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We describe an efficient algorithm for data compression. The algorithm finds maximal common substrings
in the input data using a simple hashing scheme, and repeated substrings are encoded using Huffman coding.
Time and space requirements are proportional to the size of the input data. A medification which uses a
bounded input buffer is also described. The algorithm is simpler than comparable linear-time algorithms
and gives excellent compression ratios on both text and binary files.
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1. Introduction

Reversible compression of files has many applications.
When combined with suitable error detection and correc-
tion schemes, it may be used to speed up transmission of
data over telephone lines. It may also be used to reduce the
cost and physical volume of archival storage. For example,
the work described in this paper was motivated by the need
to back up a 10 Mbyte hard disk using 360 Kbyte floppy
disks on a personal computer. The algorithm SLH des-
cribed below reduced the number of floppy disks required
from about thirty to less than ten.

For compression of text files, a natural scheme is to split
the input into ‘words’ which are then encoded in some way,
eg. via static Huffman coding (Huffman, 1952; Knuth,
1968; Moffat, 1987), dynamic Huffman coding (Faller,
1973; Gallager, 1978; Knuth, 1985; Vitter, 1985), or the
‘move to front’ algorithm of Bentley et al. (1986). Such
schemes perform well on English text or source programs
written in high-level languges, but they perform badly on
binary files (eg. compiled programs) or numerical data
because of the difficulty of suitably defining ‘words’. For
the application mentioned above we needed an algorithm
which would be effective on both text and binary files.

A popular algorithm for data compression is the Ziv-
Lempel algorithm or one of its variants (Ziv and Lempel,
1977, 1978; Welch, 1984; Langdon, 1983). These use a
translation table which maps strings of input bytes into
non-negative integers; these are usually encoded using a
fixed-length (eg. 12-bit) code, but variable-length codes
may also be used (Welch, 1984). The Ziv-Lempel algo-
rithms are simple, suitable for hardware implementation,
and have some nice asymptotic optimality properties.
However, they also have some disadvantages.
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1. They are slow to start, as the strings in the translation
table are built up one byte at a time.

2. They are not adaptive, so may perform badly if the
statistical properties of the input change after the trans-
lation table has been built up.

3. When used with a finite translation table, there is a
problem when the table becomes full; usually the algo-
rithm is restarted at this point, so information acquired
about statistical properties of the input is thrown away.
(For other possibilities, see Tischer, 1987.)

In this paper we describe an algorithm (SLH) which
avoids these disadvantages, and appears to perform better
than the Ziv-Lempel algorithms, although at the expense
of using more CPU time for compression and requiring
two passes rather than one. The algorithm is outlined in
Section 2, and details are given in Sections 3 and 6. The
running time of the algorithm is considered in Section 4,
and a practical modification (the use of a bounded input
buffer) is discussed in Section 5. Experimental results and
comparisons with some of the other algorithms mentioned
above are given in Section 7.

2. Outline of the algorithm SLH

In this section we outline the main ideas of the data com-
pression algorithm SLH. The input data to be compressed
is regarded as a string 5,5, . . . s, over some alphabet 3. In
principle % could be the set of 16-bit words, 7-bit Ascii
characters, printable Ascii characters, binary digits, etc.
However, we shall always assume that X is the set of all
8-bit bytes.

The algorithm has two passes. In the first pass repeated
substrings in the input data are found, and the second and
subsequent occurrences of each string are encoded as
ordered pairs (8, m), where 8 is a displacement (the number
of bytes between two occurrences of the string) and m is
the length of the string. The second pass encodes the
ordered pairs efficiently using Huffman coding. The
second pass could be avoided, at the expense of some
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reduction in the compression ratio achieved, by using
adaptive Huffman coding or some other on-line encoding
of the ordered pairs. The first pass is the more interesting
one and we defer discussion of the second pass until Sec-
tion 6.

Suppose that s, . . . s, has already been encoded. The
idea is to find a maximal substring of s, . . . s, matching
5.8.,. . »ie.find &k 1 =k=j, such thats,. .. .., =5.,...
s;., and m is maximal (subject to the constraint thatj + m=
n).If m=3thens,,. . .s,,isencoded as the ordered pair (5,
m), where 8 j — k. We may also choose such an encoding if
m = 2 (this is a borderline case). If m = 1 the first pass
simply outputs s, and increments j. Thus the output of the
first pass is a string of bytes interspersed with ordered
pairs. Note that overlapping strings are permitted, ie. kK +m
— 1 >jis possible. However, we do insist that § = 0. For
more exotic possibilities, see the survey by Storer and
Szymanski (1982). Expansion of the output of the first pass
to retrieve the original input string is extremely simple and
fast.

As an example, the first pass would encode the input
string aaaabaaacaaba as a(0,3)5(3,3)c(6,4).

In practice we have to operate in bounded space, so we
keep a circular input buffer of length B say and restrict § =
B. It is also convenient to practice to impose a moderate
upper bound on m. Details of these modifications are given
in Section 5.

The maximal matching substring problem is well
known and can be solved by constructing a ‘position tree’
or ‘prefix tree’ corresponding to the input string (Aho,
Hopcroft and Ullman, 1974). Unfortunately, the position
tree can have {}(n?) vertices, so any algorithm which
depends on its construction can not run in time O(n), at
least in the worst case. Weiner (1973) showed that the
position tree could be represented in space O(n) and that
the maximal matching substring problem could be solved
in linear time, However, Weiner’s algorithm is rather com-
plicated and, like other theoretically good algorithms
(McCreight, 1976; Rodeh et al, 1981), does not appear to
have been used much in practice. Our algorithm SLH
avoids explicit construction of the position tree and is quite
easy to implement, so we hope that it will be useful in
practice.

Recently Bell (1986) has proposed the use of a binary
search tree to solve the maximal matching problem. If
implemented with a balanced binary tree, Bell’s algorithm
would have running time O(n log »). In Section 4 we show
that alogorithm SLH has running time O(n).

3. A linear algorithm for maximal matching

In this section we describe the first pass of algorithm SLH.
We assume that the input string s, . . . 5, is stored in a buffer
and that s, . . . 5, has already been encoded. We use a hash
table H with keys of the form s, . . . 5,,,,, which are repres-
ented in constant space by ordered pairs (k, m). Initially H
is empty and j = 0.

To find a maximal substring matching s, s,.,. .
the algorithm in Figure 1.

. WE use
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m< 2;m’' < 0
repeat
look ups;." - 8Sjimin H,
if found then match « true
else match « false;
if match then
begin
represent the matching entry
in H by (k, m);
{ Save the best match found so far }
k' <« k;m' «< m;
replace the representation of the
matching entry in H by (j+1, m);
if k+ m =< n then

enter s, ** * Sp ., in H
(overwriting any matching entry);
m <+ m+1
end
else
enter ;.1 " Sj.m in H

until (not match) or j+ m > n)
{i.e. all input processed }
if m’ = 2 then
begin
output j — k', m');
ifj+m’ < n then
{ enter substrings of maximal match in H }
forj’ < j+ m' downto j+2 do
begin
look ups; -+ 8j 1 in H
if found then
{ representation is (k", m") say }
replace the representation by (j', m”)
else
enter s;. - *
end;
jej+m’
end
else
begin
output s; . y;
j<i+l
end.

"Sjamre1 IR H

Figure 1.

For the first pass, the algorithm is repeated until j = n.
The reader may find it instructive to verify the example
given in Section 2.

We shall not give a formal correctness proof of the fact
that the algorithm above finds a maximal matching sub-
Strings,. . . 5,,.,=8.,. . . 8., (subject tok=j, j+ m=n). The
idea of such a proof is to show, by induction on & and m,
thats,. .. s,,., is in H for some m’= m. Note that some of
the steps in the algorithm are unnecessary, but are included
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to minimise & =j — k"and to facilitate the use of a bounded
buffer (for which see Section 5).

4. Linearity of the maximal matching algorithm
In this section we show how the maximal matching algo-
rithm of Section 3 can be implemented so that the time
required by the first pass of algorithm SLH is O(n), ie. the
algorithm runs in time linear in the length of the input. We
assume that the hash table H is implemented so that the
time required to look up or insert a key K, given its hash
function A(K), is constant. This is not strictly correct in the
worst case, but for practical purposes the assumption is
justified.

Since the keys K occurring in the algorithm are strings
8. -+ S it is not immediately obvious that the hash
function A(K) can be computed in constant time. Inspec-
tion of the first half of the algorithm shows that we need to
compute A(s;, s,.,), h(s,.,5.:5.0), . . ., h(s;., . . . §.,). This can
be done in time O(m) provided that A has the form

h(Sj‘, ) = 2*} B a(s,.) mod p 4.1

for some fixed B and p, where o(s) is just the ordinal value
of s (or some other easily computed function of s). For
example, we may take 8 = 256 and p the hash table size
(preferably odd). Once A(K) is known, we can compute
h(Ks) from

hKs) = Bh(K) + o(s) mod p 4.2)

In the second half of the algorithm (‘if m’=2 then . . ")
we need to compute A(S,,,, S5 -« < s R(Ss. o+ S ). This
can be done in time O(n’) using the relations

h(sK) = B a(s) + h(K) mod p (4.3)
and
B mod p = S(B" mod p) mod p (4.4)

provided that & has the form (4.1). Thus there is no diffi-
culty in computing the required hash functions in constant
time.

Itis easy to prove by induction onj that whens,. . . 5;has
been encoded H contains at most 2 entries, and if s, . . .
8., 18 the next string encoded then the time required for this
is O(m). Thus, the total time (and space) required to encode
5. ..8, 18O,

In the analysis above we implicitly assumed that two
keys K and K’ could be compared in constant time. With
care we can ensure that this is true because it is often
known that only the first or last bytes of K and X’ can
disagree. In practice it is sufficient just to check that A(K) =
K", |K| =|K’|, and that the first few bytes of K and K’
agree; the probability of a ‘false match’is small and we can
check for it and backtrack if necessary before encoding
G—k,m).
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5. Use of a bounded buffer

The algorithm described in Section 3 is impractical as the
whole input string s, . . . s, must be stored in random-
access memory. However, we may use a circular buffer of
fixed size B say, and only store the last B bytes which have
been processed. In practice it is also convenient to impose
an upper limit M on the length m of a matching substring.
Thus, when encoding s;,, . . . we need only store 5,5, - - -
5., ... Sy In random-access memory, so the space
required is O(B + M). The algorithm described in Section 3
can easily be modified to take these constraints into
account, The only difficulty is how to delete hash table
entries which are no longer relevant because they no
longer correspond to strings contained in the buffer. A
simple and efficient solution is not to delete entries (k, m)
from H as soon as k <j — B, but to periodically perform
‘garbage collections’ to remove such entries. Of course,
when looking up a key in H, we must not return a match
(k, m) if k <j — B. In practice garbage collections are
seldom necessary if garbage is removed whenever it is
encountered during hash table operations.

When expanding (i.e. reversing the compression pro-
cess) a circular buffer of size Bis sufficient if compression
was performed with a buffer of this size, because all
ordered pairs (8, m) encountered must have § = B.

6. Encoding ordered pairs
The second pass of algorithm SLH has to encode a string of
bytes s and ordered pairs (6, m) produced by the first pass.
There are many ways to do this. Our implementation
assumes that M < 256 and (because of memory con-
straints) B <28, where M and B are upper bounds on m
and & (see Section 5). We map 8-bit bytes s into 9-bit
numbers by the identity mapping, and ordered pairs (8, m)
into triples of 9-bit numbers (256 +m, §,, 8,). (The ordering
is important so that single bytes and triples can easily be
distinguished when the process is reversed.) The 9-bit
numbers are then encoded using Huffman’s algorithm
(Knuth, 1968). To avoid an extra pass, the frequencies
required for Huffman coding are accumulated during the
first pass of algorithm SLH. Before the second pass these
frequencies are normalized to the range 0 . . . 255 (with
zero used only for symbols with genuine zero frequency).
This allows us to encode the Huffman tree indirectly, via
the table of normalized frequencies, in at most 512 8-bit
bytes. If the two-pass nature of the algorithm were consi-
dered undesirable, then dynamic Huffman coding or
arithmetic coding schemes (Cleary and Witten, 1984;
Pasco, 1976) could be used in place of static Huffman
coding.

Various refinements are possible, eg. pairs (8, m) with
m =2 or 3 and small 6 may be encoded specially, and the
mapping & — (8,, §,) may be chosen to optimize perfor-
mance of the subsequent Huffman coding, but space lim-
itations prevent us from going into details here.

7. Experimental results
The data compression algorithm SLH described above
was implemented on an IBM PC-compatible microcom-
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puter (actually a COMPAQ using an 8 MHz Intel 80286
CPU chip) in Turbo Pascal. Results below are given for a
circular buffer size B as large as possible, given memory
constraints (in fact B == 17000). The simple example of a
repeated cycle of length B shows that a buffer of size B
may be much better than one of size less than B. However,
in practice it was found that the compression ratio for a
buffer of size 4000 was usually within a few per cent of the
compression ratio for larger buffer sizes.

For purposes of comparison we implemented the Ziv-
Lempel algorithm (Welch, 1984) with output symbol size
9, 10, ..., 15 bits. This is as in the ‘compress’ utility
available on some Unix systems (though without the
‘block compression’ feature). We also implemented the
‘move to front’ (MTF) algorithm of Bentley et al (1986)
with a list size of 128 words and Huffman coding of the
output. To implement MTF we used a ‘splay tree’ (Sleator
and Tarjan, 1985). Our definition of ‘word’ was slightly
different to that of Bentley er af (1986) so we did not
alternate between alpha-numeric and non-alphanumeric
words. We also implemented straightforward Huffman
coding (HUF) of the input string, regarded as a string of
bytes.

In Table | we give the results obtained when the differ-
ent algorithms were applied to a Pascal program of size
20873 bytes, with trailing blanks already removed. In the
table, ‘compression ratio’ is the ratio of the input data size
to the output size (including encoding of the Huffman tree
when applicable). The time estimates should only be taken
as a rough guide, since no particular effort was made to
optimize the running times of the programs.

Table 1. Comparison of data compression algorithms.

Algorithm Compression Expansion Compression
time time ratio
{seconds) {seconds}
HUF 16 12 1.75
MTF 44 42 229
Ziv-Lempel 26 20 248
SLH 44 12 3.18

The results given in Table | are typical of those
obtained for text files, including some much larger than the
buffer size. On binary files the compression ratios attained
were more variable than for text files and generally
smaller. For example, on one executable file of size 36800
bytes, the algorithms HUF, MTF, Ziv-Lempel and SLH
gave compression ratios of 1.17, 0.99, 1.21 and 1.56
respectively.

8. Conclusion

The compression ratios achieved by algorithm SLH com-
pare well with those achieved by the Huffman, MTF and
Ziv-Lempel algorithms, The CPU time required for com-
pression by algorithm SLH is comparable to that for MTF,
somewhat more than that for Ziv-Lempel, but within a
factor of two. Thus SLH should be preferred unless the
simplicity and speed of Ziv-Lempel is considered more
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important than its poorer performance in compressing the
input. Although our implementation of MTF might be
improved, MTF does not appear to be a serious
competitor.

To conclude on a practical point: the operating system
(MS-DOS) under which our programs were developed has
a minimum file size of 4096 bytes on a 10 Mbyte disk
(presumably so that the starting location of a file can be
identified with 12 bits). Thus the compression ratios attai-
nable by simply concatenating small files (with approp-
riate headers containing their names, etc.) can easily
exceed those attainable by more sophisticated data com-
pression algorithms. Our implementation of algorithm
SLH includes a facility to concatenate files before they are
compressed.
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