
A Stabilized Parallel Algorithm for
Direct–Form Recursive Filters

Richard P. Brent and Zhou Bing Bing†

Computer Sciences Laboratory
Australian National University

Canberra, Australia

Abstract

A stabilized parallel algorithm for direct-form recursive filters is obtained using
a new method of derivation in the Z domain. The algorithm is regular and modular,
so very efficient VLSI architectures can be constructed to implement it. The degree
of parallelism in these implementations can be chosen freely, and is not restricted to
be a power of two.

1. Introduction

Recursive filtering is one of the most important techniques in digital signal
processing. Because recursion is involved, high sampling-rate computation is not
straightforward. The look-ahead computation concept may be applied to the imple-
mentation of recursive filters to achieve parallel computation. Although this conven-
tional method has been used successfully in the parallel realization of recursive filters
in state-variable form [1,4,6,7,10], it may cause numerical instability when applied
to the direct-form implementation of recursive filters because of the effect of finite
wordlength (see the detailed discussion in [2,3,8,9,11]). This paper introduces a new
method to obtain a stabilized parallel algorithm for computing direct-form recursive
filters. The structure of the algorithm is regular and modular. Thus it is suitable for
VLSI implementation.

Our algorithm is described in Section 2. Section 3 is concerned with the degree
of parallelism, stability and complexity of the algorithm. The degree of parallelism
is considered in Section 3.1. In Section 3.2 we show how to reduce the number of
multiplications compared to the number required in a naive implementation. Numer-
ical stability is considered in Section 3.3. Finally, some conclusions and comments on
related work by Moyer [5] and by Parhi and Messerschmitt [8,9] are given in Section 4.

† Current address: Department of Radio Engineering, Southeast University, Nanjing, Jiangsu
210018, Peoples Republic of China.
Appeared in IEEE Transactions on Computers 40 (1991), 333–336.
Copyright c© 1991, IEEE. rpb105 typeset using TEX



2. The Algorithm

In this section, we derive a new parallel algorithm. This algorithm is cost-effective
in VLSI implementation, and is guaranteed to be stable if the original (serial) algo-
rithm is stable.

The impulse response of an N th order recursive filter can be expressed as

H(z) =
Y (z)
X(z)

=

∑N
j=0 wjz

−j

1−
∑N

j=1 rjz−j
(1)

where X(z) and Y (z) represent the Z transforms of input and output, respectively.
Conversely, a rational function of the form (1) implies a recursive filter. Our approach
is to transform (1) into a different form which is mathematically equivalent (since
it represents the same rational function) but has a different denominator (see (10)
below). The denominator is chosen so that the coefficients of z−1, z−2, · · · z1−M

vanish, which makes an implementation with M -fold parallelism possible. Here M is
a parameter which may be chosen freely, although at a certain cost in computational
complexity (discussed in Section 3.2).

We introduce a well known N ×N matrix B, called a “companion matrix”:

B =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
−b0 −b1 −b2 . . . −bN−1

 (2)

In this matrix, the elements on the first superdiagonal are unity and the jth element
of the last row is −bj−1; all other elements are zero. It is known that

det(zI−B) = zN + bN−1z
N−1 + · · ·+ b1z + b0

= zN +
N∑

j=1

bN−jz
N−j

(3)

where det(X) denotes the determinant of the matrix X and I is an N × N identity
matrix. Let −bj = rN−j . Then

B =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
rN rN−1 rN−2 . . . r1

 (4)

and

det(zI−B) = zN −
N∑

j=1

rjz
N−j (5)

2



Multiplying both sides of (5) by z−N , we obtain

det(I−Bz−1) = 1−
N∑

j=1

rjz
−j (6)

From (6) we see that, by using the companion matrix B, the denominator of the
impulse response function in (1) can be expressed in matrix form. We can rewrite
H(z) as

H(z) =

∑N
j=0 wjz

−j

det(I−Bz−1)
(7)

We multiply the numerator and denominator of (7) by a common factor

det(
M−1∑
j=0

Bjz−j),

where B0 = I and Bj is a product of j matrices B. The impulse response function
then becomes

H(z) =
(
∑N

j=0 wjz
−j)det(

∑M−1
j=0 Bjz−j)

det(I−Bz−1)det(
∑M−1

j=0 Bjz−j)

=
(
∑N

j=0 wjz
−j)det(

∑M−1
j=0 Bjz−j)

det((I−Bz−1)(
∑M−1

j=0 Bjz−j))

(8)

Now

(I−Bz−1)(
M−1∑
j=0

Bjz−j) = I−BMz−M (9)

Substituting (9) into (8), we obtain

H(z) =
(
∑N

j=0 wjz
−j)det(

∑M−1
j=0 Bjz−j)

det(I−BMz−M )
(10)

which implies an algorithm in the usual way. We emphasize that, when regarded as
a rational function, (10) is equivalent to (1). However, the algorithm derived from
(10) is different from the algorithm derived from (1). From Lemma 1 below, the
denominator in (10) is a polynomial in z−M , so it is easy to implement the algorithm
derived from (10) with M -fold parallelism. For details of the parallel implementation,
see [3,11].

3



3. Analysis
To analyse the algorithm, it is useful to consider(10) as a product:

H(z) = H1(z)H2(z) (11)

where
H1(z) =

1
det(I−BMz−M )

(12)

and

H2(z) = (
N∑

j=0

wjz
−j)det(

M−1∑
j=0

Bjz−j) (13)

are the Z transformations of the impulse response of recursive convolution and linear
convolution, respectively.

3.1. Recursive convolution
We first analyze the recursive convolution part H1(z). We show that the denom-

inator of H1(z) is a polynomial of degree MN in z−1 with only N +1 nonzero terms,
and that N multiplications are required for implementing the filter corresponding to
H1(z).

Lemma 1. If B is an N×N matrix, then det(I−BMz−M ) is a polynomial of degree
MN in z−1 with only N + 1 nonzero terms, in fact

det(I−BMz−M ) = 1−
N∑

j=1

bjz
−jM (14)

where bj is a combination of some elements in BM .

Proof : The result follows from the fact that

zNMdet(I−BMz−M ) = det(zMI−BM )

is a polynomial of degree N in zM .

From (12) and (14), we have

H1(z) =
1

1−
∑N

j=1 bjz−jM
(15)

Converting (15) into the time domain, we obtain

yn =
N∑

j=1

bjyn−jM + un (16)

It is easy to see from (16) that N multiplications are required for computing the
recursive convolution by the modified algorithm. Because yn in (16) depends only on
yn−jM for j = 1 to N , up to M outputs can be computed simultaneously.

4



Example
We give an example with N = 2.

Suppose that BM =
(

b11 b12

b21 b22

)
. Then

I−BMz−M =
(

1− b11z
−M −b12z

−M

−b21z
−M 1− b22z

−M

)
(17)

We have

det(I−BMz−M ) = (1− b11z
−M )(1− b22z

−M )− b12b21z
−2M

= 1− (b11 + b22)z−M − (b12b21 − b11b22)z−2M

= 1− tr(BM )z−M + det(BM )z−2M

= 1−
2∑

j=1

bjz
−jM

(18)

where tr(BM ) denotes the trace of BM , b1 = tr(BM ) and b2 = −det(BM ).
Since H1(z) = 1/(1−

∑2
j=1 bjz

−jM ), we have

yn = b1yn−M + b2yn−2M + un (19)

3.2. Linear convolution
We now analyse the linear convolution part H2(z).

Lemma 2. If B is an N × N matrix, then det(
∑M−1

j=0 Bjz−j) is a polynomial of
degree N(M − 1) in z−1.

Proof : From Lemma 1, det(I − BMz−M ) is a polynomial of degree NM in z−1.
We also know that det(I − Bz−1) is a polynomial of degree N in z−1. However,
we have det(I − BMz−M ) = det(I − Bz−1)det(

∑M−1
j=0 Bjz−j). Thus, the degree of

det(
∑M−1

j=0 Bjz−j) must be NM −N = N(M − 1).

Since det(
∑M−1

j=0 Bjz−j) is a polynomial of degree N(M − 1) in z−1, with all its
coefficients nonzero (in general), N(M −1) multiplications are required to implement
the linear filter associated with it. We see that an additional N(M−1) multiplications
have been introduced in the modified algorithm. This is impractical if either N or M
is large. However, by using the decomposition technique of Parhi and Messerschmitt
[7], the number of multiplications can be reduced. In [7], the decomposition technique
was used for state-variable form recursive filters with M restricted to be a power of
two. The following lemmas extend the use of this technique to direct-form recursive
filters without restriction on M .

Lemma 3. If M = m1m2, where m1 and m2 are integers, then
∑M−1

j=0 Bjz−j can
be expressed as

M−1∑
j=0

Bjz−j = (
m2−1∑
j=0

(Bz−1)jm1)(
m1−1∑
j=0

(Bz−1)j) (20)

5



Proof : The result follows by straightforward algebra.

In the following, the integers mk are not necessarily distinct.

Lemma 4. If M =
∏K

k=1 mk, where mk is an integer, then

M−1∑
j=0

Bjz−j =
K∏

k=1

(
mk−1∑
j=0

(Bz−1)j
∏k−1

i=1
mi) (21)

Proof : By induction on K from Lemma 3.

Example
We give an example with M = 12. Since 12 = 3 · 2 · 2, we have

11∑
j=0

Bjz−j = (I + Bz−1 + B2z−2)(I + B3z−3)(I + B6z−6) (22)

In the example, we see that a “large” polynomial has been decomposed into a
product of three “small” polynomials. Thus, the filter associated with

∑11
j=0 Bjz−j

can be implemented on a three-stage cascaded structure with only 4N multiplications,
instead of 11N multiplications for the naive implementation. This reduction in the
number of multiplications can be expressed formally by the following two lemmas.

Lemma 5. Suppose that B is an N ×N matrix and q and p are constants. Then

det(
q−1∑
j=0

(Bz−1)jp) = 1 +
(q−1)N∑

j=1

djz
−jp, (23)

where dj is a combination of some elements in Bp.

Proof : Let zp = λ. Then

det(
q−1∑
j=0

(Bz−1)jp) = det(
q−1∑
j=0

Bjpλ−j) (24)

From Lemma 2, we know that det(
∑q−1

j=0 Bjpλ−j) is a polynomial of degree N(q − 1)
in λ−1, and it can then be expressed as

det(
q−1∑
j=0

Bjpλ−j) =
(q−1)N∑

j=0

djλ
−j , (25)

where dj is a combination of some elements in Bp.
Since the coefficient of λ0 is unity both in det(I−BMλ−M ) and in det(I−Bλ−1),

the coefficient of λ0 in (25) must also be unity. Thus

det(
q−1∑
j=0

Bjpλ−j) = 1 +
(q−1)N∑

j=1

djλ
−j (26)

6



Replacing λ by zp in (26), we obtain (23).

We see from Lemma 5 that only N(q − 1) multiplications are required to im-
plement the filter associated with det(

∑q−1
j=0(Bz−1)jp), although the polynomial has

degree Np(q − 1). Extending this result, we have Lemma 6.

Lemma 6. If B is an N × N matrix and M =
∏K

k=1 mk, then the linear filter
associated with det(

∑M−1
j=0 Bjz−j) can be implemented with N(

∑K
k=1 mk −K) mul-

tiplications by using the decomposition technique.

Proof : From Lemma 4, we have

det(
M−1∑
j=0

Bjz−j) = det(
K∏

k=1

(
mk−1∑
j=0

(Bz−1)j
∏k−1

i=1
mi))

=
K∏

k=1

det(
mk−1∑
j=0

(Bz−1)j
∏k−1

i=1
mi)

(27)

From (27), det(
∑M−1

j=0 Bjz−j) can be expressed as a product of K small poly-
nomials. The filter associated with it can be implemented on a K-stage cascaded
structure. From Lemma 5, N(mk − 1) multiplications are required in the kth stage.
The total number of multiplications is

∑K
k=1 N(mk − 1) = N(

∑K
k=1 mk −K).

When mk is not a prime number, the kth polynomial on the right-hand side of
(27) can be decomposed further. In the case M =

∏K
k=1 pk where pk is prime, the

total number of multiplications is reduced to N(
∑K

k=1 pk − K). If M is a power of
two, then this expression simplifies to N log2M .

3.3. Stability

We can rewrite (10) as

H(z) =
(
∑N

j=0 wjz
N−j)det(

∑M−1
j=0 BjzM−1−j)

det(IzM −BM )
(28)

Suppose that the original algorithm before the modification is stable. Then the
roots of det(Iz −B) are all in the unit circle. This means that the eigenvalues zi of
B are all in the unit circle. It is clear that the eigenvalues zM

i of BM are also in the
unit circle and closer to the origin than the corresponding zi. Thus, stability of the
original algorithm implies stability of our modified algorithm.

7



4. Conclusions

In this paper, we have introduced a new method of Z domain derivation for
obtaining parallel algorithms for direct-form recursive filters. Using this method,
parallel algorithms with guaranteed stability be derived. Also, the additional com-
plexity required for this purpose can be reduced through a decomposition technique
which was originally introduced by Parhi and Messerschmitt [7] and extended to more
general cases for direct-form recursive filters in this paper. Because of the regularity
and modularity of the derived algorithm, very efficient pipelined and/or parallel VLSI
architectures can also be constructed [2,3,8,9].

We have recently learned that Parhi and Messerschmitt [8,9] have obtained a
similar result using a different approach. The disadvantage of their method is that
the decomposition technique can be applied only when M is a power of two. Our
method has no such limitation.

We thank an anonymous referee for pointing out Moyer’s work which is concerned
with a parallel algorithm for first-order recursive filters [5]. It can be seen that Moyer’s
work is a special case of our result.

5. References

[1] Barnes, C. W. and Shinnaka, S., Block shift invariance and block implementa-
tion of discrete-time filters, IEEE Trans. Circuits Syst., vol. CAS-27, Aug.
1980, pp. 667-672.

[2] Brent, R. P. and Zhou, B. B., A two-level pipelined implementation of direct-
form recursive filters, Report TR-CS-88-06, Computer Sciences Laboratory,
Australian National University, April 1988.

[3] Brent, R. P. and Zhou, B. B., A stabilized parallel implementation of direct-
form recursive filters, Report TR-CS-88-07, Computer Sciences Laboratory,
Australian National University, May 1988.

[4] Lu, H. H., Lee, E. A. and Messerschmitt, D. G., Fast recursive filtering with
multiple slow processing elements, IEEE Trans. Circuits Syst., vol. CAS-32,
Nov. 1985, pp.1119-1129.

[5] Moyer, A. L., An efficient parallel algorithm for digital IIR filters, in Proc.
IEEE Int. Conf. Acoustics, Speech, Signal Process., Apr. 1976, pp. 525-528.

[6] Nikias, C. L., Fast block data processing via new IIR digital filter structure,
IEEE Trans. Acoustics, Speech, Signal Process., vol. 32, No. 4, Aug. 1984.

[7] Parhi, K. K. and Messerschmitt, D. G., Concurrent cellular VLSI adaptive filter
architectures, IEEE Trans. Circuits Syst., vol. 10, Oct. 1987, pp. 1141-
1151.

[8] Parhi, K. K. and Messerschmitt, D. G., Pipelined VLSI recursive filter archi-
tectures using scattered look-ahead and decomposition, in Proc. IEEE Int.
Conf. Acoustics, Speech, Signal Process., Apr. 1988, pp. 2120-2123.

[9] Parhi, K. K. and Messerschmitt, D. G., Pipeline interleaving and parallelism in
recursive digital filters, Part I: Pipelining using scattered look-ahead and decom-
position, submitted to IEEE Trans. Acoustics, Speech, and Signal Processing,
Nov. 1987.

[10] Zeman, J. and Lindgren, A. G., Fast digital filters with low round-off noise,
IEEE Trans. Circuits Syst., vol. CAS-28, July 1981, pp. 716-723.

8



[11] Zhou, B. B., Systolic Architectures for Parallel Implementation of Digital Fil-
ters, Ph. D. thesis, Australian National University, September 1988.

9


