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ABSTRACT

The weighted checksum scheme has been proposed as a low-cost error detection procedure for parallel matrix
computations. Error correction has proved to be a much more difficult problem to solve than detection when using
weighted checksums. In this paper we provide a theoretical basis for the correction problem. We show that for a dis-
tance d+1 weighted checksum scheme, if a maximum of |_d.|’2j errors cnsuc then we can determine cexactly how

many errors have occurred. We further show that in this case we can correct the errors and give a procedure for
doing so.

1. INTRODUCTION

Algorithm-based fault tolerance was originally proposed by Huang and Abraham [1] and later refined by Jou
and Abraham [2]. Based on ideas from coding theory, an input vector or matrix is encoded with weighted checksums
and the algorithm operates on the encoded input to produce encoded output. The encoded output is then checked for
crrors. Weighted checksums have been shown to be effective for several applications arcas including matrix addition,
matrix multiplication, and triangular decompositions [1], [2], [3].

In previous work [2], [4] a lincar algebraic interpretation of the weighted checksum scheme has been proposed.
The importance of the linear algebraic model is that it allows parallels to be drawn between algorithm-based fault
tolerance and coding theory. In particular, it has been shown [4] that in a distance d+1 code a maximum of d errors
can be detected and a maximum of |d/2] errors can be uniquely corrected. The model makes it possible to examine
in detail the difficultics in choosing weight vectors such that the correction vector can be explicitly resolved. How-
ever, it has not yet been demonstrated how to determine the exact number of errors that have occurred, We show,
under certain assumptions, how to decide upon the exact number of errors. Error correction has been demonstrated 1o
be a more difficult problem to handle than detection. It has been previously shown how to correct a weighted check-
sum scheme for the cases of one error [2] and two errors (4], In this paper we will give a theoretical framework
which will allow us o solve the correction problem. It should be stressed that our correction procedure assumes only
an upper bound of |_(U2J on the number of crrors,
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This paper contains three major sections. First, important background material is presented to lay a foundation
for the discussion that follows. Then we prove that, if a maximum of |d/2] errors ensue in a distance d+1 code the
crrors can be detected and we can also determine exactly how many have occurred. Finally, improving on previous
results, we show that we can always correct the errors in the aforementioned case and a procedure is given for doing
so. It is to be stressed that these results are theoretical in nature, and are not algorithmic. Furthermore, the new
results use a more general set of weights than those previously considered [2], [4].

A remark about the use of notation in the sequel. A subscripted variable with a superscript is to be interpreted
as a subscripted variable raised (o the power given by the superscript; i.e., w/ = (w; Y. A subscripted variable with a

superscript in parentheses such as wj“) is the j™ clement of the vector w®,

2, BACKGROUND

In the work of Huang and Abraham [1], Jou and Abraham (2], and Anfinson and Luk [4], the linear algebraic
model of the weighted checksum scheme is developed. We now briefly review this important background material.
We also discuss the fault model relevant to our results, and several important assumptions and their implications.

2.1 Definitions

The weighted checksum matrix H is similar to the parity check matrix in coding theory and is said to generate
the code.

Definition 1: The dx(n+d) WC (weighted checksum) matrix H is given by

wlm wzm . wn“) -1 0 - 0
W 1(2) wz{:) s w,,(z) 0O -1 --- 0

H= ey
LW 1(‘” wé"“') . wn(‘” o 0 --- =1

-

Definition 2: The code space C of H consists of all vectors which lic in the null space N (H) of H , where N (H) =
(x :Hx =0).

In order 0 make precise the meaning of distance in the code space we define a metric upon the domain of H .
It is casily checked that the metric satisfies the properties of a distance [4].

Definition 3: The distance between two vectors v and w in the domain of H, dist(v, w), cquals the number of
components in which v and w differ.

Definition 4: The distance of the code space C is the minimum of the distances between all possible pairs of nonzero
vectors in N (11); ic., distance of C = min (dist(v w) : v, w in NH)Y, v #0,w = 0).

Definition 5: Let x be in N(H), and X be

a possibly erroncous version of x. Define the syndrome vector § by
s = HZX, and the correction vector ¢ by ¢ = £ —

X.

Note that fle =5 since He = HE ~ [lx = HE = 5. For simplicity ve will subscript the vectors ¢ and s as fol-
lows; ¢ =(cp, €y = oy Cpygop) and s = (5g, 8, -+, Sy_p).
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We can now make precise the definitions of crror detection and correction. Lot o0 denote the

total mymber of
crrors that have occurred and deline ¥ by

A coding scheme can detect o crrors if the syndrome vector 5 1s nonzero whenever 1 £ o £ d . A coding scheme
can correct o crrors if £ can be corrected 10 X for 1 € o £ v, The next result states the sulficient conditions for
error detection and correction in a distance d+1 code [4].

Property 1: 1f cvery set of d columns of H is lincarly independent, then the distance of the code is d+1, a max-
imum of d errors can be detected, and a maximum of ¥ errors can be corrected.

2.2 Fault model and assumptions

Our choice of fault model has been directly influenced by our arca of applications interest.  Multiprocessor sys-
tems for rcal time digital signal processing (c.g., systolic arrays) are considered and hence our fault model assumes
that a module (a processor or computational unit) makes arbitrary logical errors in the event ol a fault. Assuming
that the system is periodically checked for permancnt and intermittent errors, we arc focusing our atiention on sofl
crrors. We suppose that the soft crror rate is small under normal operating CtlIll‘.liliU_I)lH; this is a fairly reasonable
assumption as it has been reported that the soflt error rate for a large VLSI chip (1 em” ) is 10 i per hour [5].

Two major assumptions are made throughout this work. First it is assumed that no errors occur in the check-
sums themselves. It should be noted that for error detection this assumption is not needed, but for our correction pro-
cedure it is a very necessary condition. It is also assumed that 1 < o <. The following example will illustrate the
problems that can occur when oL > .

Example 1: Letn =6 and d = 2. Then y= 1. Let H be the following matrix.

111 1 1 1 =10
12222822 0 -1

Fa Fa8

H =

Now suppose that ¢ > 7, say o. = 2. If 5 is given by

4 ]

then any two of the first six clements of ¢ can be solved for since we are assuming that no crrors occur in the check-
sums. The following two valucs of ¢ both satisfy He = 5.

c=[—2 3 oooooo]",

and

c = [0 010000 u]"‘.

Note that ¢ is not unique. In fact, the second value of ¢ is actually the solution for the correction vector when
o.= 1. Thus we cannot differentiate between a case with one error and a case with two.
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3. THE DETECTION PROCEDURE

From the previous section it is known that we can detect o errors when O0<o<d. Assume that H, a
dx(n+d) matrix, has the form

v W oyl -1 0 - 0
Yoo vyl 0 -
H = : 0 . @
vy vl 000 - -1
In the notation used in equation (1) let w® = (Wé_]' Wf_l. Tty l}f,‘,.__ll).'r, for i =1,2, ---,d. It can be

proved that for y; # W, i # j, every set of d columns of H is linearly independent [4].

The syndrome vector 8 was defined as 5 = He. Since we have assumed that no errors occur in the checksums

themselves we see that clements ¢, = ¢, ,, = = Cprg-1 = 0. Hence, the j™ clement of s is given by the for-
mula

n-1

5= Xwlep, forj=0,1," -, d-1.
k=l)

Clearly there are only o nonzero elements in the set {co Cq, "+ Cn—1) because by definition ¢ = 2 — x, and £
differs from x by o clements. Denote the nonzero clements of ¢ by ¢;, for k =1, -+ o. Hence, §; may be
cxpressed as

u .
S = Ywle,, forj=0,1, - -, d=1. (3)
k=1

We would like o express §j in terms of known parameters and at this time o is unknown and v is known. So, let

)’;:=Cik and (';kz'qjii,forj_--_-]‘ Cee oL

For k = o+1, - - ylet y, =0 and select S =y, such that & # &; for all i # 1, where i, =1, .
With these substitutions §; becomes
Y )
;= kzlé;{yk, forj=0,1,---,d-1. )

Inorder (0 solve the problem He =5 for ¢, we need 1o find
E=€n&, -, ‘tm)I, since the clements of & give the locations of the errors
correction values. Let K be the following <y symmetric Hankel matrix

= yoyE
y=0pys oy and
and the clements of y contain the
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51 39 K ¥
K = (5)
‘S =1 A} v T A 2y-2

The first thcorem provides a factorization of K which is of interest in that it allows us to determine the exact value
of o.. A priori knowledge of o will later prove important in the correction procedure.

Theorem 1: The matrix K has the factorization K = VYVT and is of rank ¢, where o is the number of errors th

at
have occurred,

G &L o &

grt gt gy

and
Y =diag D y» - v Yyl

Proof: Multiplying out V¥V we find that the (1,J) entry is equal to;
7 L
k&7 = 51
k=1

using the definition of S (sce equation (4)). Similarly, we sce that
(K)ij = Sivj-2-

Hence K =VYvT, 1o prove the second part of our claim, namely that rank(K) = o, we notc that
rank (K') = rank (). This is truc because rank is not affected by multiplication by the nonsingular matrices V. and
VIV and VT are casily seen to be nonsingular since &; # <";j for i # j and both are Vandermonde. Since Y is a
diagonal matrix, its rank is equal to the number of nonzero diagonal clements, namely ¢ Thus, rank K)y=co. 0O

In order to determine precisely the number of errors that have occurred we need to determine the rank of K .
Note that K is a symmetric matrix; thus we can compute its cigenvalue decomposition accurately and hence its rank
can be determined [6]. As we will see in the sequel, we will need to have the matrix K 1o be of full rank in order
for the correction procedure to work effectively. The following corollary to Theorem 1 will allow us to handle the
case of a rank deficient K. Define K, as the leading 0. X ©. principal submatrix of K (sce (5)).
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So S1 0 Seq
i 92 Su

Ke=| . .. | ©
_Sc:—l Se 7 32::—2_

Corollary 1.1 presents a simple decomposition for K.

Corollary 1.1: The matrix K ;, can be factored as K, = VY VT and has rank o, where

I
& & o &

V, =

gt st gy
2 o
and
Yo=diaglyy, ya, "~ L ¥ydl

Proof: The proof follows casily from Theorem 1 and equation (3). O

4. THE CORRECTION PROCEDURE

Now we will give a general outline for the correction procedure.  As it will be seen, a rank deficient K will
cause the procedure to encounter difficulties. Hence, throughout this section we will assume that o is known and Ky
is of full rank. It is also understood that if ¢ = ¥ then K.,=K.

Define a polynomial P (z) whose roots are the unknown weights &;, for i =1, ,

=

., oL We will show that
we can determine the coefficients of the polynomial by solving a linear system involving the matrix K ,.

P)=T]GE -&)= Ya:z', ©)
=0

i=1

where the cocfficients of P are given by

P=EDT T g g ®
Jis 0 S

and a, = 1.
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Theorem 2 and its two corollarics will
sary the following definitions.

Let f = (Sq Sasts " " "2 S201) s and F = (K , ).

That is, f is an o element vector and F is an ¢, X (o1
also define A_; as the matrix A with the £”* column deleted.

Theorem 2: The coefficients of the polynomial P (z) satisfy the equation

Fa =0,
where a = (ag, ay, - -, aa)T.
Proof: The j* row of the equation is, for j =0, 1, - - -, o-1;
Sjﬂo + Sjﬂa] + - 4+ Sj+(1aa =

Zélg}’kﬂo + E&k’.ﬂ}’kal 4o iékﬁaaa:
k=l k=1 k=1
k%élg}’k(ao-F Eeay + -+ + Eday) =

=1

S e P E) =0

k=1

since P(E,)=0. O

Corollary 2.1: Each coefficient @, for k = 0, 1,
a, = (-1)***D, /D,
where Dy = det (F_) and D o = det (K ).

Proof: By definition @, = 1 (see (8)). Hence, by Theorem 2,

Now, apply Cramer’s Rule to get the result. Note that D o # 0 by Corollary 1.1.
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-+, 0—1, can be computed by the formula

O

give us the foundation for the correction procedure. We will find neces-

©)

) matrix formed by appending f 10 the matrix K We will

(10)

an



“ . -
Corollary 2.2: Define the polynomial Q (z) as >(=1)'D;z". Then Q(z) has roots Ep &ay - - 1, Eo-
i=0

Proof: Applying Corollary 2.1, we see that

Q(z)= X (1)Diz' = T (=D (- a;D, 2" =
i=0)

=0

o . o .
> (D% Dy 2t = (1D T a2 = (~1)*D P(z),
i=0 =0

which has roots &, - - -, £,. Note that D, # 0 by Corollary 1.1.  [J

Thus, we see that in order to find € we need to find the vector a of coefficients of the polynomial P (z), since
€ is a vector which contains the roots of P(z). So we need 0 solve (11) for a, and then find the roots of P(z).
Alternatively, we could compute the D;’s and find the roots of Q (z), which will give us & by Corollary 2.2. Using
the above facts, there are four steps that need to be accomplished for correction.

Procedure:

(I)  Find rank(K). This can be done by finding the cigenvalues of X' (a symmetric eigenvalue problem). If
0. = rank (K) is less than y then use the matrix K .

(2)  Solve for the coefficients (ag, @y, - - -, agy) of P(z). Nolte that this can be accomplished by solving the sys-
tem (11) or by using equation (10). This step requires K ¢ 1o be of full rank.
(3)  Find the roots (E,l -, &) of P(z) or Q(z). Note that these can be computed as the cigenvalues of a cer-
tain companion matrix. This will give us the vector E.
(4)  Find the vectory = (y; y, - -, Yo by solving the system Zy = s, where
0 0 0
& & - &

egoE gl

[11

i g g

Actually = is a nonsingular Vandermonde matrix and there are fast techniques available to solve systems of linear

equations involving a Vandermonde matrix [6]. Note that solving the system Zy =5 is cquivalent to solving
He =5 for the nonzero values of c.
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5. CONCLUSIONS

In this paper we have proved that, given a weighted checksum matrix H which defines a distance d+1 code,
we can determine the exact number of errors and, if the total number of errors that have occurred lies between 0 and
Y, then we can correct all errors. We have also considered a more general set of weights than previously used [2],
(4]. Our procedure details the mathematical analysis of the problem, and can use further improvement as a numerical
algorithm. The procedure will not be prohibitively expensive 1o implement. Furthermore, one may use a systolic
array, or some other parallel machine which can solve the eigenvalue problem rapidly (7], [8]; since d<zn, the size
of the cigenvalue problem we need to solve is much smaller than that of the original problem.
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