V3.3

A High Throughput Systolic Implementation of
The Second Order Recursive Filter

Zhow B. B. and Brent R. P.
Computer Sciences Laboratory
Australian National University, Canberra, Australia

ABSTRACT

This paper introduces a high throughput systolic implementation
of the direct-form second-order recursive filter. The systolic structure
has the advantage of regularity over implementations of the block-
state-variable form. Since communication is very expensive in VLSI
implementations in terms of area, as well as time, our regular struc-
ture is better for VLSI than those based on block-state-variable filter
descriptions.

1. Introduction

Many 2D (two-dimensional) VLSI structures have been introduced in
the literature for 1D (one-dimensional) recursive digital filters with
high throughput. The techniques applied for these implementations
are mainly based on block-state-variable filter descriptions. This paper
introduces a high throughput systolic implementation of direct-form
second-order recursive filter. The number of multipliers required in
the systolic structure is greater than in those structures based on the
block-state-variable form. However, communication is very expensive
in VLSI implementations in terms of area, as well as time[l]. Since
our structure has the advantage of regularity, it is more suitable for
VLSI than implementations of the block-state-variable form.

In Section 2, we derive a parallel algorithm for the second-order
recursive filter. By modifying the original equation, our parallel algo-
rithm allows L outputs to be computed simultaneously. The algorithm
consists of two parts, namely recursive convolution and linear convolu-
tion. Thus Section 3 describes first two systolic sub-systems for these
two convolutions and then shows that these two sub-systems can nat-
urally be connected in a systolic way. In Section 4 the area complexity
and the stability of the derived algorithm are discussed.

2. Algorithm
A second-order direct-form recursive filter can be expressed as

2 2
UEDDIULISE PrA n
j=0 j=1

Because y; depends on the availability of the immediately previous
output y;—1, the equation (1) can not be computed in parallel. To
solve this problem, we make the following modification.

According to (1), we write y;; explicitly as

2 2

Vi1 = P owimioij+ Y ri%ioinj (2
i=0 i=1
Substituting (2) into (1), we have
3 3
1 1

Y = ij()I;—j +Z7‘J(-)yz'—j ®)

=0 j=2

where wgl) = wp, wgl) =

1 1
wy + 1o, ’wé)= wy + riws, w:(;)= T1W2,
Ne))
2

=1} +7ry and rgl) =rirg.

We see, from (3), that y; does not depend on y;—;. Thus g and
Y%-1 can be produced simultaneously. We can also write y;_, explicitly
from (1) and substitute it into equation (3). Then

1 4
H=3 'W;E)-Ti—j + E T']('z)yi—j 4)
i=0 j=3
where wgz) = wiV wgz) = wiV, w® = wgl) + rgl)wo, wgz) = wgl) +

rgl)wl, w((f) = rgl)wg, rgz) = rgl) +r§1)r1 and r,(f) = rgl)r;.

It is clear that 3 outputs can be computed in parallel by using
equation (4).
We can prove that, after L — 1 iterations, 3 becomes

L+1 - L+1 .
- -1
w= 2w Ve 4 3 e ®)
i=0 j=L
In the above equation, the coefficients wJ(L'l) and rJ(.L_l) may be com-

puted by the following iterative algorithm.
for2<i<Ldo
begin
for0<j<!+1do
begin {to compute wj(-'gl)}
if j <!~ 1 then
WD = (-2)

3 i
elseifi—1<j<!+1 then

w}l'l) = u;J(.I_z) + rl(l_"lz) * Wi_(1-1) (6)
else w§1-1) = rf:f * Wy

end; {end of computing wJ(-'_l)}
{to compute ry'l)}
r,U_l) = r,(’_z) + r,(1__12) *7;

-1 -
"1(+1)= "1(—12) * T
{end of computing r;'_l)}

end.

Although L — 1 addditional multiplications have been introduced,
yi in (5) depends only on y;—r and 3_(z41) so L outputs can be com-
puted simultaneously. Therefore, we may construct a high throughput
parallel architecture for the second order recursive filter.

3. Architecture

The equation (5) can be split into two parts:

L
g=city. TJ(- Dy]
=L

CH2561-9/88/0000-2053 $1.00 © 1988 IEEE

and

®

L+1 ¢
L-1
Cc; = E w]-)Z,‘_]‘
j=0

The equation (8) is just a linear convolution and (7) is called recursive
convolution. Therefore, in this section we first derive a 2D systolic
structure for the second order recursive convolution problem and then
a 2D systolic ring structure for the linear convolution problem[5] is
briefly described. Finally, because the output from the sub-system for
the linear convolution is the input to that for the recursive convolution,
we discuss the interconnection between these two structures.

3.1. Structure for recursive convolution

From (7), we express the second-order zero-input recursive filter as

D ©)

Yi =T
Since L outputs can be computed in parallel, we arrange the output
in (9) into L groups.
Setting i = Lk +1for0<I<L-1land k=0,1,2,--. we have

L-1
Yi-r + T(L+1)yi-(L+1)

L-1 L-1
YLkl = T(L)yLk+l-—L + "£+1)yLk+i—(L+1) 10
— o(L=1) (L-1) (10)
STL Yik-0H T TLar YLk-1)Hi-1
In (10), Y4 can be further divided into two parts:
0 1
Yokt = Yinas + Vi (11)
where
(0 (L-1)
Yok =TL “YrG-1)4 12

y(L‘2+, = TS,[:)-11)9L(I:—1)+I—1

From (11) and (12), a parallel structure can be easily obtained.
An example with L = 5 is depicted in Fig. 1.

The dashed lines in Fig. 1 denote zero-delay lines. One unit time
for this system is the time for computing one multiplication plus two
additions.

The derived structure is not systolic because there is a long wire
directed from the left-most column to the right-most column. This
long wire can be eliminated by a column permutation.

For simplicity, consider an example with L = 5. We number the
5 columns in Fig. 1 from left to right as

123 435

For the first two rows of the structure, we first fold the structure and
then interleave, giving the permutation

15 2 43

For the third row we use this permutation followed by an odd-even
interchange. The column indices after the above permutations become

15243
1524 3 (13)
51 4 2 3

Using these permutations, the systolic layout shown in Fig. 2 is derived
from the structure of Fig. 1.

3.2. 2D systolic ring for linear convolution

Fig. 3 depicts a ring structure for solving the linear convolution prob-
lem. A detailed derivation of this structure can be found in [5]. With L
columns, this structure allows L inputs to enter the system in parallel
and produces L outputs simultaneously. Since L =5 in Fig. 3, inputs
and outputs have been arranged into 5 groups, respectively {zsx41}
and {ysk+1} for 0 < I < 4. It has been proved that the most efficient
1D systolic array for solving this problem(3][4] is just a special case

2054

with L = 1. The corresponding systolic layout is depicted in Fig. 4.
To transform Fig. 3 into Fig. 4, we use the following procedure.
We first number the columns in Fig. 3 as
1 2 3 45
We let the first row correspond to the permutation

15 2 43

For the remaining rows, we apply odd-even interchanges, giving L + 2
rows as follows:

15 2 43
1 25 3 4
2135 4
2 3145 (14)
3 2 415
3 4 251
4 356 21

From (14) we obtain Fig. 4 by drawing the input and output lines
explicitly.

3.3 Interconnection

In section 3.1, we assumed that the input ¢; in (7) is zero when con-
structing the structure for recursive convolution. We should point out
that the structure can also compute the recursive convolution with
¢i # 0. When ¢; is not zero, the equation for yiok)ﬂ (or yg,zﬂ) in (12)
should be rewritten as
y(L°,3+, =Crpyr t TEL—l)yL(k—l)+l (15)

Since the basic processing element performs the computation of mul-
tiplication and accumulation, the inputs, ¢;; .y for 6 < 1< L -1,
can enter the system from L input ports on the top of the structure.
Therefore, we may put the structure for linear convolution on top of
the structure for recursive convolution to obtain our desired result.

From (15), we see that the outputs produced by Fig. 3(or 4)
should have the same subscripts as the inputs required by Fig. 1(or
2) in order to make the communication between the two structures
correct. This means that columns with the same indices should be
connected together. It is easy to see, from (13) and (14), that the two
structures can be connected systolically if we reverse the order of the
columns in Fig. 2. Our final result is depicted in Fig. 5.

4. Dicussion

For a second order recursive filter with L outputs in parallel, the num-
ber of multipliers used in our systolic structure is L(L + 4), which is
greater than L(L+1)/2+4L+3, the number of multipliers in structures
for the block-state-variable form, if L > 4. In VLSI implementation,
however, communication is very expensive in terms of area, as well as
time. Because of their irregularity, the structures for the block-state-
variable form will occupy more area than our regular structure. For
instance, a good systolic implementation of the block-state-variable
form[4] takes at least 2L units of area for a second order recursive
filter, if one unit of area is the area taken by one multiplier.

Suppose the original impulse response of a second order recursive
filter in the 2z domain is H(z). We can prove the impulse response
after modification becomes

H'(z) = H(z)% (16)

where D(z) = 1+ Y7ot r(] Vz-i and rj(-"l) is computed by the
iterative algorithm in (J

Theoretically the impulse response after the modification is equiv-
alent to the original one. However, the effect of the finite wordlength
may cause instability if roots of D(z) do not all lie in the unit circle.
Recently, we have developed a new parallel algorithm[6]. This algo-
rithm is guaranteed to be stable. Although the number of multipliers
in the new structure is greater than the one described here, the data
flow is faster in that structure. We have proved that, to achieve the
same throughput, the new structure will take less area if the time for
computing one multiplication is not greater than the time for comput-
ing two additions.

5. Conclusions Fig. 2. Systolic layout of Fig. 1

In this paper we have described a high throughput systolic implemen-

tation of the direct-form second-order recursive filter. Qur implemen-

tation is better for VLSI than those based on the block-state-variable

filter descriptions because it is regular and modular. However the large {Hspeq) {Bopus) (Hokez) R (Bey
0 0

number of multipliers may limit its application. We hope that some
stablized parallel algorithms with a reduced number of multipliers, but w(a
having a regular structure, will be developed in the future.
6. References ’## (4 (4
[1] Kung, H.T., Why systolic architectures? IEEE Comput. May.,
Vol. 15, No. 1, Jan. 1982, pp.32-63.
[2] Kung, H. T. and Song, S. W., A systolic 2D convolution chip, u)“ uJ"z
Tech. Report, Dept. of Comput. Science, Carnegie-Mellon
Univ., Pittsburgh, Pa. 15213, 1981.
{3] Li, G.J. and Wah, B. W., The design of optimal systolic arrays, <4 (4 14 (4 (4
IEEE Trans. on Comput., Vol. C-34, No. 1, Jan. 1985, pp.
66-77.
(4] Lu, H. H., Lee, E. A. and Messerschmitt, D., Fast recursive fil- w“ Hﬂ
tering with multiple slow processing elements, IEEE Trans. on
Circuits and Systems, Vol. CAS-32, No. 11, Nov. 1985, pp.
L119-1129, o] *’ # *, ﬁ’
[5] Zhou, B, B., 2D systolic ring structures for solving linear convo-

lution probems, Tech. Report, Comput. Sci. Lab., Australian
National Uni., Australia, Sept. 1985. (4 (4) (4)]
() LU l.U
[6] Zhou, B. B. and Brent, R. P., A stablized parallel algorithm #‘*/
for the direct-form second-order recursive filter, Tech. Report,

Usiea) (Uspas) (Ygpoh (sl (Ygd

Comput. Sci. Lab., Australian National Uni., Australia, to ap-

pear. . . i .
Fig. 3. Ring structure for linear convolution

{0) (0) (0) {0) (0)
Ysira Ysk-6Y sxs3Ysk-7 Yskez Y sk-8Yskes Ysk-9 Ysy Ysk-10

1) (1) (1) (1) 1
YspraIsk-7Y iz sk Yoz Isk-9Y gein Usk-10Y g Isk-11

Fig. 1. Structure for recursive conuolution (L=5)

Fig. 4. Systolic layout of Fig. 3

2055

Fig. 5. Systolic implementation of direct-

form second-order recursive filter

2056

