A NEW APPROACH TO LOWER BOUNDS
FOR ODD PERFECT NUMBERS

By R. P. Brent, G. L. Cohen and H. J. J. te Riele

Abstract. If N is an odd perfect number, and ¢* || N, ¢ prime, & even,
then it is almost immediate that N > ¢2*. We prove here that subject to
certain conditions, verifiable in polynomial time, in fact N > ¢°%/2, Using
this, we are able to extend the computations in an earlier paper to show
that N > 10299,

1. Introduction. A natural number N is perfect if o(N) = 2N, where o
is the positive divisor sum funetion. It is not known whether or not there exist
odd perfect numbers. In an earlier paper [1], the first two authors described an
algorithm for demonstrating that there is no odd perfect number less than a given
bound K, and applied it with K = 1099,

That paper, and others discussed in [1), are dependent on the simple obser-
vation that if N is an odd perfect number and ¢* || N, where g is prime and & is
even, then N > ¢*o(g*) > ¢?*. Since the previous methods require the explicit
factorisations of ¢(g*) for increasingly large values of k, this gives a practical limit
to their effectiveness. We shall prove below that, under certain conditions which
are readily tested computationally and easily satisfied in the cases to be considered,
we in fact have N > ¢5%/2,

We are thus enabled to prove

THEOREM 1. There is no odd perfect number less than 10%°0,

The proof is still heavily dependent on the algorithm in [1], and we assume fa-
miliarity with that paper. [t was stated at the end of that work that to continue the
algorithm to prove Theorem 1 required the factorisation of the 81-digit composite
number o(1372); but 13'%° > 10%°, 5o our new result allows this factorisation to
be avoided. Apart from this and one other instance, the original algorithm, with
the “g2*” result, was sufficient for our purposes. _

All letters in this paper, except E, S and ¢, denote nonnegative integers.

To describe the new method, we need the

DEFINITION. Let g be an odd prime and k a positive integer. Define

E(q,k) ={p" | p odd prime, § > 2, B evenor f = p=1 (mod 4),
(30 <<k, p* <¢* and ¢ || o(p”)) }
and _
(g, k)= D log,(¢*/p").
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We can compute ¢(g, k) in time polynomial in ¢ and k by an efficient “lifting”
algorithm, described in Hardy and Wright (2, Theorem 123]. Usually, €(g, k) is quite
small; numerical results will be given later.

We assume in the following that N is an odd perfect number. According to
Euler, we may write

i
N = qk Hp’gi?
i=1

where g and the p; are distinct odd primes, p, = 8, = 1 (mod 4) and k = f, =
o+ = f#; =0 (mod 2).

Our new result is

THEOREM 2. Let N, ¢* and ¢(q,k) be as above. Then, provided k > 6¢(q, k)
and o(g*) 1s not a square and has no prime factors less than 20405, we have

2. Proof of Theorem 2. The proof depends on a number of Lemmas.

LEMMA 1. If p and q are odd primes with p | o(¢*) and ¢™ | p+ 1, then
k > 3m.
Proof, Since ¢™ | p+ 1, we have p + 1 = 2a¢™ for some a > 0. Then, since
p|a(g®) = ("' —1)/(g - 1),
gt —1 = (2a0¢™ — 1)R

and this implies £ > m. From the preceding equation, we have R = 1 (mod ¢g™),
so B = #¢™ + 1 say, and clearly g > 0.
Thus
¢t —1=(20q™ ~- 1)(B¢™ + 1), (1)

so ¢* Tl > ag™ . Bg™ > ¢*™, from which k > 2m.
We also have
q = 2afq™ 4+ 2a — B,

50 f = 2a + Ag™, where A = 2af — g*+1~2™ the latter implying A # 0. Then we
cannot have both 8 < ¢™ and 2o < g™, since in that case

1

a = B2

a contradiction. Hence, # > ¢™ or 2a > ¢™.
From (1}, if 2a > ¢™, then

gt —1> (¢*™ - 1)(q™ +1),
o gFtl > g% 4 g2m _ gm > g% and if § > g™, then
¢t - 12 (2¢™ - 1)(¢*™ +1),
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so gF Tl > 2¢7™ 4+ 2¢™ — g®™ > g%, Either way, we infer that k > 3m, as required.

LEMMA 2. Let g be an odd prime and let § = {pf" | p; distinet odd primes,
f; > 2, f; evenor f; =p; =1 (mod 4) }. If ¢~ cr{pf"} for each i and k > 3" k;,

then
[T o(p?) > @ EHmeled,

p‘f"es

Proof. We have quite generally that

, . T 7Y P P
a{pf‘} - piﬁ. = g2ki=(2ki=log, p")

= g2ki=logg(a™/sf7)
while if pf" € S\ E(q,k), then pf* > ¢%i. Thus, where E = E(q, k),

log, H a’{pf‘]}EEk;~ Z logq{qgk‘fpf‘}
piies pliesnE
>2) ki~ Y log,(a®/p)

plicE
:_:" zzkx - E{g}k]p

as required.
We remark that Lemmas 1 and 2 require no reference to odd perfeet numbers.

LEMMA 3. Let N, ¢* and p"f‘ be as above. Then N > ¢8%/3-<lak) prouided
etther
(i) B1>1, or
(ii) 1 =1 and py | o(q").
Proof. (i) We shall apply Lemma 2 with S equal to the set of maximal prime
power divisors of N, other than ¢*. Then, in Lemma 2, " k; = k and

Fi
2N = o(N) =o(g*) [] o(of")
i=1

~ qk . qﬂ'k—us{q,k].

Since k > 2 and ¢ > 3, we have ¢*/% > 2, and the result follows.

(i) We again apply Lemma 2, this time with § equal to the set of maximal prime
power divisors of N, other than ¢* and p;. Suppose ¢** || p; + 1. Then, in Lemma
2,3 . ki=k—k;. Also, p; + 1 > 2¢%1. Thus,

2N = o(N) = a(¢")e(p:) H a(pf")

::‘ qk - zqkl . qﬂik—kll—ﬁ{q,k] — zqﬂk—kl—;[q.k}-
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But, from Lemma 1, k& > 3k, so the result follows since 3k — &; > 3k —k/3 =8k/3.

LEMMA 4. Let N, ¢* and p; be as above. Suppose ¢*' || p, + 1 and that o(g¥)
18 not a perfect square and 1s not divisible by p, or any prime number less than B.

Then
N > \/2Bg5k-<(a:k),

Proof. Suppose k; > 0. Since a(g*) is not a perfect square, there is a prime,
p2 say, but not p;, which divides ¢(g*) to an odd power and so divides N to a
higher (even) power. Also p; +1 > 2¢** and pp > B, so

N > ¢*o(¢")p1p2 ]
2¢" - g*(1+¢7") 2" (1-2¢7%) . B
> 2Bg2k+kr

This result is true also if k; = 0. From the first part of the proof of Lemma 3(ii),
we also have N > g% —F1—¢(t.F) Hence

NB - ﬂﬁqﬁk'fi‘l-k]‘
as required.
Proof of Theorem £. Since k > 6¢(g, k), we have 8k/3 — e(g,k) > 5k/2, and

the theorem follows from Lemma 3, unless 8; = 1 and o(g¥) is not divisible by p;.
But then the result follows from Lemma 4, with B > %q‘{‘?*"}.



