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We discuss the efficiency of transputer networks for diagonalising
real symmetric matrices. Brief consideration of the various methods
available suggests that only the Jacobi method adapts easily to a
concurrent sequential process architecture. Suitable organisations of
transputer networks are evaluated in terms of the ratio of communi-
cation overhead to computation. The maximum efficiency that can
be achieved by the theoretical best possible transputer implemen-

tation of the parallel Jacobi algorithms of Brent & Luk (1985) is
calculated.

INTRODUCTION

At present the most efficient methods for diagonalising dense symmetric
matrices appear to be those based on the Householder/QR algorithms (Golub
& van Loan, 1983) but these methods do not adapt easily to a parallel architec-
ture. The Jacobi method, however, adapts rather easily (Brent & Luk, 1985).
Nevertheless, its application in concurrent sequential process architectures is
not necessarily very effective, particularly when each processor is very powerful
relative to its communication speed: such is the case with the INMOS T800
transputer. In fact if we have a lot of matrices to diagonalise the most efficient
strategy is to use a serial algorithm, such as the Householder combination, in
each transputer and give each such processor a whole matrix!

The performance for arbitrarily large matrices can be estimated theoret-
ically. In an ideal architecture, communication would occur concurrently with
computation and the efficiency would be unity, but in practical cases, this is
often not the case. The transputer, in fact, uses the same CPU to control com-
munication as for its arithmetic work: thus the sending or receiving of a message
suspends all the other processes. Thus we can define a theoretical efficiency, 7,

as
tca.!c tcomm

=1 -
teomm + tca!c) (icomm + tcalc)

where tcomm and feqic are the times spent communicating and calculating re-
spectively. We refer to the quantity m as the communication defect.
Determination of the efficiency is important, because an operation such as ma-
trix diagonalisation is rarely done just by itself, but in the context of a broader
enterprise, perhaps involving more than one matrix. It may often be desirabable
to let a single transputer do the all the matrix operations, or to give several
transputers each a separate matrix to work on.
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Summary of the Brent & Luk (BL) Algorithm

Brent and Luk (1985) have described a modification of the classical Ja-
cobi algorithm which is suitable for implementation on a systolic array or
a network of transputers. When finding the eigenvalues of an N by N ma-
trix, the Brent-Luk algorithm uses (N/2)? processes or “virtual processors”
P;j, 1,5 = 1,...,N/2 which can be imagined to be arranged in an N/2 by
N/2 square array. (For the sake of brevity we assume N to be even and do not
discuss the computation of eigenvectors; the extension to odd N and/or the
computation of eigenvectors is straightforward.) It is important to note that
each process P; ; needs to communicate only with its four nearest neighbours
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Each process P; ; performs some simple computations on a 2 by 2 matrix
and then exchanges information with its neighbours. After N —1 such steps one
“sweep” of Jacobi’s algorithm has been performed; typically about 6 sweeps are
sufficient for convergence.

Details of the floating-point computations performed by each process P; ;
are described in Brent and Luk (1985). For our purposes it is sufficient to note
that in each step the diagonal processes (i.e. those P;; with i = j) perform
2 square roots, 3 divisions, 4 multiplications and 6 additions (1) while the off-
diagonal processes (i.e. those P; ; with 7 # j) perform 16 multiplications and 8
additions. After the computations for a step are performed, each process P; ;
sends up to 8 real numbers to its horizontal neighbours P; ;1; and receives
up to 6 real numbers from its horizontal neighbours, then communicates simi-
larly with its vertical neighbours P4, ;. (2) Thus the number of real numbers
communicated by each process is comparable to the number of floating-point
operations that it performs.

If (N/2)? transputers are available then each process P; ; can be placed
on its own transputer, with hardware links to the transputers running the
neighbouring processes Pit; j+1. However, it is also possible to place several
processes on each transputer - the block BL algorithm.

Theoretical Efficiency

The present discussion assumes a square symmetric, N x N, matrix. The
eigenvectors are not considered here, but their determination makes it difficult
to make much use of the symmetry. Thus we do not take account of symmetry
in the subsequent analysis. The discussion is simplified by assuming that N
is an even power of 2. Other cases may show some small losses in efficiency
relative to this case. Since the sweeps have to proceed sequentially, we can
ignore multiple sweeps entirely and concentrate on the relative efficiencies of

(1) Variations exist; for example, it is possible to avoid square roots entirely.
(2) The diagonal and boundary processes differ slightly from the other
processes.



a single sweep. Results are given in a general form and specifically for the
T800 transputer. Although the arguments are not specific to the transputer,
for clarity we refer to the virtual 2 x 2 processors of the BL algorithm as the
unit processors and the actual processors as transputers.

Block form of the BL algorithm
Let the number of processors be P2, with each processor holding a sub-matrix
of size m X m, giving

N =mP

The diagonal processors have to compute % rotation parameters and carry
out ()(3 —1) rotations of off-diagonal 2 blocks. Since computing the rotation
parameters is more time consuming than actually doing the rotation, the diag-
onal processors are rate determining. Letting ., be the the time to calculate
the rotation parameters and %, the time to do a rotation, then the diagonal
block processor takes time T; given by

m

Ty = (fg—)(tm +(5

1))

The inner diagonal processor have to broadcast % copies of cosf and sin,
where 0 is the Givens rotation angle. Let %, be the time to send or receive a
single real number. The communication overhead is then 4mt... We then have
to permute the rows and columns. For a central processor this involves moving
m real numbers across each of four interfaces. Thus we arrive at the following
results

teomm = 12mig,

teale = Td

giving the communication defect ¢

16,
(tTP + (% - 1)tr)

E =

To determine performance figures for the T800 we need estimates of tcomm,
t. and t,,. The link speed of 20Mbits/sec. gives a communication time of ap-
proximately 32 processor cycles for each word transmitted. Hence (in processor
cycles)
ter = 32w

with w the number of words transmitted i.e.

icomm ~ 384m



Counting up additions, multiplications and square roots gives us
trp =~ 400

t. ~ 240

Both the above are under estimates: the communication does not include con-
trol bits and the calculation ignores addressing overheads.

toate = (%)(400 + 240(% ~1))

giving
a1
- (1+m)

Obviously for small m the communication penalty is draconian but, for large
matrices, such as one might wish to use a multi-processor network for, we can
get very good results - for a 400 square matrix on 4 transputers, we would have
e =~ 0.01 i.e. efficiency of about 99%. Note that using O(N?) processors, as in
the basic BL algorithm gives a very low efficiency of about 50%.

DISCUSSION

The algorithms considered here represent a reasonably effective use of
transputer networks for finding matrix eigenvalues. The efficiency is rather
poor for small matrices, but for large matrices becomes acceptable. One dif-
ficulty considered is the uneven computational load on transputers holding
diagonal versus those holding off-diagonal elements. But the inefficiency inher-
ent in keeping the off-diagonal processors idle while the rotational parameters
are calculated, can potentially be overcome: where a transputer has only off-
diagonal 2 x 2 processors, it should simply have more of them. The precise
trade-off remains to be investigated.
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