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ABSTRACT

The weighted checksum scheme has been proposed as a low-cost
fault tolerant procedure for parallel matrix computations. To
guarantee multiple errcor detection and correction, the chosen
weight vectors must satisfy some very specific properties
about linear independence. We will provide a theoretical
framework for these properties, and prove that for a distance
d+l scheme, if a maximum of [ d/2] errors ensue, the exact
number of errors can be determined, We will derive a
procedure for correcting the errors, Previous weight
generating methods that fulfil the indenendence criteria have
troubles with numerical overflow, We will present a new
scheme that generates weight vectors to meet the requirements
about independence and to avoid the difficulties with overflow.

1. INTRODUCTION

The importance of solving signal processing problems in
real time and the development of VLSI and wafer-scale
technology have led to research in systolic arrays and
algorithms. There is a need for high-performance digital
signal processing systems which are extremely reliable.
Algorithm-based fault tolarance has been provosed to meet
this reliability need since the most' common alternative of
duplicating hardware is often too expensive to he practical.

The weighted checksum scheme, originally developed by
Abraham and students [ 6] , [ 7], provides low-cost error
protection for applications that include matrix addition,
matrix multiplication, and triangular decompositions (see also
[8] and [10]). We will present a theoretical framework for

he scheme and show how to decide upon the exact number of
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errors. Techniques for error correction were known only for
the cases of one error [ 7] and two errors [1]. We will
present a scheme for correcting [d/2] errors. The previously
proposed weights are powers of integers, and thus can become
very large. We will propose a technique for generating
reasonably sized weights.

This paper is organized as follows. We first review the
weighted checksum scheme and discuss an important theorem
that guarantees multiple error detection and correction.

Then we prove that, if a maximum of [ d/2] errors ensue in a
distance d+l code, the errors can be detected and the exact
number of errors determined. Furthermore, we show how we can
always correct the errors and present a procedure for doing
so., Lastly, we discuss the problem of numerical overflow and
propose a new method for weight generation that overcomes
this difficulty.

2. BACKGROUND

In[1], [6] and [ 7], a linear algebraic model of the
weighted checksum scheme is developed, allowing parallels to
be drawn between algorithm-based fault tolerance and coding
theory. We briefly review this important background material,
and discuss the fault model relevant to our results, as well
as several important assumptions and their implications.

2.1 pefinitions

We define a dx(n+d) consistency check matrix H by

[ o o) o 7
Yo ¥ eee ¥, 1 0 .0
1 1 1
wr
¥, 2 cee ¥, 0 1 ...o0O
. . e . 0 0 ... ©
H = (2.1)

d-1 d-1 Ld-1

W W s

28 24 o ¥ 0 0 L1

It is proved in [1] that for fw # ﬁu~ where i # j, every set

of d columns of H is linearly indpendent. This matrix is
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similar to the parity check matrix in coding theory and is
said to generate the code. In order to make precise the
meaning of distance in the code space, we define a metric
upon the domain of H. It is easily checked that the metric
satisfies the properties of a distance [ 4].

Definition 2,1, The code space C of H consists of all
vectors which lie in the null space N(H)
of H, where N(H) = {x:Hx = 0}.

Definition 2.2. The distance between two vectors v and w
in the domain of H, dist (v,w), equals the
number of components in which v and w
differ,

Definition 2.3, The distance of the code space C is the
minimum of the distances between all
possible pairs of distinctvectors in N(H);
i,e,, distance of € = min {dist (v,w):v,w
in N(H) ,v#w}.

Definition 2.4, Let x be in N(H), and x be a possibly
erronecus version of x. Define the

syndrome vector s by s = HR, and the correction

vector ¢ by ¢ = % - x.

Mote that Hc = s since Hc = HX - Hx = HX = s. For
simplicity we will subscript the vectors c and s as follows:

c = (c c c va
o' 1" "' Thsd-l

and

(S ., S, veu, S ua.
Q 1 d-1

w
1}

We can now rigorize the definitions of error detection and
correction. Let a denote the teotal number of errors that
have occurred and define ¥y by

ra|o

A coding system can detect g errors if the syndrome vector 5 is
nonzerc whenever 1L < a < d, A coding scheme can correct a

errors if % can be corrected to x for 1 < a < y. The next
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rasult from [ 1] states the sufficient conditions for error
detection and correction.

If every set of d columns of H is linearly
independent, then the distance of the code is
d+l, a maximum of d errors can be detected,

Theorem 2.1.

and a maximum of y errors can be corrected. O

2.2 Fault model and assumptions

As we are primarily interested in multiprocessor systems
for real time digital signal processing (e.g., systolic
arrays), we assume that a module (a processor or computational
unit) makes arbitrary logical errors in the event of a fault
and that the system is periodically checked for permanent and
intermittent errors, We focus our attention on soft errors,
and suppose that the soft error rate is small under normal
operating conditions, which is reasonable since it has been
reported that the soft error rate for a larqge VLSI chip

' per hour [ 12].

2 -
(L em™) is lO
Two major assumptions are made in this paper, First, for
our correction procedure, we assume that no errors oceur in
the checksums themselves. It should be noted that for error
detection this assumption is not needed. We also assume that

l <a < ¥y.

3. ERROR DETECTION

In this section we discuss a matrix factorization that
allows us to determine the exact value of a, This a priori
knowledge of a will prove important later in the correction

procedure,
3.1 The syndrome vector
consider the syndrome vector s. By assuming that no
5 occur in the checksums themselves, we get
c_ = C = .,,..=c¢__. ., =0, Hence, the jth element of s is

given by the formula

Clearly there are only a nenzZero elements in the set

Cqr Cpr eens nauw;. pecause by definition ¢ = % - x, and %
d4iffors from x by 1 elements. Denote the nonzero elements of
c by c. , for k=1, ..., 2. Hence, s_may be expressed as

i

- ]
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for =0, 1, ..., d=1.

795

(3.1)

We would like to express s. in terms of known parameters, and

at this time o« is unknown and y is known. So, let

o .
m,nmﬁwn‘.
I k=1 Yk Mk

]
y, =c, and § =
k wr k
= 0 and =Y
Yy mw {u

such that mw #

these substitu

, for k =1, .., &,y

Tk

and

for k = a+l, suey V.

E for all i # 1, where i, Lt =1, ...,

2
tions s

3

3
m M.‘ r
k=1 KK

3.2 Find number of errors

becomes

for 3 =0, 1, ..., d=1.

Define a y x vy symmetric Hankel matrix by

Theorem 3.1.

WTH s,

The matrix K has the factorization

a
K = VYV, where Y =diag|y Yy

_._. Fqr ey

Y. With

(3.2)

{3.3)

¥y ] and
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3 & ves m<
Vv = 3
Y-1 ¥-1 ¥-1
3 £q ses n«

Furthermore, the matrix has rank a, where a denotes the number of
errors that have occurred.

Proof. Multiplying out ¢mce we find that the (i,j) entry

is equal to mp+u|w~ and thus ﬁwiu. The second

part of our claim follows from the observation that
rank (x) = rank(y), O

An accurate, albeit expensive, way to determine the rank of
the symmetric matrix K is to compute its eigenvalue
decomposition, As will be seen, we will nced a nonsingular
matrix for the correction procedure to work effectively. The
following corollary to Theorem 3.1 will allow us to handle the
case of a rank deficient K. Define Kﬂ as the leading o x a

principal submatrix of K:

%o Syt faml

mu. mN rae mﬂh
K = . {3.4)
X

m_.IH m,\._. ‘e meIm.i

Corsllary 3.1. The a x a matrix K has full rank, and <an

a
T .
be factored as K =V ¥ V', where
1 s S S §

. = diaq| ...,H‘ v...uh ey ..,..u_ and

L
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1 1 wee 1]
mH mm P ma
v = .
a
a-1 a-1 a-1
>

4, ERRQR CORRECTION

In this section we outline our correction procedure, We
will assume that a has been determined such that xn is

nonsingular.
4.1 A polynomial

pefine a polynomial P{z) whose roots are the unknown
weights mw- for i = 1,,,.., @, We will show that we can

determine the coefficients of the polynomial by solving a
linear system involving the matrix Kyo

a a

Pz) = I (z-§) = I az, (a.1)
i=1 i=0
where the coefficients of P are given by
a, = (- i*e L £y weety (a.2)
. o .
upA...nuplw 1 a-i
and a = 1. The next theorem and its two corollaries will lay

a
a foundation for the correction procedure. We find necessary

the following definitions. First, define A K as the matrix A

with the kth column deleted and

a= (a_,a

T
o H.....mnu .

Then, let
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B T
£ = (SyeSqpy e Spa-1)

and

%o 51 e Sa-1 5a

1 Sg ot S, Sa+l

F= (K ,fl =|° * e - : .
a

Sa-1 Sa ver %20-2 52a-1
Writing out the jth element of the matrix-vector product Fa,
we get
.
ees d=1.
AMbvu = xmwmx%xmﬁmxv = Q, for j = 0,1, d

Theorem 4.,1. The coefficients of the polynomial P(z)
satisfy the equation

Fa = o, O (4.3)

Coreollary 4.1. Let Ua = mmn.xuu. For k = 0,1,...,a-1, the

coefficient a, can be computed by the

formula
k+a
= (- 4.4
a, (-1) ox\un. (4.4)
= (m]
where cx amnﬁmlxu.

a i i
Corollary 4.2. Define the polynomial Q(z} as L (-1 U»N .

i=0

e '3 ]
Then 0O(z) has roots :H.:u....\mu.

4.2 Correction procedure

Thus, in order to find the unknown weights, we need to find
the vector a of coefficients of the polynomial P(z). So, we
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may first solve (4.3) for a, and then find the roots of P(z).

Alternatively, we could compute the determinants Urm and find

the roots of ((z}, which will give us the unknown weights by
Corollary 4.2. Using the above facts, there are four steps
that need to be accomplished for correction.

Procedure

(1) Find rank (K). This can be done by finding the
eigenvalues of the symmetric matrix K.
(2) Solve for the coefficients ﬁm0~mw~...~mnv of P(z). Note

that this can be accomplished by either solving the
system (4.3) or by using equation (4.4). This step
requires xn to be of full rank.

(3) Find the roots Amp....\mnv of P(z) or 7){z). Note that

these can be computed as the eiqenvalues of a certain
companion matrix., This will give us the vector §.

(4) Find the vector y = _ww<m~...~weud by solving the systems

Iy = s, where

o 0 o ]
mH mm LN mn
1 1 1
mw &y e ma
d-1 d-1 4-1
mH mm et na

Actually Z is a nonsingular Vandermonde matrix and there
are fast techniques available to solve systemsof linear
equations involving a Vandermonde matrix [ 4] . Note that
solving the system zy = s is equivalent to seclving Hec = s for
the nonzero values of c, and that our procedure is very
similar to the Reed-Solomon code [ 11] . Our procedure details
the mathematical analysis of the problem, and can use further
improvement as a numerical algorithm. The procedure will not
be prohibitively expensive to implement. Furthermore, one
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may use a systolic array, or some other parallel machine
which can solve the eigenvalue problem rapidly [21, [13];
since d<n, the size of the eigenvalue problem we need to
solve is much smaller than that of the original problem.

5. AVOIDING OVERFLOWS

We present a new technique for generating weight vectors
which satisfy the conditions of Theorem 2.1, and avoid the
weight overflow problem which plagues previous schemes. Big
weights introduce large roundoff errors that cannot be
distinquished from true errors caused by faults (see [ 9] for
a discussion.) Our scheme is dependent on the values of n and
d, but as the step of generating the weight vectors is pre-
processing, it will not slaw down the execution of the
algorithm, Qur method uses modular arithmetic, but not in the
same way as suggested by Abraham et al. [el, [7].

5.1 Modular arithmetic

Consider the values of n and d to be known and fixed. The
size of the input matrix determines n, and d is selected by
the user according to a model which decides on the expected
number of errors. Choose a prime number p such that p > n+d.
It is well known that for any prime p there exists a finite
field of p elements [5]. Let a be a primitive element of the
finite ficld of p elements. Recall that a primitive element B

of a finite field with a elements is an element with order q-1,

; . . m :
i.e., the smallest integer m for which B = I mod a is m = a-1.

It is easy to sce that powers of B generate all the nonzero
elements of the field.

Let B be the following matrix
B= (b)) = @071 eor 1ci<d and 1gj<nsd. (5.1)
Partition B as
B =[vu (5.2

Here V has dimensicn dxn and W has dimension dxed. MNow, in
order to get the desired form of H, we multiply the matrix B

s . N . -1 4 :
mod p by the matrix W mod p. That is

1

uu
.
()

v mod plI). {

- wlvinl mod p o= (W

H = |3

To make the above procedure valid, we must prove the
lowing. First, we need to show that W is nonsingular so
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that the multiplication in (5.3) is valid. Then we need to
prove that every set of d columns of the resulting matrix H is
linearly independent, so that we can guarantee the detection
of a maximum of d errors. A proof of the next theorem can be
found in [ 3] .

Theorem 5.1. The matrix B mod p, where B is given by
equation (5.2), satisfies the condition that
every set of d columns is linearly
independent, O

Corollary 5.1. The dxd matrix W mod p, where W is defined
in equation (5.2), is nonsingular. Q

Corollary 5.2. The matrix H, given by equation (5.3),
satisfies the hypotheses of Theorem 2.1, O

We note that the choice of W is by no means unique. We
could choose any d columns of B and permute the matrix into
the form given by equation (5.2).

5,2 An example

Suppose we are given a problem where n = 8 and d is
selected to be 4. Thus, by fulfilling the requirements of
Theorem 2.1 we will be able to detect a maximum of 4 errors in
a L?-element encoded vector. We take p = 13, and a = 2 is a
primitive root of p. The matrix B mod p has the form
r 9
1 1 1 1 1 1 1 1 1 1 1 1 i

|
]
|
1 2 4 3 3 & 12 11 9 5 1o 7}
m__ﬂonm—.un u_.
1 4 3 29 1o 1 4 3 12 9 101§
1
|
|

1 B 12 = 1 8 12 5 L 8 12 5

e

Now we need to find =ne inverse of W mod p., If we use the
Gauss-Jordan method for finding matrix inverses, we cdn do the
inversion mod p since <ns procedure consists of only
elementary row operaticri., We then perform the multiplication

=1
W ~v mod p, Alternatively, we can find the LU factors of ¥

via Gaussian eliminaticn nod p, which also involves only
elementary row operatizos, and then compute sach column 22 the
product £|H< mod p usinz the LU factors. Uhile computing zqu
mod p is expensive, we ince again point out that it is all
pre-processing; it will -5t add extra running time to the
algorithm. Hence, wWe Zi% find the inverse of Wnod p,
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8 5 6 8]
L 6 11 o 12

W -med p = .

[¢) 9 7

[%a]

8 lo 11 12

-1 - .
Maltiplying out W B mod p, we get the desired matrix

i 2 12 4 7 6 1 1101 0 o 0]

|
|
*momem 7 11 o0l o0

5.3 comparison with previous work

tle examine how our method differs from these previous
schemes. For means of comparison we consider fixed point
arithmetic since it is used in [ 6] and [ 7]1. Let r denote the
word length. Huang and Abraham [ 6] suggested that we compute

r
the actual checksum values modulo 2°. In Jou and Abraham [ 7,

a similar technique is proposed where the checksum column i3

r ) L
computed medulo 27 and the weighted checksum column is computed

modulo N, where N is the largest prime less than mH+H. They
proved that for this choice of weights, the scheme detects
orrors as desired. One difference between the methods is that
our new one is all pre-processing while thelrs adds extra time to
the algorithm as we must compute the checksums using medular
arithmetic. Furthermore, the prime that is selected by Jou and
Abraham is scmewhat larger than the prime we ccome up with. For
example, in | 7], if the word length r = 32 then the priame
1353, Our scheme is relatively independent cf the
spends upon the values of n a d. For
value in light of the dimensicns required by

ocessing problems, and d = 50, the prime
is much smaller than the Jou-Abraham

current

» = 1051,

rhe sives of the elements in the matrix H
gqenerating schemes. Suppose that n = 300
nwe range of wvalues for i and j is

= 1l,...,500. Jou and Abraham proposed the
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i i-1)(j-1

set of weights zh ) = mﬁ 1G v. While easily implemented
as shifts, this set of weights becomes extremely large very
quickly, resulting in overflows. For i = 10 and j = 500, we

i 44 i~
get zhpu =2 mH. Another suggestion was to let iwwu = uv wﬁmf
which will get large very rapidly, although not as quickly as
the previous technique. Using the same example, with i = 10

i 9
and j = 500, we have th ) o 500°. For our new scheme, the
smallest prime p satisfying p*n+d = 510 is p = 521. Therefore,
i :
every element zh ) will be bounded above by 521. Thus, we see

that for this moderately sized problem, our new scheme
generates a parity-check matrix whose elements are likewise of
moderate size.

6, CONCLUSIONS

In this paper we have proved that, given a consistency
check matrix H which defines a distance d+l code, we can
determine the exact number of errors and, if the total number
of errors that have occurred lies hetween O and y, then we can
correct all errors. We have also presented a new method for
generating the weighted checksum matrix whose elements are
bounded in size by the smallest prime p such that p>n+d. Since
we usually consider d-<n,p is approximately O(n). To generate
the matrix H involves only pre-processing steps, and thus will
take no additicnal time in the algorithm.
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