known, we are unable to
use algorithms based on the FFT [l1]. However, it is still possible to

reduce M{rx} below the ochvious D{rz} bound. For example, binary splitting

Yog 3
95

and the use of Karatsuba's idea gives M{xr) = o(r } {see [11]).



13
The Toom-Cook algorithm [ll] does not depend on the FFT, and it

shows that

14 {cfln{rj}lfz}

Mi{x} = O{r {8.2)
as r + ®, for some positive constant ¢. However, the Toom-Cook algorithm
is impractical, so let us just assume that we use a polynomial multiplication
algorithm which has

Mir) = ot (8.3)

for some fixed € in (0, 1}. Thus, using a recursive algorithm, we can

evaluate the coefficients &D, e ar-l of (8.1) in OMM{x)) multiplications,
and it is then easy to cbtain the coefficients bj = {(j + 1)aj+1 in the
formal derivative F'{x) = L bij+

Using fast polynomial evaluation techniques [4], we can now evaluate
P'{z) at r points in time CO(M{r})}. However,

2 I 2
ar”" = I P'iy.) {mod W), [8.4)

j=1

2 2

so we can evaluate 4' and then GCD (M, 4" ).

Thus, we can perform the "birthday paradox" algorithm in time

1 +€ ] , 2 .

Ofm) + ofr ) per trial, instead of the O(m) + O{r )} assumed in
Section 7. To estimate the effect of this improvement, choose @@ as in
Section 5 and B = 2/(1 + E) so that each phase of the "birthday paradox"
algorithm takes about the same time. Frem (32.4) we have

0 (1na/ (aina) 2/ (1HE),

plo) fuie, B)

0(1nln(p)/{1n(p) 1nin(p)) >’ 1*€)) (8.5)

1/{1+")

1]

Thus, for any £' » £, we have a speedup of at least order (ln(p}}
over Lenstra's algorithm. If we use (B.2) instead of (B.3) we obtain
a speedup of order In{p) in the same way. This should be compared with
the speedup of order lnln{p} for the "p-1" two-phase algorithm.

Unfortunately the constants involved in the "0" estimates make the use
of "fast" polynomial multiplication and evaluation techniques of little value
unless r is guite large. If ¥ is a power of 2 and binary splitting is used,

SO E = 10923 - 1 = 0.585 above, we estimate that d‘2 can be evaluated in
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1+E . . 2 . .
Br ey O({x) time units, compared to r /2 + O(r) for the obvious algorithm.

1
Thus, the "fast" technigue may actually be faster if r 2 2 0. From the

22

results of Section 9, this occurs if p 10 .

—
L]

9. Optimal choice of parameters

In Table 1 we give the results of a numerical calculation of the
expected work W reguired to find a prime factor p of a large
integer M, using five different algorithms:
1. The Brent-Pollard "rho" algorithm [5], which may be considered as a
benchmark.
2. Lenstra's one-phase elliptic curve algorithm, as described in
Section 5.
3. Our "p-1" two-phase elliptic curve algorithm, as described in
Section 6.
4. ©Our "birthday paradox" two-phase algorithm, as described in
Section 7, with £ = 1. (W is computed from (7.4) and (7.7).)
5. The "birthday paradox" algorithm with £ = 0.585, as described in
Section B, with r restricted to be a power of 2.
In all cases W is measured in terms of multiplications {mod N}, with
one extended GCD computation counting as 8 multiplications (see Section 2).
The parameters ¢ and B were chosen to minimize the expected value of W
for each algorithm {using numerical minimization if necessary). The
results are illustrated in Figure 1.
From Takle 1 we see that Algerithm 4 is better than Algorithm 1 for
P = lDlD. while Rlgorithm 2 is better than Algorithm 1 for p > 1013,
Algorithm 3 is about 3 times faster than Algorithm 2, while Algorithm
4 is 4 to 4.5 times faster than Algorithm 2. Algorithm 5 is slightly

faster than Algorithm 4 if p 5_1022.
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The differences between the algorithms appear more marked if we
consider how large a factor p we can expect to find in a given time,
Suppose that we can devote lGlD units of work to the factorization.
Then, by interpclation in Table 1 {or from Figure 1}, we see that the

19

upper bounds on p for Algorithms 1, 2 and 4 are about 1077, 1025 and 1029

respectively.

log, . (p} Alg. 1 alg. 2 alg. 3 nlg. 4 alg. 5

& 3.49 4.67 4.24 4.09 4.26
B q.49 5.38 4.94 4.76 4.91
10 3,49 6.03 5.57 5,39 5.53
12 .49 6.62 G6.16 5.97 6.07
14 7.49 7.18 6.71 6.53 6.60
15 8.49 7.71 7.23 7.05 7.12
18 9.49 8.21 7.73 7.56 7.59
20 10.49 8.6% 8.21 B.D4 8.05
30 15.49 10.85 10,35 1G.22 10.14
40 20.49 12.74 12,22 12.11 11.97
50 25.49 14.44 13.91 13.82 12.62

Table 1: lcglGW versus lcglﬂp for various algorithms

- 1og, W 1

Figure 1: lcqlDW versus lﬂqlﬂp for Algorithms 1-4
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In Table 2 we give the optimal parameters o, B, m=p / .
- B.1/2 . .
r= {({ln2)m} , T = expected number of trials (from (7.4)), msT,
Way = (work for phase 2)/{work for phase 1}, and 5 = speedup over Lenstra's

algorithm, all for Algorithm 4 and several walues of p.

laglﬂp o B m r T W1 m/T 5
10 3.72 1.58 484 104 12.1 0,64 40 4,37
20 4.65 1.35 19970 BE9 147.5 Q.47 135 4,46
30 5.36 1,27 397600 2939 1141 .44 348 4,32

Table 2: Optimal parameters for RAlgorithm 4

In order to check that the algorithms perform as predicted, we
factored several large N with smallest prime factor p = 1012. In Table 3

we give the observed and expected work to find each factor by Algorithms

2, 3 and 4, The agreement is reasonably good, considering the number
Algorithm HNumber of factorizations Observed work Expected work
per factor/l0 per factor/1l0
3 59 3,03 £ 0.38 4.17
3 50 1.26 + 0.17 1.44
4 117 0.71 + 0.06 0.94

Table 3: Observed versus expected work per Factor for Algorithms 2-4

of approximations made in the analysis and the unproved hypothesis
which is discussed in Section 4. The algorithms actually

perform slightly bhetter than expected. but their relative performance

is approximately as predicted. In particular, Algorithm 4 is faster

than Algorithm 2 by a factor of more than 4.

In practice we do not know p in advance, so it is difficult to choose
the gptimal parameters o, B gete. There are several approaches to this
problem. If we are willing to devote a certain amount of time to the
attempt to factorize N, and intend to give up if we are unsuccessful after
the given amount of time, then we may estimate how large a factor p we
are likely to find (using Table 1 or Figure 1) and then choose the optimal

parameters for this "worst case"™ p. Another approach iz to start with a
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small value of m and increase m as the number of trials T increases. From
Table 2, it is5 reasonable to take m/T = 135 if we expect to find a prime
factor p = IGED. Once m has been chosen, we may choose r (for Algorithm 4)
or m' {(for algorithm 3} so that Woq {the ratic of the work for phase 2 to
the work for phase 1) has a moderate value. From Table 2, ”21 = 0.5 is
reasonable. In practice these "ad hoc" strategies work well because the
total work required by the algorithms is not very sensitive to the
choice of their parameters (e.g. if m is chosen too small then T will be

larger than expected, but the product mT is relatiwvely insensitive to the

choice of m).

10. Conclusion

Lenstra's algorithm is currently the fastest known factorization
algorithm for large W having a factor p << N, P = 1013. It is also
ideally suited to parallel computation, since the factorization process
involves a number of independent trials which can be performed in parallel.

We have described two algorithms which improve on Lenstra's algorithm
by the addition of a second phase. The theoretical speedups are of order
Inln{p) (for the "p-1" two-phase algorithm) and ln(p) (for the "birthday
paradox" two-phase algorithm). From an asymptotic poeint of view this is
not very impressive, but in practice a speedup of 3 to 5 is certainly worth
having and may increase the p which can be found in a reasonable time by
several orders of magnitude (see Figure 1 and the comments in Sectian 9).
The "p-1" two-phase algorithm might be preferred to the "birthday paradox"
algorithm because of its lower storage reguirements, but provided storage is
not a limitation we recommend the "birthday paradox" algorithm, Its storage
requirement is G{rilcgzmll bits, and from Table 2 we have r < 2000 if p < 103G+

Given increasing circuit speeds and increasing use of parallelism, it
is reasonable to predict that 1014 multiplications might be devoted to

factorizing a number in the not-too-far-distant future. (There are about
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13 . . . ;
3x10 ~ microseconds in a vear.) Thus, from Table 1, it will be feasible to
find prime factors p with up to about 50 decimal digits, This implies that
the composite numbers N on which the RSA public-key cryptosystem [20, 21]
is based should have at least 100 decimal digits if the cryptosystem is to

be reasonably secure,
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