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ABSTRACT

We describe an algorithm for proving that there is no odd perfect number less than a given
bound K (or finding such a number if one exists). A program implementing the algorithm has
been run successfully with K = 10, with an elliptic curve method used for the vast number
of factorizations required.

COMMENTS

Only the Abstract is given here. The full paper appeared as [1]. For a sequel which extended
the result to K = 103%°, see [2]. The integer factorizations used in the proofs are available by
anonymous ftp [3].
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