
1

Random Number
Generators for

Supercomputers

Richard P. Brent

Computer Sciences
Laboratory

Australian National
University

2
�

Outline

• Requirements for RNGs
• Linear Congruential RNGs
• Generalized Fibonacci RNGs
• Comments on some

available RNGs
• Vectorization
• Initialization
• Implementation on the

Fujitsu VP2200
• Conclusions

3
�

Introduction

Pseudo-random number
generators are widely used in
simulation.

A program running on a
supercomputer might use 108

random numbers per second
for many hours.
Small correlations or other
deficiencies could easily lead
to spurious results.

We need to have confidence in
the statistical properties of
random number generators.

4
�

Some Requirements

• Uniformity This is the
easiest requirement to
achieve, at least when
considered over the whole
period.

• Independence d-tuples
should be uniformly and
independently distributed
in d-dimensional space (d ≤ 6).
Subsequences (e.g. odd/even)
of the main sequence should
be independent.



5
�

• Long Period The period
(length of a cycle in the
random numbers generated)
should be large, certainly at
least 1012 and preferably much
larger.

A library generator1 on the
Fujitsu VP2200/10 has period
231 and runs through a
complete cycle in less than
one minute. This and similar
generators are obsolete and
should be avoided.

1RANU2 in the SSL II library.

6
�

• Repeatability For testing and
development it is useful to be
able to repeat a run with
exactly the same sequence as
was used in another run,
but not necessarily starting
from the beginning of the
sequence.

Thus, it should be easy to
save all the "state" information
required to restart the
generator.

7

• Portability For testing and
development it is useful to be
able to generate exactly the
same sequences on different
machines (possibly with
different wordlengths).

At the least, a machine with a
long wordlength should be
able to simulate a machine
with a shorter wordlength,
without much loss of
efficiency.

8
�

• Disjoint Subsequences If a
simulation is run on a
parallel machine or on several
independent machines,
the sequences of random
numbers generated on each
machine must be independent.

• Efficiency Only a few
arithmetic operations should
be required to generate each
random number.
Subroutine call overheads
should be minimised.
The implementation should
exploit any vector or parallel
capabilities of the computer.



9
�

Linear Congruential
RNGs

Introduced by D. H. Lehmer
in 1948.

Un+1 = (aUn + c) mod m

where m > 0 is the modulus,
a is the multiplier, and c is an
additive constant.

Often m = 2w is chosen as a
convenient power of 2. In this
case it is possible to get
period m. However, w ≤ 32 is
not large enough (232 << 1012).

10

Generalized Fibonacci
Generators

Un = Un-r θ Un-s

where r and s are fixed "lags"
and θ is some binary operator,
e.g. addition (mod m).

r = 2, s = 1, θ = + gives the
Fibonacci sequence (mod m).
This is certainly not a
satisfactory random number
generator, because only 4 of
the 6 possible orderings of 3
numbers actually occurs.
We need larger r and s.

11

Some Available RNGs

Many implementations of
linear congruential generators
are available. They usually
have a period which is too
short and do not give good
d-dimensional uniformity for
d > 3 (Marsaglia2).

Marsaglia dislikes Tausworthe
(shift register, θ = ⊕) RNGs
because they fail the
"birthday spacings" test.

2
�
"Random numbers fall mainly on

the planes"

12

Available
�

RNGs cont.

Marsaglia now recommends
"Very Long Period"
generators, but these also fail
the birthday spacings test
unless care is taken3. They
also more difficult to vectorise
than linear congruential or
generalised Fibonacci
generators.

3
	
Perhaps this is why Marsaglia

combines his VLP generator with a
different generator.



13

Vectorization

It is easy to vectorise both
linear congruential and
generalised Fibonacci RNGs.
This is only useful if batches
of random numbers are
generated together. Thus, the
interface to a library routine
should allow an array of
random numbers to be
returned4.

4This applies even on a workstation,
because of the reduction in subroutine-
call overheads.

14

Initialization

Using the theory of generating
functions, it is possible to
"skip ahead" n terms in the
sequence for a generalized
Fibonacci RNG in O(log n)
arithmetic operations5. The
idea is similar to that of
forming n-th powers by
squaring and multiplication.

5


In practice it is sufficient (and

faster) to apply this technique just to
the least significant bits.

15

Initialization cont.

This technique allows us to
guarantee that different seeds
give different sequences for all
practical purposes (e.g. use
segments of the full sequence
separated by more than 1018

numbers).

This facility is useful for
performing independent
simulations on a serial
computer, or on each
processor of a parallel
computer.

16

Implementation on the
Fujitsu VP2200/10

A class of generalized
Fibonacci RNGs has been
implemented on ANU’s
VP2200. Statistical properties
are good. The lags r and s are
automatically selected,
depending on the size of
workspace provided by the
user. The implementation uses
floating-point arithmetic (56-bit
fraction).

The period is between 1054 and
1013411 (depending on r).



17

Speed of our
Implementation

Provided batches of several
hundred random numbers
are generated at once (so
vectorization is effective)
each random number requires
about 2.21 machine cycles6.

Thus, we can generate more
than 140 million uniformly
distributed random numbers
per second.

6
�
Here a machine cycle is

3.2 nanoseconds.

18

Conclusions

• The class of generalized
Fibonacci RNGs is attractive
for vector and parallel
computers because of the
potential for speed, long
period, and good statistical
properties.

• Our implementation on the
Fujitsu VP2200/10 at ANU
satisfies the requirements
(uniformity, independence,
repeatability, ...) mentioned
earlier for a good library RNG.


