
Algorithmic Fault Tolerance
Using the Lanczos Method1

Daniel L. Boley
Department of Computer Science

University of Minnesota

Richard P. Brent
Computer Sciences Laboratory
Australian National University

Gene H. Golub
Department of Computer Science

Stanford University

Franklin T. Luk
School of Electrical Engineering

Cornell University

Dedicated by Boley, Brent, and Luk, to their teacher
Gene Golub on the occasion of his 15th birthday

In memory of Jeffrey Speiser

Abstract

We consider the problem of algorithm-based fault tolerance, and make two major
contributions. First, we show how very general sequences of polynomials can be used to
generate the checksums, so as to reduce the chance of numerical overflows. Second, we
show how the Lanczos process can be applied in the error location and correction steps,
so as to save on the amount of work and to facilitate actual hardware implementation.

1. Background. Many important signal processing and control problems require compu-
tational solution in real time. Much research has gone into the development of special purpose
algorithms and associated hardware. The latter are usually called systolic arrays in academia,
and application specific integrated circuits (ASICs) in industry. In many critical situations, so
much depends on the ability of the combined software/hardware system to deliver reliable and
accurate numerical results that fault tolerance is indispensable. Often, weight constraints forbid
the use of multiple modular redundancy and one must resort to a software technique to handle
errors. A top choice is Algorithm-Based Fault Tolerance (ABFT), originally developed by Abra-
ham and students [9, 10], to provide a low-cost error protection for basic matrix operations.
Their work was extended by Luk et al. [11, 13, 14] to applications that include matrix equation
solvers, triangular decompositions, and recursive least squares. A theoretical framework for er-
ror correction was developed for the cases of one error [10], two errors [1], and multiple errors
[7]. Interestingly, the model in [7] turns out to be the Reed-Solomon code [17]. However, the

1 Appeared in SIAM J. on Matrix Analysis (Gene H. Golub 60th birthday issue) 13 (1992), 312–332.
Copyright c© 1992, SIAM. rpb124 typeset using LATEX

procedure proposed in [7], and implicit in [17], is cumbersome in work and quite suspect in its
numerical stability.

A lot has already appeared in the literature on fault tolerant matrix algorithms, e.g., [9,
10, 11, 13, 14, 16]. A simple example is matrix multiplication. Let A and B be given square
matrices of order n + 1, and C be the desired matrix product AB. A way to achieve fault
tolerance is to append the matrix B with say m + 1 checksum columns, with m ≤ n, and to
calculate a checksum matrix product. Details can be found in [1] and [10]. Briefly, define

Br ≡ (B SB) and Cr ≡ (C SC) ,

where SB and SC denote (n + 1)× (m + 1) checksum matrices on B on C, respectively. Then

Cr = ABr, and so SC = ASB.

The matrix SC is used to detect, locate and correct errors in C. Fault tolerant matrix multipli-
cation is simple in that the rows of Cr can be examined independently. Indeed, denote the i-th
row of Cr by

(ξ0, ξ1, · · · , ξn, η0, η1, · · · , ηm) , (1.1)

where the ξj ’s represent data and the ηk’s represent checksums. In [9] it is explained how, even
if only one processor in the parallel system malfunctions temporarily, multiple errors will be
present in the computed matrix product. In [1] it is shown that, with a judicious choice of
checksum coefficients, the use of η0, η1, · · · , ηm can detect up to m + 1 errors in ξ0, ξ1, · · · , ξn,
and correct up to b(m + 1)/2c errors therein. A method for handling these errors is presented
in [7]. Unfortunately, the procedure is quite complex, for it includes determining the rank of a
matrix (to calculate the number of errors) and solving a Hankel matrix equation (to locate the
errors).

A major contribution of this paper is to show how a clever use of just the Lanczos algorithm
suffices for fault tolerance. The Lanczos algorithm was originally devised by Lanczos as a
procedure for reducing an arbitrary matrix to a tridiagonal form having the same eigenvalues
as the original matrix. The method has been found to be particularly useful for large sparse
matrices and has a number of optimality properties with respect to convergence in the symmetric
case. For non-symmetric matrices the algorithm has been less well understood, but in recent
years there has been major progress in the development and understanding of the algorithm (see,
e.g., [3] and references therein). Our work in this paper is important in at least two aspects:
(1) only simple additional hardware is necessary to implement the Lanczos scheme; (2) through
the use of orthogonal polynomials, our error correction problem is numerically well-conditioned.
As first pointed out in [11], exponential growth in the checksum coefficients leads directly to
ill-conditioning of the associated checksum matrices, which in turn leads to loss of accuracy in
the computations. It is well known (see, e.g., [8]) that in solving, for example, a set of linear
equations in the presence of round-off errors, a condition number of 10x leads to a loss of about
x digits of accuracy in the solutions. Ways to alleviate this difficulty were attempted in [6, 11,
16], albeit without the success here to achieve essentially “optimal conditioning” (see Section
1.3). Examples illustrating the importance of matrix conditioning in fault tolerant computing
can be found in [12]. We stress here once more that our signal processing applications mandate
the use of floating-point data types and operations.

This paper is organized as follows. The error correction problem is described in the next two
subsections. Section 2 presents the recurrence relationships for the polynomials that generate
the checksum coefficients. Sections 3 and 4 introduce the notions of Krylov matrices and error
locator polynomial, respectively. The application of the Lanczos procedure to the error correc-
tion problem is discussed in Section 5. The Lanczos process is further simplified to a column

2

elimination scheme in Section 6, and two numerical examples illustrating our ideas are given in
Section 7.

1.1. Problem Description. The data {ξj} and the checksums {ηi} are related via:

ηi =
n∑

j=0

νijξj , (1.2)

where i = 0, 1, · · · ,m, and the coefficients {νij} are pre-chosen. Suppose now that faulty compu-
tation has given us possibly corrupted data {ξ̂j}, but that the checksum values {ηi} stay intact.
The general case that includes errors in checksums will be discussed in Section 1.3. Hence the
errors ωj can be defined by

ωj ≡ ξ̂j − ξj , (1.3)

for j = 0, 1, · · · , n. Define another set of checksums {η̂i} from the faulty data:

η̂i =
n∑

j=0

νij ξ̂j , (1.4)

where i = 0, 1, · · · ,m. We note here that a major difficulty in ABFT is the proper choice of the
coefficients {νij}. Taking difference of (1.2) and (1.4), we get

η̂i − ηi =
n∑

j=0

νij

(
ξ̂j − ξj

)
.

Defining a set of syndromes {σi} by

σi ≡ η̂i − ηi, for i = 0, 1, · · · , m,

we get

σi =
n∑

j=0

νijωj , for i = 0, 1, · · · ,m. (1.5)

Furthermore, define an (m + 1)-element syndrome vector s, an (m + 1) × (n + 1) “generator”
matrix G, and an (n + 1)-element error vector w by

s ≡


σ0

σ1
...

σm

 , G ≡


ν00 ν01 · · · ν0n

ν10 ν11 · · · ν1n
...

...
. . .

...
νm0 νm1 · · · νmn

 , and w ≡


ω0

ω1
...

ωn

 .

We can write out (1.5) in matrix form:

s = Gw. (1.6)

Given s and G, our problem is to solve for w. Analogously, we also define the data vectors

x =


ξ0

ξ1
...

ξn

 , x̂ =


ξ̂0

ξ̂1
...

ξ̂n


3

In this paper, we choose G as a generalized Vandermonde matrix:

G =


p0(x0) p0(x1) p0(x2) · · · p0(xn)
p1(x0) p1(x1) p1(x2) · · · p1(xn)
p2(x0) p2(x1) p2(x2) · · · p2(xn)

...
...

...
. . .

...
pm(x0) pm(x1) pm(x2) · · · pm(xn)

 , (1.7)

where pi(x) denotes a polynomial of exact degree i, for i = 0, 1, · · · ,m, and {xj} denotes a set
of distinct points that we call the knots. Hence

νij = pi(xj). (1.8)

We will also scale the zero degree polynomial to unity:

p0(x) ≡ 1.

In most previous work, e.g., [6, 7, 9, 10, 11], the polynomials {pi(x)} were chosen to be the
monomials, viz.,

pi(x) ≡ xi, for i = 0, 1, · · · , m. (1.9)

Then G is the ordinary Vandermonde matrix:

G =


x0

0 x0
1 x0

2 · · · x0
n

x1
0 x1

1 x1
2 · · · x1

n

x2
0 x2

1 x2
2 · · · x2

n
...

...
...

. . .
...

xm
0 xm

1 xm
2 · · · xm

n

 . (1.10)

Jou and Abraham [10] chose the knots as

xj = 2j , for j = 0, 1, · · · , n.

Recognizing that such a choice could easily lead to numerical overflow of the coefficients {νij},
Luk [11] proposed that

xj = j + 1, for j = 0, 1, · · · , n, (1.11)

which would grow at a somewhat slower pace. Brent et al. [6] showed how one could keep νij

from exceeding a prime number that is only a little bigger than n. However, their scheme is
usable only for error detection, and not for error correction. Nair and Abraham [16] explored
how standard codes over a finite field may be converted to corresponding codes over the reals
with various properties. In this paper, we show how other sequences of polynomials {pi(x)}
of exact degree i can be chosen that would yield coefficients {νij} that are better scaled than
those arising from the monomials. In this way an efficient Lanczos method can be used for
error correction. Numerical issues, however, will not be discussed, even though the sensitivity
of ABFT techniques to roundoff errors is well recognized; see, e.g., [5] and [12].

1.2. Error Location and Correction. In [1, 9, 10] a linear algebraic model of the
weighted checksum scheme is developed, allowing parallels to be drawn between algorithm-
based fault tolerance and coding theory. An assumption that we must make for our correction
procedure is that no errors occur in the checksums. We now show that equation (1.6) with G of
the form (1.7) always has at least one solution.

4

Theorem 1.1. For any n, let the knots x0, x1, · · · , xn be distinct. Choose m ≤ n. For
each i, where i = 0, 1, · · · , m, let the polynomial pi(x) have exact degree i. Then the matrix G
of (1.7) has full row rank, and so any m+1 columns of G form an (m+1)× (m+1) nonsingular
matrix.

Proof: We show that vT G = 0 implies v = 0. For any (m + 1)-vector v, define the
polynomial q(x) of degree at most m as

q(x) ≡ vT


p0(x)
p1(x)

...
pm(x)

 .

There is a one-to-one correspondence between vectors v and such polynomials q(x). Then vT G
is an (n + 1)-vector whose entries are the values that q(x) takes on at all the knots xi:

(q(x0), · · · , q(xn)) = vT G.

If q(xi) = 0 for all i, then q(x) must be the zero polynomial. Hence v = 0. The submatrix
formed by extracting any m + 1 columns of G also has the form (1.7) with m + 1 distinct knots,
so this submatrix is square and has full rank.

We say that a coding scheme has detected the presence of errors if the syndrome vector s is
nonzero, and that it can correct the errors if x can be recovered from x̂. From Theorem 1.1 it
follows that s is guaranteed to be nonzero as long as the number of nonzero ωi’s (or errors) is
between one and m + 1. Hence our coding scheme can detect up to m + 1 errors. The problem
of error correction is harder. If m = n, then

w = G−1s.

But when m < n, the solution to (1.6) is no longer unique, for we can find w via inverting any
(m + 1)× (m + 1) submatrix of G. A usual choice (cf. [1]) is to restrict the number of errors so
that there is only one solution. Let

γ =
{

m + 1 if m = n
b(m + 1)/2c if m < n

(1.12)

and assume that at most γ errors have occurred. We claim that this w is unique. Assume that
there is a different vector w̃ with at most γ nonzero entries, that also satisfies (1.6). So,

Gw = s and Gw̃ = s.

But then

G (w − w̃) = 0,

and the difference vector (w−w̃) will have between one and m+1 nonzero elements, contradicting
Theorem 1.1. From here on, we will assume that at most γ errors are present in the data, and in
Section 6, a Lanczos method will be presented for finding the w that contains at most γ nonzero
elements. We summarize our results as follows.

Fact 1.1. With G defined as in Theorem 1.1, our coding scheme can detect up to m + 1
errors, for m + 1 given checksums, or syndromes. This coding scheme can also correct up to γ
errors, in the sense that for a given set of m + 1 syndromes, there is at most one solution to
(1.6) with between 1 and γ nonzero ωj ’s.

5

1.3. Errors in Checksums and Matrix Conditioning. Let us illustrate some of the
numerical advantages of the extra flexibility we gain from using general sets of polynomials and
knots. To account for errors also in the checksums, we append an equal number of “parity” values
to each of the data rows of the matrix, where the parity values are set just so the checksums
are zero. Specifically, we append an equal number of parity values {π0, π1, · · · , πm} to the data
vector and then compute the checksums from the (n+ m+2)-element vector of data and parity
values. To do this, we need m + 1 extra knots xn+1, xn+2, · · · , xn+m+1 corresponding to the
parity values. Thus, the checksums are computed by the formula

η0

η1
...

ηm

 = G


ξ0

ξ1
...

ξn

 + F


π0

π1
...

πm

 , (1.13)

where F is an (m + 1) × (m + 1) matrix whose (i, j)-th entry is Fij = pi(xn+j). The simplest
choice is to set the ηk’s to zero, in which case the parity values are computed from the data
values by 

π0

π1
...

πm

 = −F−1G


ξ0

ξ1
...

ξn

 . (1.14)

Since the parity values are related to the data in the same way as the original checksums via
the new coefficient matrix F−1G, they may be carried along with the data row during all the
floating-point operations in the same way as the original checksums can. With this choice for
the parity values, the checksums are identically zero and hence need not be computed at all.
Thus the amount of data that must be carried during the computation using this set of parity
values is the same as that using the former checksum scheme with no parity values, but we gain
tolerance for errors among the error check (parity) values as well as among the original data.
This scheme corresponds to a systematic linear code in the parlance of algebraic coding theory.

When using the monomials as in [10, 11], the condition number of F can be high. As an
example, with m = 5 and the knots of [11]: xj = j+1, the condition number of the corresponding
6 × 6 matrix F will be at least 7 × 105, meaning that the computed parity values will have at
least five fewer digits of accuracy than the original data. This would make it impossible to detect
any errors occurring in the low order five digits of any data item. For larger values of m, this
effect is even more marked: the condition number of the 8× 8 Vandermonde matrix using knots
1, 2, · · · , 8 is almost 109.

On the other hand, if we choose the polynomials to be the Chebyshev polynomials of the
first kind, we can choose the knots to substantially reduce the condition number of F . This is
illustrated in the first numerical example in Section 7.

The accuracy of the computed parity values will make a big difference in the ability to
detect and correct errors that occur in the lower part of the mantissa part of the floating-point
words. When errors approach the lower part, they begin to become indistinguishable from
rounding errors, and if a severe loss of accuracy occurs during the computation of parity values,
hardware errors in the corresponding last digits of the floating-point word will be undetectable
or uncorrectable, as they will be indistinguishable from rounding errors.

6

2. Recurrence Relations. Define pn+1(x) to be the monic polynomial of degree n + 1
whose zeros are the given knots, viz.,

pn+1(x) =
n∏

j=0

(x− xj) = xn+1 +
n∑

j=0

ζjx
j , (2.1)

for some coefficients ζj . The two vectors s and w are related via

s = Gw = GDωe, (2.2)

where Dω is an (n + 1)× (n + 1) diagonal matrix given by

Dω ≡ diag(ω0, ω1, · · · , ωn), (2.3)

and e is an (n + 1)-vector of all ones, viz., e ≡ (1, 1, · · · , 1)T .

The polynomials {pi(x)} satisfy a set of recurrence relations which can be grouped into the
matrix expression:

x (p0(x), · · · , pn(x)) = (p0(x), · · · , pn(x)) Z + (0, · · · , 0, 1) pn+1(x) ζn+1, (2.4)

where ζn+1 equals some unspecified scalar, and Z denotes an (n + 1)× (n + 1) irreducible upper
Hessenberg matrix, i.e., a matrix whose immediate subdiagonal elements are all nonzero. If all
the polynomials are monic then the subdiagonals of Z are all ones. Formula (2.4) expresses
each polynomial pk+1(x) as a linear combination of x pk(x) and all the previous polynomials
p0(x), p1(x), · · · , pk(x). For example, if we choose the {pi(x)} as the monomials, then Z is the
companion matrix for the polynomial pn+1(x):

Z =



0 ζ0

1 0 ζ1

1 0 ζ2

1 · ζ3

· · ·
· 0 ζn−1

1 ζn


. (2.5)

In the procedure that we will describe, these scalars ζi will play no role in the actual compu-
tation, and so the matrix Z functions essentially as the “shift-down” matrix for the case of the
monomials.

From here on, until the middle of Section 5, we will assume that

m = n.

In Section 5.1 we will show how the algorithms will still work when m < n. If we evaluate (2.4)
at each of the knots, we obtain a relation for G:

DxGT = GT Z, (2.6)

where

Dx ≡ diag (x0, x1, · · · , xn), (2.7)

because pn+1(xi) = 0 for i = 0, 1, · · · , n. Note that we have just used our assumption that
m = n; the matrix G is now square. in computing the product ZT s. Equation (2.6) yields the
relations

Dj
xGT = GT Zj for any j, (2.8)

7

and

q(Dx)GT = GT q(Z) for any polynomial q(x). (2.9)

Furthermore, from (2.2) and (2.6), we derive the relation:

ZT s = ZT GDωe = GDxDωe = GDωDxe, (2.10)

which yields the two equations:

(ZT)js = GDωDj
xe = GDω


xj

0

xj
1
...

xj
n

 for any j, (2.11)

and

q(ZT)s = GDω q(Dx)e for any polynomial q(x). (2.12)

3. Krylov Matrices. We define two sequences of Krylov matrices {Bi} and {Ci}, to be
generated by the two matrices Z and ZT . Let e1 denote the (n + 1)-element first coordinate
unit vector, viz., (1, 0, · · · , 0)T . The matrix Bj is (n + 1)× (j + 1), and given by

Bj =
(

e1, Ze1, Z2e1, · · · , Zje1

)
. (3.1)

Since Z is an irreducible upper Hessenberg matrix, the matrix Bj has full column rank and is
upper triangular. The column space of Bj is the same as the column space of the first j + 1
columns of the identity matrix. The other matrix Cj has dimensions (n + 1) × (j + 1), and is
defined by

Cj =
(

s, ZT s, (ZT)2s, · · · , (ZT)js
)

. (3.2)

Note again how we have used our assumption that m = n. Utilizing (2.11) we may write Cj as

Cj = GDωV T
j , (3.3)

where

Vj =


1 1 1 · · · 1
x0 x1 x2 · · · xn

x2
0 x2

1 x2
2 · · · x2

n
...

...
...

. . .
...

xj
0 xj

1 xj
2 · · · xj

n

 .

So, Vj consists of the first (j + 1) rows of an ordinary (n + 1)× (n + 1) Vandermonde matrix.

Now, how do we determine how many errors have occurred? Suppose that the number is k.
Recall our assumption that

k ≤ γ. (3.4)

In (3.3), the matrix Dω has rank k, and from Theorem 1.1, the matrix G is nonsingular and V T
j

has full column rank which equals (j + 1). Hence the rank of the matrix Cj is given by

rank (Cj) =
{

j + 1 if j + 1 < k
k if j + 1 ≥ k

(3.5)

8

It also follows from Theorem 1.1 and (3.3) that the first l rows of Cj has maximal rank given
by min{j + 1, k}, for any l ≥ k. In particular, we have the following result.

Lemma 3.1. Let k be the number of errors (nonzero ωj ’s). Denote the first k rows of Bj

and Cj by B
(k)
j and C

(k)
j , respectively. Then

rank
(
B

(k)
k−1

)
= rank (Bk−1) = k,

and

rank
(
C

(k)
k−1

)
= rank (Ck−1) = k.

Hence CT
k−1Bk−1 = (C(k)

k−1)
T B

(k)
k−1 is a k × k nonsingular matrix.

Again, for the special case where {pi(x)} are the monomials, we get that

Bj =



1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
...

...
...

. . .
...

0 0 0 · · · 0


(3.6)

and

Cj =



σ0 σ1 σ2 · · · σj

σ1 σ2 σ3 · · · σj+1

σ2 σ3 σ4 · · · σj+2
...

...
... . . .

...
σn−j σn−j+1 σn−j+2 · · · σn

σn−j+1 σn−j+2 σn−j+3 · · · ×
...

...
... . . .

...
σn−2 σn−1 σn · · · ×
σn−1 σn × · · · ×
σn × × · · · ×



,

where × denotes elements that may not interest us.

4. Error Locator Polynomial. We have just seen how the number of errors can be
calculated from the rank of {Cj}. A more difficult task is to find out which k of the ωj ’s
are nonzero. Labelling the errors as ωj1 , ωj2 , · · · , ωjk

, we will show how to find the indices
j1, j2, · · · , jk by determining the corresponding knots xj1 , xj2 , · · · , xjk

.

Definition 4.1. The error locator polynomial is a polynomial whose zeros are precisely the
knots corresponding to the nonzero ωj ’s.

Consider the k × (k + 1) homogeneous system

CT
k−1Bka = 0. (4.1)

Denote the elements of a by

a ≡ (α0, α1, · · · , αk)
T . (4.2)

9

From Lemma 3.1, a nonzero solution with αk 6= 0 to (4.1) exists, and is unique up to scaling.
For example, if the {pi(x)} were the monomials, then

CT
k−1Bk =



σ0 σ1 σ2 · · · σk−2 σk−1 σk

σ1 σ2 σ3 · · · σk−1 σk σk+1

σ2 σ3 σ4 · · · σk σk+1 σk+2
...

...
... . . .

...
...

...
σk−2 σk−1 σk · · · σ2k−4 σ2k−3 σ2k−2

σk−1 σk σk+1 · · · σ2k−3 σ2k−2 σ2k−1


(4.3)

is a Hankel matrix of syndrome values, and thus (4.1) can be regarded as permuted Yule-Walker
equations [8, p. 184], obtained by reversing the order of the rows. With other choices for the
polynomials {pi(x)}, we can consider (4.1) as a generalization of the permuted Yule-Walker
equations.

Now, in association with (4.2), define a k-th degree polynomial q(x) by

q(x) ≡ α0 + α1x + · · ·+ αk−1x
k−1 + xk. (4.4)

We will show that the k zeros of q(x) are precisely the knots xj1 , xj2 , · · · , xjk
, corresponding

to the nonzero ω-values. That is, we will show that the polynomial q(x) is the error locator
polynomial. Using the identity

GT Bk a = GT
(
e1, Ze1, Z

2e1, · · · , Zke1

)
a

=
(
e, Dxe, D2

xe, · · · , Dk
xe

)
a

= q(Dx) e,

(4.5)

we expand (4.1) as follows:

0 = CT
k−1 Bk a = Vk−1 Dω GT Bk a = Vk−1 Dω q(Dx) e = Vk−1


ω0q(x0)
ω1q(x1)

...
ωnq(xn)

 .

If we extract only those entries involving the nonzero ω-values, we obtain a k × k nonsingular,
homogeneous system:

0 =


1 1 1 · · · 1

xj1 xj2 xj3 · · · xjk

x2
j1

x2
j2

x2
j3

· · · x2
jk

...
...

...
. . .

...
xk−1

j1
xk−1

j2
xk−1

j3
· · · xk−1

jk




ωj1q(xj1)
ωj2q(xj2)
ωj3q(xj3)

...
ωjk

q(xjk
)

 . (4.6)

Hence

q(xji) = 0 for i = 1, 2, · · · , k,

as we desired.

We can also express the error locator polynomial as a linear combination of the original
set of polynomials {pi(x)}, which may be useful in the computational procedure. We define a
polynomial r(x) by

r(x) ≡ (p0(x), p1(x), · · · , pn(x)) Bka. (4.7)
10

From the upper triangular structure of the matrix Bk, we see that r(x) is a polynomial of degree
at most k. If we evaluate r(x) at each knot, we see from (4.5) that it agrees with q(x) at every
knot: 

r(x0)
r(x1)

...
r(xn)

 = GT Bka = q(Dx)e =


q(x0)
q(x1)

...
q(xn)

 . (4.8)

So,

r(x) ≡ q(x). (4.9)

We summarize our results as follows.

Fact 4.1. Suppose that there are exactly k errors, and that the syndrome vector s has
been computed using G, which is generated via the recurrence matrix Z. Let Bk and Ck−1 be
the two Krylov matrices generated by Z, e1 and s. Then the error locator polynomial q(x) is
defined by (4.4), where the vector of coefficients a is the unique (up to scaling) nonzero solution
to (4.1). Furthermore, we may express q(x) as a linear combination of the original polynomials
{pi(x)}, in which case the coefficients are simply the entries of the vector Bka, as proved in (4.7)
and (4.9).

5. Lanczos Process. The nonsymmetric Lanczos Algorithm, described in detail in [3], is
a recursive process that starts with the matrix A and two vectors r0 and l0, and generates two
sequences of matrices {Rj} and {Lj}, given by

Rj ≡ (r0, r1, · · · , rj) (5.1)

and

Lj ≡ (l0, l1, · · · , lj) , (5.2)

for j = 0, 1, · · · , n. Hence Rj and Lj are both (n + 1)× (j + 1) matrices. Let Sp(M) denote the
column space of a matrix M . Then, for every j, the following four relations will be satisfied:

Sp(Rj) = Sp
(
r0, A r0, A2r0, · · · , Ajr0

)
, (5.3)

Sp(Lj) = Sp
(
l0, AT l0, (AT)2l0, · · · , (AT)jl0

)
, (5.4)

and, if LT
j Rj is nonsingular, then

lTj+1Rj = 0, (5.5)

rT
j+1Lj = 0. (5.6)

Property (5.4) implies that lj+1 is a linear combination of AT lj and l0, l1, · · · , lj . If the matrix
LT

j Rj is nonsingular, then the particular linear combination is chosen to satisfy (5.5). Otherwise,
we have some freedom in choosing lj+1, and we may pick lj+1 = AT lj . Other choices satisfying
(5.3)-(5.4) are possible, but this particular one will lead to a computational simplification, as
will be seen in the next section. We can derive similar results for the {ri} vectors. The process
terminates when either lj = 0 or rj = 0, for some j.

11

For our situation, we propose to use the Lanczos process with the matrix A = Z, and the
starting vectors r0 = e1 and l0 = s. With this choice, we get

Sp(Rj) = Sp(Bj) (5.7)

and

Sp(Lj) = Sp(Cj), (5.8)

for j = 0, 1, · · · , n. Since the matrix Z is irreducible upper Hessenberg, the matrix Rj will be
upper triangular, and will have full column rank j+1, for every j < k. Hence the Lanczos process
will terminate at the k-th step with lk = 0, by property (3.4). Since the matrix CT

k−1Bk−1 is
nonsingular, we get from (5.6) that rk will be the vector in the column space of Rk that is
orthogonal to Lk−1, or equivalently in the column space of Bk that is orthogonal to Ck−1. But
this means that the vector rk equals the vector Bka defined by (4.1), up to a scaling constant.
Hence the Lanczos Algorithm may be used to generate the error locator polynomial q(x) as a
linear combination of the original set of polynomials {pi(x)}.

Fact 5.1. Suppose that we have run the nonsymmetric Lanczos process with the matrix Z,
and the starting vectors e1 and s. The process will terminate at the k-th step with lk = 0, and
the vector rk will equal the vector Bka, except possibly for a scaling factor. Hence the entries
of rk give us the coefficients of the error locator polynomial q(x) in terms of the original set of
polynomials {pi(x)}, as shown in (4.7) and (4.9).

5.1. Case Where m < n. We now examine the case where there are fewer syndromes than
data values, i.e., m < n. Indeed in practice, usually m << n. As noted just below equation
(3.4), we may check the rank of Cj for every j by just checking the first l rows, as long as l ≥ k.
If γ, the maximum number of errors, is known, then it suffices to examine the first γ rows of Cj ,
or equivalently of Lj , and the Lanczos process is guaranteed to terminate in at most γ steps.
Note that each lj+1 in the Lanczos process is a linear combination of ZT lj and of l0, l1, · · · , lj .
Since ZT is lower Hessenberg and lj has j leading zero elements, to find the top ρ elements of
ZT lj , we need to know only the top ρ + 1 elements of lj . It follows that the first γ + 1 values of
the generated vectors l0, · · · , lγ−1 depend only upon the first 2γ values of the initial vector l0 = s.
Therefore, it suffices to compute only 2γ syndrome values in order to generate the coefficients
in (4.1) that are needed to solve for a. Recall from (1.12) our assumption that

γ = b(m + 1)/2c,

and so, given γ, one should choose m so that

m + 1 = 2γ.

Fact 5.2. If the number of errors is at most γ, then 2γ syndrome values are necessary and
sufficient to determine the error locator polynomial and its zeros by means of equation (4.1).

6. Column Elimination Scheme. The Lanczos process as described simplifies somewhat
for the particular purpose we are using it here, that of computing the error locator polynomial.
With our particular starting data, the right Lanczos matrix Rj will be upper triangular and will
have full column rank, for every j. The left Lanczos matrix Lj may assume several forms. We
first examine the “generic” case that LT

j Rj is nonsingular for every j. Then the condition (5.5)
is equivalent to forcing Lj+1 to be lower triangular. In the Lanczos algorithm, this structure
is obtained by subtracting multiples of previous columns {li} from the one that has just been
generated as ZT lj . That is, we perform “column operations” akin to “row operations” in ordi-
nary Gaussian elimination. (Note that using another elimination scheme such as an orthogonal

12

decomposition would destroy the properties (5.3) and (5.4) as well as the triangular structure
of the generated matrices.) Thus, at stage j of the process, we generate lj+1 from lj−1 and lj as
follows. The vector lj−1 has (j − 1) leading zero entries, the vector lj has j leading zero entries,
and the vector ZT lj (≡ l̃j+1) has (j − 1) zero entries:

(lj−1, lj , l̃j+1) =



0 0 0
...

...
...

0 0 0
lj−1,j−1 0 l̃j−1,j+1

lj,j−1 lj,j l̃j,j+1

lj+1,j−1 lj+1,j l̃j+1,j+1
...

...
...


.

We must eliminate the two elements l̃j−1,j+1 and l̃j,j+1 to obtain an lj+1 that has j + 1 leading
zero entries. These two eliminations are done by subtracting from l̃j+1 suitable multiples of lj−1

and lj , respectively.

We now examine the “nongeneric” case. Suppose that for some particular value of j, the
matrix LT

j Rj is singular, and LT
j−1Rj−1 is nonsingular. (The following also applies for the case

where j = 0, i.e., lT0 r0 = 0.) This means that lj must have more than j leading zero entries.
Suppose there are i extra leading zero entries, for a total of j + i leading zero entries:

lj =



0
...
0

lj+i,j

lj+i+1,j
...


(6.1)

Then the next (i + 1) vectors l̃j+1, l̃j+2, · · · , l̃j+i+1 are defined simply by

l̃j+l = ZT l̃j+l−1 = (ZT)l̃lj ,

for l = 1, 2, · · · , i + 1. Due to the lower Hessenberg form of ZT , these vectors have a lower
anti-triangular form, as illustrated below for i = 3:

(
lj−1, lj , l̃j+1, l̃j+2, l̃j+3, l̃j+4

)
=



0 0 0 0 0 0
...

...
...

...
...

...
0 0 0 0 0 0

lj−1,j−1 0 0 0 0 l̃j−1,j+4

lj,j−1 0 0 0 l̃j,j+3 l̃j,j+4

lj+1,j−1 0 0 l̃j+1,j+2 l̃j+1,j+3 l̃j+1,j+4

lj+2,j−1 0 l̃j+2,j+1 l̃j+2,j+2 l̃j+2,j+3 l̃j+2,j+4

lj+3,j−1 lj+3,j l̃j+3,j+1 l̃j+3,j+2 l̃j+3,j+3 l̃j+3,j+4
...

...
...

...
...

...


.

(6.2)
We wish to “exhibit” the rank of this matrix by reducing it to a column permutation of a lower
triangular matrix. To preserve the Krylov sequence property (5.4), we set

lj = l̃j , lj+1 = l̃j+1, · · · , lj+i = l̃j+i.

Then to form lj+i+1 we must eliminate the leading (i + 2) nonzero entries of l̃j+i+1, namely
l̃j−1,j+i+1, l̃j,j+i+1, · · · , l̃j+i,j+i+1, by means of column operations. Note that property (5.4) is

13

still preserved for all the index values j, j + 1, · · · , j + i + 1, and that this column elimination
scheme is essentially the Berlekamp-Massey algorithm [2, 15] for solving the permuted Yule-
Walker problem (4.1) when the coefficient matrix is given by (4.3). The scheme requires i + 2
column operations, less than the 2(i + 1) that would have been required for the generic case.

Whether the generic or nongeneric elimination scheme is used, the result after k steps is
a full rank matrix Lk−1 which is either lower triangular, or a column permutation of a lower
triangular matrix. Therefore, to solve for a in (4.1), it suffices to choose an arbitrary nonzero
value for α̃k and solve the following system for α̃0, .., α̃k−1:

LT
k−1 (Rkã) = 0. (6.3)

As Sp (Ck−1) = Sp (Lk−1), and hence Null
(
CT

k−1

)
= Null

(
LT

k−1

)
, the right annihilating vector

Bka of CT
k−1 in (4.1) is the same as the right annihilating vector Rkã of LT

k−1 in (6.3). That is,

Bka = Rkã, (6.4)

except for a scaling constant. The matrix Rk is upper triangular, so it suffices to extract only
the first (k + 1) rows of Lk−1. The (k + 1)-st row of Lk−1 enters only into the part depending
on α̃k, so (6.3) is a k × k system for the remaining α̃-values. Since Lk−1 is lower triangular (at
least within a column permutation), solving (6.3) for Rkã = Bka requires a back-substitution
step, and to obtain a itself requires another back-substitution step. If we are interested only in
the locations of the zeros of the error locator polynomial, as opposed to the coefficients of the
polynomial itself, it suffices to solve (6.3) for the right annihilating vector Bka and substitute this
result directly into (4.8), yielding directly the values of the error locator polynomial evaluated
at every knot.

We summarize the steps to obtain a as follows:

0. Start with l0 = s.
1. For i = 0, 1, · · ·, compute li+1 by forming l̃i+1 = ZT li, and annihilating the first two

nonzero entries by two “column operations”. (In the nongeneric case described above, we
form the vectors as illustrated in (6.2) and follow the prescription described thereafter.)

2. The process in Step 1 continues until lk = 0 for some value k. This value is the number
of errors in the data.

3. Solve system (6.3) for Bka using (6.4).
4. If the error locator polynomial itself is desired, as opposed to its zeros, then generate

the Krylov matrix Bk, and back-solve to obtain a.

Step 1 is guaranteed to terminate in at most γ steps. This requires that only the first m+1,
which equals 2γ, syndromes be carried, and that only the first m+1− j entries in each cj vector
be computed. Therefore, to carry out Step 1 requires at most γ applications of the matrix ZT

and 2γ “column operations”.

If the bandwidth of Z equals b, then each application of Z or ZT to the leading m + 1
entries of a vector costs (m + 1)b operations. Since only the leading principal submatrix of Z
participates in the computations, the bandwidth of (2.5) is b = 1. Indeed, that particular choice
would incur only shifting and no arithmetic costs. If the original set of polynomials {pi(x)} were
the Chebyshev polynomials, or some other sequence of orthogonal polynomials, then Z would be
tridiagonal and the bandwidth would be b = 3, as in the numerical example in the next section.

Only Steps 1 and 3 require computation for the specific syndrome values: we approximate
their costs using k ≤ γ and m = 2γ − 1.

Cost of Step 1 = k(mb + 2m) ≤ 2γ2(b + 2).
Cost of Step 3 = Cost of Back Substitutions = k2/2 ≤ γ2/2.

14

Total Cost ≤ γ2(2b + 4.5).

To summarize, we have described a method which computes a lower triangular basis for the
Krylov space, Sp (Ck−1). By recursively carrying out column eliminations as each new column is
generated, we are able to exhibit the maximal rank of Rj and Lj at each stage j. We then use the
lower triangular basis Lk−1 to solve for the vector Bka representing the error locator polynomial.
In principle, we could use any basis for Sp (Ck−1). If we used instead an orthonormal basis, we
would enhance the numerical stability of the method at a cost of more arithmetic. Such an
orthonormal basis can be generated recursively by an Arnoldi process (see e.g. [4]), and the
rank would be exhibited in the same way as in the above process. But in this paper we focus
on the lower triangular basis because it is simple to compute and because it is closely related to
the nonsymmetric Lanczos and Berlekamp-Massey algorithms.

7. Numerical Examples. Except for the possible goal of reducing the condition number of
the relevant matrices, the choice of polynomials and knots is arbitrary as long as the polynomials
are of increasing degree and the knots are distinct. These are the only conditions required to
apply the Lanczos-based paradigm. Different choices lead to a wide variety of different schemes,
including many of the standard ones. In this section we illustrate our method with two particular
numerical examples in which we use the Chebyshev polynomials and the monomials to generate
the checksum coefficients and the knots. In printing the numbers, we have rounded them to
the digits shown, even though the computations were carried out in Lisp on a Sun workstation
with IEEE arithmetic using a precision of about 16 decimal digits. The first two Chebyshev
polynomials are

p0(x) = 1, p1(x) = x,

and it is well known that the subsequent polynomials are generated by the recurrence

pi+1(x) = 2x pi(x)− pi−1(x), for i = 1, 2, · · · .

the Chebyshev polynomials p0(x), p1(x), · · · are related via the recurrence (2.4) and the recur-
rence matrix

1
2



0 1 0 0
2 0 1 0

. . .

0 1 0 1
. . .

0 0 1 0
. . .

0 0 0 1
. . .

0 0 0 0
. . .

.


, (7.1)

and it is well known that the zeroes of the polynomial pk are all real, simple, and are the same
as the eigenvalues of the leading k × k principal submatrix of (7.1).

Example 1. We illustrate the process of determining the errors that might be present in a
given row (ξ0, ξ1, · · · , ξn) of an (n+1)×(n+1) matrix A. In order to compute the checksums, we
need n + 1 knots x0, x1, · · · , xn, from which we determine the matrix G of checksum coefficients
(1.7) using the Chebyshev polynomials.

In order to illustrate process for handling also errors in the checksums, we suppose that
m + 1 = 6 parity values π0, π1, · · · , π5 have been appended to the matrix row, and that an
extra six knots have been chosen. Corresponding to the parity values are six extra knots
xn+1, xn+2, · · · , xn+6. Define the 6 × 6 matrix F by Fij = pi−1(xn+j), for i, j = 1, 2, · · · , 6.

15

We then define the parity values by (1.14) so that the checksums (1.13) computed on the entire
“data sequence”:

ξ0, ξ1, · · · , ξn, π0, π1, · · ·π5, (7.2)

are zero.

We may choose the knots to be any set of distinct numbers, so we make the following
arbitrary choice. The last eight knots are chosen as the zeros of p8:

xn−1 = cos 15π/16 = −0.980785
xn+0 = cos 13π/16 = −0.831470
xn+1 = cos 11π/16 = −0.555570
xn+2 = cos 9π/16 = −0.195090
xn+3 = cos 7π/16 = +0.195090
xn+4 = cos 5π/16 = +0.555570
xn+5 = cos 3π/16 = +0.831470
xn+6 = cos π/16 = +0.980785

and the n−1 remaining knots are chosen as the zeroes of pn−1, which are all distinct from those
of p8 for any n − 1 relatively prime to 8. All n + 7 knots are guaranteed to be distinct. This
is a modification of a periodic code in the sense of [16]. We have that m = 5 and γ = 3. The
combined matrix (G |F) of checksum coefficients is given by

(G |F) =

· · · 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
· · · −0.9808 −0.8315 −0.5556 −0.1951 0.1951 0.5556 0.8315 0.9808
· · · 0.9238 0.3827 −0.3827 −0.9238 −0.9238 −0.3827 0.3827 0.9238
· · · −0.8315 0.1951 0.9808 0.5556 −0.5556 −0.9808 −0.1951 0.8315
· · · 0.7071 −0.7071 −0.7071 0.7071 0.7071 −0.7071 −0.7071 0.7071
· · · 0.5556 0.9808 −0.1951 −0.8315 0.8315 0.1951 −0.9808 0.5556


We note that the condition number of F is 89. If instead we use the polynomials (1.9) and knots
(1.11), then G and F would both be ordinary Vandermonde matrices, and the condition number
of F would be in excess of 7 × 105. This means that by using the Chebyshev polynomials, we
may compute the parity values (1.14) to almost full machine accuracy, whereas when using (1.9)
and (1.11), the last five digits of the computed parity values are guaranteed to be in error from
the ill-conditioning of F . In the latter case, we would not be able to detect any errors that might
occur in the last five digits of any data item. We note that if we choose the last six knots as
the zeroes of p6 and the remaining n + 1 knots as the zeroes of pn+1 then it can be shown that
the rows of F would be mutually orthogonal and the condition number of F would be reduced
to only 2. We use the choice of p8 and pn−1 to illustrate that many different choices can lead to
much improvement in the condition number.

Given the n + 7 knots, the checksum coefficients are generated by the first six Chebyshev
polynomials, which satisfy the recurrence (2.4) where the recurrence matrix Z is just the leading
6 × 6 principal submatrix of (7.1). The Krylov sequence {Bj} depends only on the recurrence
matrix Z. In particular, B5 is given by

B5 =



1.0 0 0.5 0 0.375 0
0 1.0 0 0.75 0 0.6250
0 0 0.5 0 0.500 0
0 0 0 0.25 0 0.3125
0 0 0 0 0.125 0
0 0 0 0 0 0.0625


. (7.3)

16

Since the parity values were chosen just to make the checksums zero, the syndrome values are
obtained by applying the checksum coefficient matrix (G |F) to the augmented data (7.2). We
suppose that the resulting six (= 2γ) syndromes are

s =



−2.000000
−2.443301

4.460885
2.612462

−4.242641
−1.364308


.

The other Krylov sequence {Cj} is calculated as

Cj =



−2.0000 −2.4433 1.2304 · · ·
−2.4433 1.2304 −1.1794 · · ·

4.4609 0.0845 0.6698 · · ·
2.6125 0.1091 0.3543 · · ·

−4.2426 0.6241 × · · ·
−1.3643 × × · · ·


,

where j ≥ 2, and the symbol “×” stands for entries depending on the further syndrome values
that we do not have available, and do not need under the assumption that no more than three
errors have occurred. If we carry out column eliminations to reduce Cj to a lower triangular
form, we obtain

Lj =



−2.0000 0 0 · · ·
−2.4433 4.2153 0 · · ·

4.4609 −5.3651 0 · · ·
2.6125 −3.0824 0 · · ·

−4.2426 5.8071 × · · ·
−1.3643 × × · · ·


,

where j ≥ 2. Note that the third column is all zero, so number k of errors equals 2. We then
use the top left 3× 3 part of B5 and the top left 3 × 2 part of L2 to solve equation (6.3):

0 =
(
−2.0000 −2.4433 4.4609

0 4.2153 −5.3651

)  1.0 0 0.5
0 1.0 0
0 0 0.5

  α0

α1

1


for the 3-vector B2a. This is a 2 × 2 system of equations for α0, α1, but we can solve directly
for B2a. The results are

B
(3)
2 a =

 0.3378
0.6364
0.5000

 and a =

−0.1622
0.6364
1.0000

 .

Thus the error locator polynomial is

q(x) = x2 + 0.6364x− 0.1622.

We can find the zeroes of q(x) directly, or substitute B
(3)
2 a directly into (4.8) to obtain the

17

vector of evaluations of the error locator polynomial at all the knots:

(G |F)T B2a =



...
...

...
1.0 −0.9808 0.9238
1.0 −0.8315 0.3827
1.0 −0.5556 −0.3827
1.0 −0.1951 −0.9238
1.0 0.1951 −0.9238
1.0 0.5556 −0.3827
1.0 0.8315 0.3827
1.0 0.9808 0.9238



 0.3378
0.6364
0.5000

 =



...
0.1756

O(10−16)
−0.2071
−0.2483
O(10−16)

0.5000
1.0583
1.4238


.

The locations of the O(10−16) entries indicate that the zeroes of the error locator polynomial
are −0.8315 and −0.1951, which are the knots corresponding to the locations of the nonzero
ω-values: ωn and ωn+3, which in turn are the errors in the last data item ξn and the third parity
value π2, respectively. We can then extract the corresponding columns from equation (1.6) to
obtain the 2× 2 system to solve for the ω-values:(

−2.0000
−2.4433

)
=

(
1.0000 1.0000

−0.8315 0.1951

) (
ωn

ωn+3

)
yielding the result (

ωn

ωn+3

)
=

(
2.0000

−4.0000

)
.

Example 2. We consider a second numerical example illustrating the nongeneric procedure
and the permuted lower triangular structure (6.2). To simplify the exposition, we do not use any
parity values and ignore conditioning issues. We suppose we have knots xj = j+1, j = 0, 1, 2, · · ·,
and polynomials pi(x) = xi, i = 0, 1, 2, · · ·. The matrix G is the ordinary Vandermonde matrix

G =


1 1 1 1 · · ·
1 2 3 4 · · ·
1 4 9 16 · · ·
1 8 27 64 · · ·
...

...
...

...
. . .

 .

Suppose that we start with the syndrome vector

s = (1, 0, 0, 0,−24,−240,−1560,−8400, · · ·)T .

We have eight syndrome values, allowing up to four errors. Then the Krylov sequence would be
generated by a “shift down” matrix yielding

C4 =



1 0 0 0 −24
0 0 0 −24 −240
0 0 −24 −240 −1560
0 −24 −240 −1560 −8400

−24 −240 −1560 −8400 ×
−240 −1560 −8400 × ×
−1560 −8400 × × ×
−8400 × × × ×


.

18

The Krylov matrix B4 of (3.6) is just the first five columns of an identity matrix. When we
attempt to reduce C4 to the lower triangular form L4 by column operations, we find that the
second column c1 has three leading zeroes. Hence, we get

l1 = c1,

without any elimination at all, and furthermore we have two additional leading zero elements.
So we generate the next two l vectors by

l2 = c2 and l3 = c3.

The next vector l4 is obtained by eliminating the first four elements of l̃4 (in this case the same
as c4) by means of column operations. The result is

L4 = (l0, l1, l2, l3, l4) =



1 0 0 0 0
0 0 0 −24 0
0 0 −24 −240 0
0 −24 −240 −1560 0

−24 −240 −1560 −8400 ×
−240 −1560 −8400 × ×
−1560 −8400 × × ×
−8400 × × × ×


. (7.4)

Since the last column is zero, the maximal rank k equals 4, so we have four errors. We then
solve (4.1) for the coefficients a of the error locator polynomial q(x). That is, we solve

1 0 0 0 −24
0 0 0 −24 −240
0 0 −24 −240 −1560
0 −24 −240 −1560 −8400

a = 0,

obtaining the error locator polynomial

q(x) = x4 − 10x3 + 35x2 − 50x + 24.

The zeroes of q are 1, 2, 3, and 4, indicating that the errors occur in the first four positions. To
find the actual errors, we extract the top left 4 × 4 part of (1.6):

1
0
0
0

 =


1 1 1 1
1 2 3 4
1 4 9 16
1 8 27 64




ω0

ω1

ω2

ω3

 ,

and solve this to obtain the errors 
ω0

ω1

ω2

ω3

 =


4

−6
4

−1

 .

8. Acknowledgements. The authors acknowledge their research sponsors: D. L. Boley
was supported in part by the National Science Foundation under grant CCR-8813493, G. H.
Golub by the Army Research Office under contract DAAL03-90-G-0105, and F. T. Luk by
the Army Research Office under contract DAAL03-90-G-0104. This paper is dedicated to the
memory of Jeffrey Speiser; we thank him for his invaluable role in cross-fertilizing the fields of
numerical analysis, scientific computing, and signal processing.

19

9. References.

[1] C. J. Anfinson and F. T. Luk, “A linear algebraic model of algorithm-based fault tolerance,”
IEEE Transactions on Computers, Special Issue on Parallel and Distributed Algorithms,
Vol. C-37 (Dec. 1988), pp. 1599-1604.

[2] E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, New York, NY, 1968.
[3] D. L. Boley, S. Elhay, G. H. Golub, M. H. Gutknecht, “Nonsymmetric Lanczos and finding

orthogonal polynomials associated with indefinite weights,” Numerical Algorithms Vol.
1 (1991), pp. 21-44.

[4] D. L. Boley, G. H. Golub, “The Lanczos algorithm and controllability,” System and Control
Letters, Vol. 4 (1984), pp. 317-324.

[5] D. L. Boley, G. H. Golub, S. Makar, N. Saxena and E. J. McCluskey, “Backward error
assertions for checking solutions to systems of linear equations,” Report NA-89-12,
Computer Science Dept., Stanford Univ., Nov. 1989.

[6] R. P. Brent, F. T. Luk and C. J. Anfinson, “Choosing small weights for multiple error
detection,” Proceedings of SPIE Vol. 1058, IS&T High Speed Computing II (1989), pp.
130-136.

[7] R. P. Brent, F. T. Luk and C. J. Anfinson, “Checksum schemes for fault tolerant systolic
computing,” Mathematics in Signal Processing II, J. G. McWhirter, Ed., Clarendon
Press, Oxford, 1990, pp. 791-804.

[8] G. H. Golub and C. F. Van Loan, Matrix Computations, 2nd Ed., The Johns Hopkins
University Press, Baltimore, Maryland, 1989.

[9] K. H. Huang and J. A. Abraham, “Algorithm-based fault tolerance for matrix operations,”
IEEE Trans. Comput., Vol. C-33 (June 1984), pp. 518-528.

[10] J. Y. Jou and J. A. Abraham, “Fault-tolerant matrix arithmetic and signal processing on
highly concurrent computing structures,” Proc. IEEE, Special Issue on Fault Tolerance
in VLSI, Vol. 74 (May 1986), pp. 732-741.

[11] F. T. Luk, “Algorithm-based fault tolerance for parallel matrix equation solvers,” Proceed-
ings of SPIE Vol. 564, Real Time Signal Processing VIII (1985), pp. 49-53.

[12] F. T. Luk and H. Park, “An analysis of algorithm-based fault tolerance techniques,” Journal
of Parallel and Distributed Computing, Vol. 5 (1988), pp. 172-184.

[13] F. T. Luk and H. Park, “Fault-tolerant matrix triangularizations on systolic arrays,” IEEE
Transactions on Computers, Vol. C-37 (Nov. 1988), pp. 1434-1438.

[14] F. T. Luk, E. K. Torng and C. J. Anfinson, “A novel fault tolerance technique for recursive
least squares minimization,” Journal of VLSI Signal Processing, Vol. 1 (1989), pp.
181-188.

[15] J. L. Massey, “Shift register synthesis and BCH decoding,” IEEE Trans. Inform. Theory,
Vol. IT-15 (1967), pp. 122-127.

[16] V. S. S. Nair and J. A. Abraham, “Real-number codes for fault-tolerant matrix operations
on processor arrays,” IEEE Trans. Comput., Special Issue on Fault-Tolerant Comput-
ing, Vol. C-39 (April 1990), pp. 426-435.

[17] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,” J. Soc. Ind. Appl.
Math., Vol. 8 (1960), pp. 300-304.

20

