
Parallel Algorithms for Integer Factorisation

Richard P. Brent
Computer Sciences Laboratory
Australian National University

Canberra, ACT 2601

Abstract

The problem of finding the prime factors of large composite numbers has always
been of mathematical interest. With the advent of public key cryptosystems it is also
of practical importance, because the security of some of these cryptosystems, such as
the Rivest-Shamir-Adelman (RSA) system, depends on the difficulty of factoring the
public keys.

In recent years the best known integer factorisation algorithms have improved
greatly, to the point where it is now easy to factor a 60-decimal digit number, and
possible to factor numbers larger than 120 decimal digits, given the availability of
enough computing power.

We describe several algorithms, including the elliptic curve method (ECM), and
the multiple-polynomial quadratic sieve (MPQS) algorithm, and discuss their parallel
implementation. It turns out that some of the algorithms are very well suited to
parallel implementation. Doubling the degree of parallelism (i.e. the amount of
hardware devoted to the problem) roughly increases the size of a number which can
be factored in a fixed time by 3 decimal digits.

Some recent computational results are mentioned – for example, the complete
factorisation of the 617-decimal digit Fermat number F11 = 2211

+ 1 which was ac-
complished using ECM.

1. Introduction

It has been known since Euclid’s time (though first clearly stated and proved by
Gauss in 1801) that any natural number N has a unique prime power decomposition

N = pα1
1 pα2

2 · · · p
αk

k

(p1 < p2 < · · · < pk rational primes, αj > 0), and for many purposes we would like
an efficient algorithm for computing this decomposition. Note that it is sufficient to
have an algorithm for finding a nontrivial factor f of N , because this can be applied
recursively to f and N/f to obtain the complete prime power decomposition of N .

Appeared in Number Theory and Cryptography (edited by J. H. Loxton), Cambridge University Press,
1990, 26–37. Copyright c© 1990, Cambridge University Press.
E-mail address: rpb@cslab.anu.edu.au rpb115 typeset using TEX

1.1 Serial algorithms

A polynomial time algorithm would run in time O(log N)c for some constant c.
However, no such algorithm is known. The algorithms described in Sections 5 and
6 run in time O(N ε) for any positive ε, in fact they are conjectured to run in time
O(exp(c(log N log log N)1/2)), where c is a certain constant.

Most useful factorisation algorithms fall into one of two classes –
A. The run time depends mainly on the size of N, the number being factored, and

is not strongly dependent on the size of the factor found. Examples are –
Lehman’s algorithm [18] which has a rigorous worst-case run time bound
O(N1/3).
Shanks’s SQUFOF algorithm [38], which has expected run time O(N1/4).
Shanks’s Class Group algorithm [34, 35] which has run time O(N1/5+ε) on
the assumption of the Generalised Riemann Hypothesis.
The Continued Fraction algorithm [25] and the Multiple Polynomial Quad-
ratic Sieve algorithm [29], which under plausible assumptions have expected
run time O(exp(c(log N log log N)1/2)), where c is a constant (depending on
details of the algorithm).

B. The run time depends mainly on the size of f, the factor found. (We can assume
that f ≤ N1/2.) Examples are –

The trial division algorithm, which has run time O(f · (log N)2).
The Pollard “rho” algorithm [1, 28] which under plausible assumptions has
expected run time O(f1/2 · (log N)2).
Lenstra’s “Elliptic Curve Method” (ECM) [4, 22] which under plausible
assumptions has expected run time O(exp(c(log f log log f)1/2) · (log N)2),
where c is a constant.

In these examples, the term (log N)2 is a generous allowance for the cost of
performing arithmetic operations on numbers of size O(N) or O(N2), and could
theoretically be replaced by (log N)1+ε for any ε > 0.

Algorithms in class B are useful for “naturally occurring” numbers N which are
quite likely to have small factors. Note that the difficulty of factoring a number N by
an algorithm in class B depends on the size of the second-largest prime factor pk−1

of N rather than on the size of the largest prime factor pk. For randomly chosen N
there is a 50 percent chance that pk−1 < N0.212. Thus, if we have an algorithm in
class B which can find factors of size 1022 in a reasonable time, there is a 50 percent
chance that the algorithm will be able to completely factor a random number N of
size about 10100. (See [7] for an example, and [12, 16] for the theory.)

In cryptographic applications [33] the number N to be factored are not random.
More likely they have been constructed with the intention of being difficult to factor.
For such numbers, algorithms in class A are preferable. However, it is generally worth
attempting to find small factors with an algorithm in class B before embarking on a
long computation with an algorithm in class A.

2

1.2 Parallel algorithms

The time bounds mentioned above assume that only one arithmetic operation is
performed at a time. A practical way of speeding up computations is by the use of
parallelism. We would hope that an algorithm which required time T1 on a computer
with one processor could be implemented to run in time TP ∼ T1/P on a computer
with P independent processors. This is not always the case, since it may be impossible
to use all P processors effectively. However, it is often true for integer factorisation
algorithms, provided that P is not too large.

The speedup of a parallel algorithm is S = T1/TP and the efficiency is E = S/P .
We aim for a linear speedup, i.e. S = Ω(P). If the speedup is linear in the number
of processors P , then each processor is being used with efficiency bounded below by
a positive constant.

There are several recent surveys of integer factorisation algorithms [8, 9, 13, 24,
29, 32]. In this paper we concentrate on the efficient parallel implementation of the
algorithms.

2. Trial division

Trial division is a straightforward factorisation algorithm. We just try potential
divisors d = 2, 3, . . . until one of the following occurs –

1. d > N1/2, in which case N is prime; or
2. d < N and d | N , in which case d is a nontrivial prime divisor of N ; or
3. d exceeds some preassigned bound B < N1/2, in which case all we can say is that

any prime factor p of N satisfies p > B.

Naturally, refinements are possible. If N is odd, only odd d need be considered.
Multiples of 3 may also be excluded if N 6= 0 mod 3. Carrying this process to its
logical conclusion, we need only consider prime divisors d, but it is necessary to
consider how the set of primes less than B is computed and whether there is any
overall saving.

The simplest version of trial division takes time O(p · log N) to find the smallest
prime factor p of N . Here the factor “log N” allows for division of the multiple-
precision number N by single-precision trial divisors d ≤ p. The run time might be
reduced by a factor of log N or log p with various refinements.

The parallel implementation of trial division is extremely straightforward. With
P processors we can perform up to P trials in parallel. Thus, provided P � p, a
linear speedup is obtained.

In Sections 3 to 6 we assume that N is composite, since in practice this is easily
checked using a probabilistic primality test [16, 32] which runs in time O(log N)3. It
is also convenient to assume that all “small” factors of N have been removed by trial
division.

3. The Pollard “rho” algorithm

Pollard’s “rho” algorithm [28] uses an iteration of the form

xi+1 = f(xi) mod N, i ≥ 0,

3

where N is the number to be factored, x0 is a random starting value, and f is a
polynomial with integer coefficients. In practice a quadratic polynomial

f(x) = x2 + a

is used (a 6= 0,−2 mod N).

Let p be the smallest prime factor of N , and j the smallest positive index such
that x2j = xj mod p. Making some plausible assumptions, it is easy to show that the
expected value of j is E(j) = O(p1/2). The argument is related to the well-known
“birthday” paradox – the probability that x0, x1, . . . , xk are all distinct mod p is
approximately

(1− 1/p) · (1− 2/p) · · · (1− k/p) ∼ exp(−k2/(2p)),

and if x0, x1, . . . , xk are not all distinct mod p then j ≤ k.

In practice we do not know p in advance, but we can detect xj by taking greatest
common divisors. We simply compute GCD(x2i − xi, N) for i = 1, 2, . . . and stop
when a nontrivial GCD (necessarily a factor of N) is found.

Various refinements are possible. Because GCDs are more expensive than mul-
tiplications (mod N), it is preferable to avoid the computation of most of the GCDs
by accumulating the product

∏
(x2i − xi) mod N . Also, the choice of subscripts 2i

and i here is not optimal [1].

The “rho” algorithm is an improvement over trial division in that it has (conjec-
tured) expected run time O(p1/2(log N)2) to find a prime factor p of N . A disadvan-
tage is that the run time is now only a (conjectured) expected value, not a rigorous
bound.

An example of the success of a variation on the Pollard “rho” algorithm is the
complete factorisation of the Fermat number F8 = 228

+ 1 by Brent and Pollard [7].

Unfortunately, parallel implementation of the “rho” algorithm does not give lin-
ear speedup. Because the degree of xi, regarded as a polynomial in x0, is 2i, it does not
seem possible to use parallelism to speed up the computation of the sequence (xi) by
a significant amount. A plausible use of parallelism is to try several different pseudo-
random sequences (generated by different polynomials f). If we have P processors
and use P different sequences in parallel, the probability that the first k values in
each sequence are distinct mod p is approximately

exp(−k2P/(2p)),

so the speedup is O(P 1/2) and the efficiency is only O(P−1/2).

4. The Pollard “p - 1” algorithm

Pollard’s “p− 1” algorithm [24, 27] is based on Fermat’s theorem

ap−1 = 1 mod p

4

for 0 < a < p, p prime. Suppose that p is a prime factor of N and that E is a
multiple of p− 1. Then, from Fermat’s theorem,

p | GCD(aE − 1, N)

and GCD(aE − 1, N) gives us a factor (possibly trivial) of N .

Since p is not known in advance, the algorithm supposes that all prime power
factors of p − 1 are bounded above by some arbitrarily chosen number m. Then,
taking E as a product of prime powers qe, qe ≤ m, we obtain a multiple of p− 1. If
p− 1 has a prime factor greater than m, then the algorithm will generally fail to give
a nontrivial factor of N .

Because E is very large, it is not actually computed. Instead, aE mod N is
computed via a sequence of computations

a← aqe

mod N.

The work involved in such an exponentiation is O(log(qe)) multiplications mod N ,
so the total work involved is O(m) multiplications mod N , and the time required is
O(m · (log N)2).

The “p − 1” algorithm is very effective in the fortunate case that p − 1 has all
“small” prime factors. For example, Baillie found the factor

p25 = 1155685395246619182673033

of the Mersenne number M257 = 2257 − 1 (claimed to be prime by Mersenne) using
the “p− 1” algorithm. In this case

p25 − 1 = 23 · 32 · 192 · 47 · 67 · 257 · 439 · 119173 · 1050151,

and m ≥ 1050151 is sufficient.

A more extreme example: using the “p− 1” algorithm we found the factor

p32 = 49858990580788843054012690078841

of the Mersenne number M977 = 2977 − 1. Here

p32 − 1 = 23 · 5 · 13 · 19 · 977 · 1231 · 4643 · 74941 · 1045397 · 11535449,

but because we used a two-phase algorithm m ≥ 1045397 was sufficient (see Section
5.4 for the idea of the second phase).

The examples just given are not typical. If we are unlucky, (p − 1)/2 may be
prime, so the worst case time bound for the “p − 1” algorithm is no better than for
trial division.

Parallel implementation of the “p − 1” algorithm is difficult, because the inner
loop seems inherently serial. At best, parallelism can speed up the multiple precision
operations by a small factor (depending on log N but not on p).

5

In the next section we show that it is possible to overcome the main handicaps of
the “p−1” algorithm, and obtain an algorithm which is easy to implement in parallel
and does not depend on a lucky factorisation of p− 1.

5. Lenstra’s elliptic curve algorithm

Pollard’s “p−1” algorithm may be regarded as an attempt to generate the identity
in the multiplicative group of Fp = GF (p). The motivation for H. W. Lenstra’s elliptic
curve algorithm (usually denoted “ECM”) is as follows – if we can choose a “random”
group G with order g close to p, we may be able to perform a computation similar to
that involved in Pollard’s “p − 1” algorithm, working in G rather than in Fp. If all
prime factors of g are less than the bound m then we find a factor of N . Otherwise,
repeat with a different G (and hence, usually, a different g) until a factor is found.

A curve of the form
y2 = x3 + ax + b (5.1)

over some field F is known as an elliptic curve. A more general cubic in x and y
can be reduced to the form (5.1), which is known as the Weierstrass normal form, by
rational transformations.

There is a well-known way of defining an Abelian group (G, ∗) on an elliptic curve
over a field. Formally, if P1 = (x1, y1) and P2 = (x2, y2) are points on the curve, then
the point P3 = (x3, y3) = P1 ∗ P2 is defined by –

(x3, y3) = (λ2 − x1 − x2, λ(x1 − x3)− y1), (5.2)

where

λ =
{

(3x2
1 + a)/(2y1) if P1 = P2

(y1 − y2)/(x1 − x2) otherwise.

The identity element I in G is the “point at infinity”.

The geometric interpretation is straightforward. We refer the reader to [14, 17]
for an introduction to the theory of elliptic curves.

In Lenstra’s algorithm [22] the field F is the finite field Fp of p elements, where
p is a prime factor of N . The multiplicative group of Fp, used in Pollard’s “p − 1”
algorithm, is replaced by the group G defined by (5.1) and (5.2). Since p is not known
in advance, computation is performed in the ring of integers modulo N rather than
in Fp. We can regard this as using a redundant representation for elements of Fp.

5.1 Computing inverses mod N

In order to implement (5.2) we need to compute inverses mod N . Suppose that
x is given and we want to compute z such that xz = 1 mod N . This is easily done
via the extended Euclidean algorithm applied to x and N , which gives u and v such
that

ux + vN = GCD(x, N).

If GCD(x,N) = 1 then ux = 1 mod N , so z = u. If GCD(x, N) > 1 then GCD(x, N)
is a nontrivial factor of N , so we stop. It is curious that Lenstra’s algorithm finds a

6

factor of N precisely when an inverse computation breaks down (formally, when the
identity element of G arises in a nontrivial way).

The cost of an extended GCD computation is about the same as that of 10 to 12
multiplications mod N (see [4, 19]).

5.2 One trial of Lenstra’s algorithm

A trial is the computation involving one random group G. The steps involved
are –

1. Choose x0, y0 and a randomly in [0, N). This defines b = y2
0− (x3

0 +ax0) mod N .
Set P ← P0 = (x0, y0).

2. For prime q = 2, . . . ,m set P ← P qe

in the group G defined by a and b, where e
is an exponent chosen as in Pollard’s “p − 1” algorithm, If P = I then a factor
of N will have been found during an attempt to compute an inverse mod N .

The work involved is O(m) group operations. Note that several trials can be
performed in parallel.

5.3 The choice of m

Given x ∈ Fp, there are at most two values of y ∈ Fp satisfying (5.1). Thus,
allowing for the identity element, we have g = |G| ≤ 2p + 1. Although this would be
sufficient for an approximate analysis of ECM, a much stronger result, the Riemann
hypothesis for finite fields [15], is known –

|g − p− 1| < 2p1/2. (5.3)

Making the (incorrect, but close enough) assumption that g behaves like a random
integer distributed uniformly in (p− 2p1/2, p + 2p1/2), we may show that the optimal
choice of m is m = p1/α, where

α ∼ (2 ln p/ ln ln p)1/2 (5.4)

The expected run time is
T = p2/α+o(1/α) (5.5)

For details, see [4, 22]. From (5.5), we see that the exponent 2/α should be compared
with 1 (for trial division) or 1/2 (for Pollard’s “rho” method). For 1010 < p < 1030,
we have α ∈ (3.2, 5.0) . Because of the overheads involved with ECM, a simpler
algorithm such as Pollard’s “rho” is preferable for finding factors of size up to about
1010 (see Figure 1 in [4]), but for larger factors the asymptotic advantage of ECM
becomes apparent.

5.4 A second phase

Both the Pollard “p − 1” and Lenstra elliptic curve algorithms can be speeded
up by the addition of a second phase. The idea of the second phase is to find a factor
in the case that the first phase terminates with a group element P 6= I, such that
|〈P 〉| is reasonably small (say O(m2)). (Here 〈P 〉 is the cyclic group generated by P .)
There are several possible implementations of the second phase. One of the simplest

7

uses a pseudorandom walk in 〈P 〉. By the birthday paradox argument, there is a good
chance that two points in the random walk will coincide after O(|〈P 〉|)1/2 steps, and
when this occurs a nontrivial factor of N can usually be found. Details may be found
in [4, 24].

The use of a second phase provides a significant speedup in practice, but does
not change the asymptotic time bound (5.5). Similar comments apply to other im-
plementation details, such as ways of avoiding most divisions and speeding up group
operations [11, 23, 24], ways of choosing good initial points [24, 37], and ways of using
preconditioned polynomial evaluation [4, 26, 40].

5.5 Parallel implementation of ECM

So long as the expected number of trials is much larger than the number P of
processors available, linear speedup is possible by performing P trials in parallel. In
fact, if T1 is the expected run time on one processor, then the expected run time on
a parallel machine with P processors is

TP = T1/P + O(T 1/2+ε
1) (5.6)

The bound (5.6) applies on single-instruction multiple-data (SIMD) machine if
we use the Montgomery-Chudnovsky form [11, 24]

by2 = x3 + ax2 + x

instead of the Weierstrass normal form (5.1) in order to avoid divisions.

In practice, it may be difficult to perform P trials in parallel because of stor-
age limitations. The second phase requires much more storage than the first phase.
Fortunately, there are several possibilities for making use of parallelism during the
second phase of each trial. Our implementation performs the first phase of P trials in
parallel, but the second phase of each trial sequentially, using P processors to speed
up the evaluation of the polynomials∏

i,j

(xi − xj)

which constitute most of the work during the second phase.

6. Quadratic sieve algorithms

Quadratic sieve algorithms belong to a wide class of algorithms which try to find
two integers x and y such that

x2 = y2 mod N (6.1)

Once such x and y are found, there is a good chance that GCD(x−y, N) is a nontrivial
factor of N .

One way to find x and y is to find a set of relations of the form

u2
i = v2

i wi mod N, (6.2)

8

where the wi have all their prime factors in a moderately small set of primes (called the
factor base). Each relation (6.1) gives a row in matrix M whose columns correspond
to the primes in the factor base. Once enough rows have been generated, we can use
Gaussian elimination in F2 [39] to find a linear dependency (mod 2) between a set of
rows of M . Multiplying the corresponding relations now gives a relation of the form
(6.1).

In quadratic sieve algorithms the numbers wi are the values of one (or more)
polynomials with integer coefficients. This makes it easy to factorise the wi by siev-
ing. For details of the process, we refer to the recent papers [10, 20, 29, 30, 31,
36]. The conclusion is that the best quadratic sieve algorithms (such as the multiple
polynomial quadratic sieve algorithm MPQS [29]) can, under plausible assumptions,
factor a number N in time O(exp(c(log N log log N)1/2)), where c ∼ 1. The constants
involved are such that MPQS is usually faster than ECM if N is the product of
two primes which both exceed N1/3. (The exponent “1/3” is empirical, based on
experience with N < 10100.)

Although MPQS is a probabilistic algorithm, depending on the factorisation of
the numbers wi over the factor base, it is much more predictable than ECM. This is
because MPQS depends on obtaining a large number of factorisations of wi, so the
law of large numbers applies and we can predict with confidence how much work will
be required, as a function of N . ECM, on the other hand, depends on one unlikely
event occurring, so the run time behaves like an exponentially distributed random
variable whose expectation is a function of p, the factor eventually found. In practice,
we know N but not p in advance.

The reader may be surprised that algorithms as different as MPQS and ECM
have similar expected time bounds. However, this is not really so surprising. MPQS
requires O(B) factorisations of numbers wi of size O(N1/2+ε) over the factor base
of size B, and the work per trial is small (because of the sieving process). On the
other hand, ECM requires only one number (the order of the group G) to factor
completely over primes not exceeding m, but the work per trial is O(m). Use of
“partial relations”, i.e. incompletely factored wi, in MPQS is analogous to the second
phase of ECM.

6.1 Parallel implementation of MPQS

Like ECM, MPQS is ideally suited to parallel implementation. Different pro-
cessors may use different polynomials, or sieve over different intervals with the same
polynomial. Thus, there is a linear speedup so long as the number of processors is
not much larger than the size of the factor base. The process requires very little
communication between processors. Each processor can generate relations and for-
ward them to some central collection point. This has been demonstrated most clearly
by A. K. Lenstra and M. S. Manasse [20] who distribute their program and collect
relations via electronic mail. The processors are scattered around the world – anyone
with access to electronic mail and a C compiler can volunteer to contribute. (The final
stage – Gaussian elimination to combine the relations – is not so easily distributed.
However, in practice it is only a small fraction of the computation.)

9

7. Some recent computational results

In the process of proving the non-existence of an odd perfect number less than
10300 [5, 6], we needed many factorisations of numbers of the form pn − 1, where p
and n are prime. For example, the factorisation

c101 = (46741 − 1)/(466 · 1022869) = 4089568263561830388113662969166474269 · p65

was found by ECM.

We recently [2] completed the factorisation of the 617-decimal digit Fermat num-
ber F11 = 2211

+ 1. In fact

F11 = 319489 · 974849 · 167988556341760475137 · 3560841906445833920513 · p564

where the 21-digit and 22-digit prime factors were found using ECM, and p564 is a
564-decimal digit prime. The factorisation required about 360 million multiplications
mod N , which took less than 2 hours on a Fujitsu VP 100 vector processor.

Using the MPQS algorithm and their worldwide distributed network [20], Lenstra
and Manasse (with many assistants, including the present author) have factorised
several numbers larger than 10100, the largest (at the time of writing) having 106
decimal digits. For example, the most recently completed was the 103-decimal digit
number

(2361 + 1)/(3 · 174763) = 6874301617534827509350575768454356245025403 · p61

Such factorisations require many years of CPU time, but an “elapsed time” of only
a month or so because of the number of different processors which are working in
parallel, using machine cycles which would otherwise be idle.

Lenstra and Manasse [21] recently announced the factorisation of the 122-decimal
digit number c122 = (7149 + 1)/(23 · 10133), in fact

c122 = 47338433355189929279110650931837806119829008573928501623 · p66

This impressive factorisation was obtained using an unpublished algorithm, the Num-
ber Field Sieve (NFS) due to J. M. Pollard, A. K. Lenstra and H. W. Lenstra, Jr.
(Unlike ECM or MPQS, the NFS algorithm took advantage of the special form of
c122, so it is not clear whether a 122-digit number intended for use in a public key
cryptosystem could be factorised in a comparable time.) Since the NFS algorithm uses
similar ideas to the MPQS algorithm, it should be possible to implement it equally
well on a parallel machine.

Remark

We take this opportunity to announce the availability of an integer factorisation
program written in Turbo Pascal for the IBM PC [3].

10

References

1. R. P. Brent, “An improved Monte Carlo factorization algorithm”, BIT 20 (1980),
176-184.

2. R. P. Brent, “Factorization of the eleventh Fermat number (preliminary report)”,
AMS Abstracts 10 (1989), 89T-11-73.

3. R. P. Brent, Factor: an integer factorization program for the IBM PC, Report
TR-CS-89-23, Computer Sciences Laboratory, Australian National University,
Oct. 1989. Available from the author.

4. R. P. Brent, “Some integer factorization algorithms using elliptic curves”, Aus-
tralian Computer Science Communications 8 (1986), 149-163.

5. R. P. Brent and G. L. Cohen, “A new lower bound for odd perfect numbers”,
Mathematics of Computation, July 1989.

6. R. P. Brent, G. L. Cohen and H. J. J. te Riele, Improved techniques for lower
bounds for odd perfect numbers, to appear as a Technical Report, Computer
Sciences Laboratory, Australian National University, August 1989.

7. R. P. Brent and J. M. Pollard, “Factorization of the eighth Fermat number”,
Mathematics of Computation 36 (1981), 627-630.

8. J. Brillhart, D. H. Lehmer, J. L. Selfridge, B. Tuckerman and S. S. Wagstaff, Jr.,
Factorizations of bn ± 1, b = 2, 3, 5, 6, 7, 10, 11, 12 up to high powers, American
Mathematical Society, Providence, Rhode Island, second edition, 1985.

9. D. A. Buell, “Factoring: algorithms, computations, and computers”, J. Super-
computing 1 (1987), 191-216.

10. T. R. Caron and R. D. Silverman, “Parallel implementation of the quadratic
sieve”, J. Supercomputing 1 (1988), 273-290.

11. D. V. Chudnovsky and G. V. Chudnovsky, Sequences of numbers generated by
addition in formal groups and new primality and factorization tests, Dept. of
Mathematics, Columbia University, July 1985.

12. K. Dickman, “On the frequency of numbers containing prime factors of a certain
relative magnitude”, Ark. Mat., Astronomi och Fysik, 22A, 10 (1930), 1-14.

13. R. K. Guy, “How to factor a number”, Congressus Numerantum XVI, Proc. Fifth
Manitoba Conference on Numerical Mathematics, Winnipeg, 1976, 49-89.

14. K. F. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory,
Springer-Verlag, 1982, Ch. 18.

15. J-R. Joly, “Equations et variétés algébriques sur un corps fini”, L’Enseignement
Mathématique 19 (1973), 1-117.

16. D. E. Knuth, The Art of Computer Programming, Vol. 2, Addison Wesley, 2nd
edition, 1982.

17. S. Lang, Elliptic Curves – Diophantine Analysis, Springer-Verlag, 1978.
18. R. S. Lehman, “Factoring large integers”, Mathematics of Computation 28 (1974),

637-646.
19. D. H. Lehmer, “Euclid’s algorithm for large numbers”, Amer. Math. Monthly 45

(1938), 227-233.
20. A. K. Lenstra and M. S. Manasse, Factoring by electronic mail, preprint, 10 June

1989.
21. A. K. Lenstra and M. S. Manasse, personal communication, 28 August 1989.
22. H. W. Lenstra, Jr., “Factoring integers with elliptic curves”, Ann. of Math. (2)

126 (1987), 649-673.

11

23. P. L. Montgomery, “Modular multiplication without trial division”, Mathematics
of Computation 44 (1985), 519-521.

24. P. L. Montgomery, “Speeding the Pollard and elliptic curve methods of factor-
ization”, Mathematics of Computation 48 (1987), 243-264.

25. M. A. Morrison and J. Brillhart, “A method of factorization and the factorization
of F7”, Mathematics of Computation 29 (1975), 183-205.

26. M. Paterson and L. Stockmeyer, “On the number of nonscalar multiplications
necessary to evaluate polynomials”, SIAM J. on Computing 2 (1973), 60-66.

27. J. M. Pollard, “Theorems in factorization and primality testing”, Proc. Cam-
bridge Philos. Soc. 76 (1974), 521-528.

28. J. M. Pollard, “A Monte Carlo method for factorization”, BIT 15 (1975), 331-334.
29. C. Pomerance, “Analysis and comparison of some integer factoring algorithms”,

in Computational Methods in Number Theory (edited by H. W. Lenstra, Jr. and
R. Tijdeman), Math. Centrum Tract 154, Amsterdam, 1982, 89-139.

30. C. Pomerance, J. W. Smith and R. Tuler, “A pipeline architecture for factoring
large integers with the quadratic sieve algorithm”, SIAM J. on Computing 17
(1988), 387-403.

31. H. J. J. te Riele, W. Lioen and D. Winter, Factoring with the quadratic sieve on
large vector computers, Report NM-R8805, Centre for Mathematics and Com-
puter Science, Amsterdam, 1988.

32. H. Riesel, Prime Numbers and Computer Methods for Factorization, Birkhäuser,
Boston, 1985.

33. R. L. Rivest, A. Shamir and L. Adelman, “A method for obtaining digital dig-
natures and public-key cryptosystems”, Communications of the ACM 21 (1978),
120-126.

34. R. J. Schoof, “Quadratic fields and factorization”, in Studieweek Getaltheorie
en Computers (edited by J. van de Lune), Math. Centrum, Amsterdam, 1980,
165-206.

35. D. Shanks, “Class number, a theory of factorization, and genera”, Proc. Symp.
Pure Math. 20, American Math. Soc., 1971, 415-440.

36. R. D. Silverman, “The multiple polynomial quadratic sieve”, Mathematics of
Computation 48 (1987), 329-339.

37. H. Suyama, Informal preliminary report (8), personal communication, October
1985.

38. M. Voorhoeve, “Factorization”, in Studieweek Getaltheorie en Computers (edited
by J. van de Lune), Math. Centrum, Amsterdam, 1980, 61-68.

39. D. Wiedemann, “Solving sparse linear equations over finite fields”, IEEE Trans.
Inform. Theory 32 (1986), 54-62.

40. S. Winograd, “Evaluating polynomials using rational auxiliary functions”, IBM
Technical Disclosure Bulletin 13 (1970), 1133-1135.

12

