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1. Introduction

This paper provides an introduction to some parallel algorithms relevant to dig-
ital signal processing. First we introduce some basic concepts such as speedup and
efficiency of parallel algorithms. We also outline some practical parallel computer
architectures – pipelined, SIMD and MIMD machines, hypercubes and systolic arrays.

To illustrate the basic concepts and key issues, we consider the problem of par-
allel solution of a nonsingular linear system. Gaussian elimination with pivoting is
difficult to implement on many parallel architectures, but omission of pivoting leads to
numerical instability. A solution is to implement a parallel version of the orthogonal
(QR) decomposition instead of the triangular (LU) decomposition obtained by Gaus-
sian elimination. We consider as an application the solution of linear least squares
problems.

Many problems in digital signal processing are easy to solve if we can find the
singular value decomposition (SVD) of a rectangular matrix, or the eigenvalues and
eigenvectors of a symmetric (or Hermitian) matrix. We describe some good parallel
algorithms for these problems. Often the parallel algorithms are based on old ideas
(such as Jacobi’s method for finding the eigenvalues of a symmetric matrix) rather
than on a straightforward adaption of the best serial algorithms. The parallel algo-
rithms can be implemented efficiently on systolic arrays, but we also mention how
they might be implemented on other parallel architectures.

Toeplitz systems often arise in digital signal processing. However, we do not
discuss their solution here as they are considered in the companion paper [6].

2. Basic concepts

We assume that a parallel machine with P processors is available. Thus P mea-
sures the degree of parallelism; P = 1 is just the familiar serial case. When considering
the solution of a particular problem, we let TP denote the time required to solve the
problem using (at most) P processors. The speedup SP is defined by

SP = T1/TP ,

and the efficiency EP = SP /P .
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When converting a serial algorithm into a parallel algorithm, our aim is usually
to attain constant efficiency, i.e.

EP ≥ c

for some positive constant c independent of P . This may be written as

EP = Ω(1).

Equivalently, we want to attain linear speedup, i.e.

SP ≥ cP,

which may be written as
SP = Ω(P ).

2.1 Amdahl’s Law

Suppose a positive fraction f of a computation is “essentially serial”, i.e. not
amenable to any speedup on a parallel machine. Then we would expect

TP = fT1 + (1− f)T1/P

so the overall speedup

SP =
1

f + (1− f)/P
≤ 1

f
, (2.1)

i.e. the speedup is bounded, not linear. The inequality (2.1) is called Amdahl’s Law
and is often used as an argument against parallel computation. However, what it
shows is that the speedup is bounded as we increase the number of processors for a
fixed problem. In practice, it is more likely that we shall want to solve larger problems
as the number of processors increases.

Let N be a measure of the problem size. For many problems it is reasonable to
assume that

f ≤ K/N (2.2)

for some constant K. For example, in problems involving N by N matrices, we may
have Ω(N3) arithmetic operations and O(N2) serial input/output.

Suppose also that N increases at least linearly with P , i.e.

N ≥ KP. (2.3)

(2.2) and (2.3) imply that fP ≤ 1, so from (2.1) we have

SP =
P

fP + (1− f)
≥ P

2− f
≥ P

2
.

Thus we get linear speedup, with efficiency EP ≥ 1/2.
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2.2 Virtual processors

In practice any parallel machine has a fixed maximum number (say P ) of proces-
sors imposed by hardware constraints. When analysing parallel algorithms it is often
convenient to ignore this fact and assume that we have as many (say p) processors as
desired. We may think of these p processors as virtual processors or processes. Each
real processor can simulate dp/P e virtual processors (provided each real processor has
enough memory). Thus, ignoring overheads associated with the simulation, we have

SP ≥ Sp/dp/P e. (2.4)

If our analysis for p processors gives us a lower bound on Sp, then (2.4) can be used
to obtain a lower bound on SP .

2.3 Parallel architectures

Many varieties of parallel computer architecture have been proposed in recent
years. They include –

– Pipelined vector processors such as the Cray 1 or Cyber 205, in which there is
a single instruction stream and the parallelism is more or less hidden from the
programmer.

– Single-instruction multiple-data (SIMD [16]) machines such as the Illiac IV or ICL
DAP, in which a number of simple processing elements (PEs or cells) execute the
same instruction on local data and communicate with their nearest neighbours
on a square grid or torus. There is usually a general-purpose controller which
can broadcast instructions and data to the cells.

– Multiple-instruction multiple-data (MIMD) machines such as transputer systems,
C.mmp, CM*, and most hypercube machines.

– Hypercube machines, in which 2k processors are connected like the vertices of a
k-dimensional cube (i.e. if the processors are identified by k-bit binary numbers,
they are connected to the processors whose numbers differ by exactly one bit from
their own). These include both SIMD machines (e.g. the Connection Machine)
and MIMD machines (e.g. the Caltech “Cosmic Cube”, the Intel iPSC, and the
NCUBE).

– Shared-memory multiprocessors such as the Alliant FX/8, the Encore Multimax,
and the Sequent Symmetry.

– Systolic arrays [30], which are 1 or 2-dimensional arrays of simple processors
(cells) connected to their nearest neighbours. The cells on the edge of the array
are usually connected to a general-purpose machine which acts as a controller.
Examples are the Warp and iWarp machines [1, 5] and several machines described
in [43]. Variations on the idea of systolic arrays are wavefront arrays [37] and
instruction systolic arrays [45].

In view of the diversity of parallel computer architectures, it is difficult to de-
scribe practical parallel algorithms in a machine-independent manner. In some cases
an algorithm intended for one class of parallel machine can easily be converted for
another (more general) class. For example, an algorithm designed for a systolic array
can be mapped onto a hypercube without much loss of efficiency, but not conversely
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(in general). An algorithm designed for a local memory machine can easily be imple-
mented on a shared memory machine, but often the converse is not true.

Since systolic arrays are very restrictive, it is usually possible to map systolic
array algorithms onto other parallel machines without a great loss in efficiency. On
the other hand, systolic arrays are sufficient and cost-effective for problems arising in
digital signal processing [30, 36, 37, 43]. Thus, we shall generally describe parallel
algorithms as though they are to be implemented on systolic arrays – the reader
should be able to translate to other parallel computer architectures.

3. Systolic algorithms for signal processing

Many compute-bound computations with applications in signal processing have
good parallel algorithms which can be implemented on systolic arrays. For example,
we mention:

– 1-D convolution, FIR and IIR filtering [11, 28, 29, 30]
– 2-D convolution and correlation [2, 32, 33, 34, 50]
– discrete Fourier transform [28, 29]
– interpolation [32]
– 1-D and 2-D median filtering [15]
– matrix-vector and matrix-matrix multiplication [31, 48]
– solution of triangular linear systems [31]
– LU and QR factorization of square matrices, and solution of full-rank linear

systems [4, 19, 31]
– QR factorization of rectangular matrices, and solution of linear least squares

problems [19, 38]
– solution of the symmetric and Hermitian eigenvalue problems [3, 7, 8]
– computation of the singular value decomposition (SVD) [9, 10, 39, 40, 44]
– solution of Toeplitz linear systems and least squares problems [6].

In Section 4 we consider a “simple” example – the solution of square, full-rank
linear systems. Then, in Section 5, we consider the computation of the SVD and the
solution of the symmetric eigenvalue problem.

4. The solution of linear systems

Suppose we want to solve a nonsingular n by n linear system

Ax = b

on a systolic array or other parallel machine for which a 2-dimensional mesh is a
natural interconnection pattern. It is easy to implement Gaussian elimination without
pivoting, because multipliers can be propagated along rows of the augmented matrix
[A|b], and it is not necessary for one row operation to be completed before the next row
operation starts. Unfortunately, as is well-known [23, 47, 49], Gaussian elimination
without pivoting is numerically unstable unless A has some special property such as
diagonal dominance or positive definiteness.
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On a serial machine the problem of numerical instability could easily be overcome
by using partial (or complete) pivoting. However, pivoting is difficult to implement
efficiently on a parallel machine because it destroys the regular data flow associated
with Gaussian elimination without pivoting [31]. Just to find the first pivot (i.e.
max1≤i≤n |ai,1|) takes time Ω(n) on a systolic array (Ω(log n) on a hypercube), so the
complete elimination takes time Ω(n2) on a systolic array (Ω(n log n) on a hypercube).

If TP = Ω(n2) we are not justified in using more than P = O(n) processors (else
TP P � n3 and the efficiency EP � 1).

On a linear systolic array of P = n + 1 processors, we store one column of the
augmented matrix [A|b] in each processor, and we can implement partial pivoting
efficiently. If P � n it is not so easy to implement partial pivoting efficiently. One
solution is to replace the elementary transformations(

1 0
−m 1

)
of Gaussian elimination by plane rotations (Givens transformations)(

c s
−s c

)
,

where c2 + s2 = 1. Thus, we construct an orthogonal matrix Q such that QA = R
is upper triangular and the linear system Ax = b is reduced to the upper triangular
system Rx = b̄ (where b̄ = Qb) in a numerically stable manner. The operation count
is roughly four times that for Gaussian elimination, but this is an acceptable price to
pay for numerical stability on a parallel machine. The factor four could be reduced
by the use of “fast” Givens transformations [18]. A closely related alternative, with
similar data flow requirements but inferior numerical properties, is to use “pairwise
pivoting”, i.e. pivoting between adjacent rows.

4.1 Implementation of parallel Givens – the BBK algorithm

To simplify communication on a systolic array or mesh-connected parallel ma-
chine it is desirable to restrict attention to plane rotations which modify adjacent
rows. Since each rotation modifies only two rows, it is possible to do up to bn/2c
rotations in parallel. One of many ways to order the rotations necessary to reduce
A to upper triangular form was suggested by Bojanczyk, Brent and Kung (BBK) [4]
and is illustrated below (where n = 8 and the numbers in the illustration indicate the
time step at which the corresponding matrix element is zeroed):

·
7 ·
6 9 ·
5 8 11 ·
4 7 10 13 ·
3 6 9 12 15 ·
2 5 8 11 14 17 ·
1 4 7 10 13 16 19 ·
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The rotation parameters (c, s) propagate right along rows and it is not necessary
to wait for one row transformation to be completed before others commence. Details
of the implementation on a triangular systolic array may be found in Bojanczyk,
Brent and Kung [4].

4.2 Solution of least squares problems – the Gentleman and Kung algorithm

The BBK algorithm was intended for the solution of the n by n linear system
Ax = b. When applied to the m by n linear least squares problem

min‖Ax− b‖2

it is inefficient because it uses a triangular systolic array of m2/2 + O(m) processors,
and usually in such problems m � n. Gentleman and Kung [19] (and later Luk
[38]) transposed the data flow, so the skewed matrix A is fed into the systolic array
by columns rather than by rows. This is advantageous because a triangular systolic
array of only n2/2 + O(n) processors is required. In fact, it is not even necessary to
know m in advance when using the Gentleman-Kung algorithm.

A good survey of systolic array algorithms for computing the QR decomposition
of a (square or) rectangular matrix may be found in Luk [38].

5. The SVD and symmetric eigenvalue problems

A singular value decomposition (SVD) of a real m by n matrix A is its factor-
ization into the product of three matrices:

A = UΣV T , (5.1)

where U is an m by n matrix with orthonormal columns, Σ is an n by n nonnegative
diagonal matrix, and V is an n by n orthogonal matrix (we assume here that m ≥ n).
The diagonal elements σi of Σ are the singular values of A. The singular value
decomposition is extremely useful in digital signal processing [21, 36].

The SVD is usually computed by a two-sided orthogonalization process, e.g. by
two-sided reduction to bidiagonal form (possibly preceded by a one-sided QR re-
duction [12]) followed by the QR algorithm [20, 22, 49]. On a systolic array it is
simpler to avoid bidiagonalization and to use the two-sided orthogonalization method
of Kogbetliantz et al [9, 10, 17, 26, 27] rather than the standard Golub-Kahan-Reinsch
algorithm [20, 22]. However, it is even simpler to use a one-sided orthogonalization
method due to Hestenes [25]. The idea of Hestenes is to iteratively generate an or-
thogonal matrix V such that AV has orthogonal columns. Normalizing the Euclidean
length of each nonnull column to unity, we get

AV = ŨΣ (5.2)

As a null column of Ũ is always associated with a zero diagonal element of Σ, there
is no essential difference between (5.1) and (5.2).

There is clearly a close connection between the Hestenes method for finding
the SVD of A and the classical Jacobi method [49] for finding the eigenvalues and
eigenvectors of AT A. This is discussed in Section 5.4.
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5.1 Implementation of the Hestenes method

Let A1 = A and V1 = I. The Hestenes method uses a sequence of plane rotations
Qk chosen to orthogonalize two columns in Ak+1 = AkQk. If the matrix V is required,
the plane rotations are accumulated using Vk+1 = VkQk. Under certain conditions
(discussed below) limQk = I, limVk = V and lim Ak = AV . The matrix Ak+1 differs
from Ak only in two columns, say columns i and j. In fact(

a
(k+1)
i , a

(k+1)
j

)
=

(
ak

i , ak
j

) (
cos θ sin θ
− sin θ cos θ

)
where the rotation angle θ is chosen so that the two new columns a

(k+1)
i and a

(k+1)
j

are orthogonal. This can always be done with an angle θ satisfying

|θ| ≤ π/4, (5.3)

see for example [8].

It is desirable for a “sweep” of n(n−1)/2 rotations to include all pairs (i, j) with
i < j. On a serial machine a simple strategy is to choose the “cyclic by rows” ordering

(1, 2), (1, 3), · · · , (1, n), (2, 3), · · · , (n− 1, n).

Forsythe and Henrici [17] have shown that the cyclic by rows ordering and condition
(5.3) ensure convergence of the Jacobi method applied to AT A, and convergence of
the cyclic by rows Hestenes method follows.

5.2 The chess tournament analogy

On a parallel machine we would like to orthogonalize several pairs of columns
simultaneously. This should be possible so long as no column occurs in more than one
pair. The problem is similar to that of organizing a round-robin tournament between
n players. A game between players i and j corresponds to orthogonalizing columns i
and j, a round of several games played at the same time corresponds to orthogonalizing
several pairs of (disjoint) columns, and a tournament where each player plays each
other player once corresponds to a sweep in which each pair of columns is orthog-
onalized. Thus, schemes which are well-known to chess (or other two-person game)
players can be used to give orderings amenable to parallel computation. It is usually
desirable to minimize the number of parallel steps in a sweep, which corresponds to
the number of rounds in the tournament.

On a parallel machine with restricted communication paths, such as a systolic
array, there are constraints on the orderings which we can implement efficiently. A
useful analogy is a tournament of lazy chess players. After each round the players
want to walk only a short distance to the board where they are to play the next round.

Using this analogy, suppose that each chess board corresponds to a systolic
processor and each player corresponds to a column of the matrix (initially A but
modified as the computation proceeds). A game between two players corresponds to
orthogonalization of the corresponding columns. Thus we suppose that each systolic
processor has sufficient memory to store and update two columns of the matrix. If
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the chess boards (processors) are arranged in a linear array with nearest-neighbour
communication paths, then the players should have to walk (at most) to an adjacent
board between the end of one round and the beginning of the next round, i.e. columns
of the matrix should have to be exchanged only between adjacent processors. Several
orderings satisfying these conditions have been proposed [7, 8, 41, 44].

Since A has n columns and at most bn/2c pairs can be orthogonalized in parallel,
a sweep requires as least n−1 parallel steps (n even) or n parallel steps (n odd). The
“Brent-Luk” ordering [8] attains this minimum, and convergence can be guaranteed
if n is odd [41, 46]. It is an open question whether convergence can be guaranteed
for the Brent-Luk ordering (or any other ordering which requires only the minimum
number of parallel steps) when n is even – the problem in proving convergence is
illustrated in [24]. However, in practice lack of convergence is not a problem, and it
is easy to ensure convergence by the use of a “threshhold” strategy [49], or by taking
one additional parallel step per sweep when n is even [42].

5.3 A heuristic argument regarding the number of sweeps

In practice we observe linear convergence until the columns of the (updated)
matrix A become close to orthogonal, i.e. until the off-diagonal elements of AT A be-
come small. Subsequently convergence is at least quadratic. It is difficult to quantify
what “small” means here unless the eigenvalues of AT A are distinct. If we assume
that “small” means O(1/nc) for some positive constant c, and that the rate of linear
convergence is independent of n, then it should take O(log n) sweeps before quadratic
convergence sets in. This heuristic argument is supported by empirical evidence
[8] – certainly the average number of sweeps required to give convergence to a fixed
tolerance for random matrices A appears to be O(log n).

5.4 The symmetric eigenvalue problem

As noted above, there is a close connection between the Hestenes method for
finding the SVD of a matrix A and the Jacobi method for finding the eigenvalues of
a symmetric matrix B = AT A. An important difference is that the formulas defining
the rotation angle θ involve elements bi,j of B rather than inner products of columns
of A, and transformations must be performed on the left and right instead of just
on the right (since (AV )T (AV ) = V T BV ). Instead of permuting columns of A as
described in Section 5.2, we have to apply the same permutation to both rows and
columns of B. This is easy if we use a square systolic array of n/2 by n/2 processors
with nearest-neighbour connections (assuming, for simplicity, that n is even). Details
are given in [8].

If less than n2/4 processors are available, we can use the virtual processor concept
described in Section 2.2. For example, on a linear systolic array with P ≤ n/2
processors, each processor can simulate ∼ n/(2P ) columns of n/2 virtual processors.
Similarly, on a square array of P ≤ n2/4 processors, each processor can simulate a
block of ∼ n2/(4P ) virtual processors. In both cases, communication paths between
virtual processors map onto paths between real processors or communication internal
to a real processor.
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5.5 Other SVD and eigenvalue algorithms

In Section 5.2 we showed how the Hestenes method could be used to compute the
SVD of an m by n matrix in time O(mn2S/P ) using P = O(n) processors in parallel.
Here S is the number of sweeps required (conjectured to be O(log n)). In Section 5.4
we sketched how Jacobi’s method could be used to compute the eigen-decomposition
of a symmetric n by n matrix in time O(n3S/P ) using P = O(n2) processors. It is
natural to ask if we can use more than Ω(n) processors efficiently when computing the
SVD. The answer is yes – Kogbetliantz [26, 27] and Forsythe & Henrici [17] suggested
an analogue of Jacobi’s method, and this can be used to compute the SVD of a
square matrix using a parallel algorithm very similar to the parallel implementation
of Jacobi’s method. The result is an algorithm which requires time O(n3S/P ) using
P = O(n2) processors. Details and a discussion of several variations on this theme
may be found in [9].

In order to find the SVD of a rectangular m by n matrix A using O(n2) processors,
we first compute the QR factorization QA = R (see Section 4), and then compute the
SVD of the principal n by n submatrix of R (i.e. discard the m− n zero rows of R).
It is possible to gain a factor of two in efficiency by preserving the upper triangular
structure of R [39].

The Hestenes/Jacobi/Kogbetliantz methods are not often used on a serial com-
puter, because they are slower than methods based on reduction to bidiagonal or
tridiagonal form followed by the QR algorithm [49]. Whether the fast serial algo-
rithms can be implemented efficiently on a parallel machine depends to some extent
on the parallel architecture. For example, on a square array of n by n processors it is
possible to reduce a symmetric n by n matrix to tridiagonal form in time O(n log n)
[3]. On a serial machine this reduction takes time O(n3). Thus, a factor O(log n) is
lost in efficiency, which roughly equates to the factor O(S) by which Jacobi’s method
is slower than the QR algorithm on a serial machine. It is an open question whether
the loss in efficiency by a factor O(log n) can be avoided on a parallel machine with
P = Ω(n2) processors. When P = O(n), “block” versions of the usual serial algo-
rithms are attractive on certain architectures [13], and may be combined with the
“divide and conquer” strategy [14]. Generally, these more complex algorithms are
attractive on shared memory MIMD machines with a small number of processors,
while the simpler algorithms described in Sections 5.1 to 5.4 are attractive on systolic
arrays and SIMD machines.
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