
Uniform Random Number Generators for

Vector and Parallel Computers∗

Richard P. Brent
Computer Sciences Laboratory
Australian National University

Canberra, ACT 0200
rpb@cslab.anu.edu.au

Report TR-CS-92-02
March 1992

Abstract

We consider the requirements for uniform pseudo-random number generators on modern
vector and parallel machines; consider the pros and cons of various popular classes of methods
and some new methods; and outline what is currently available. We then make a proposal
for a class of random number generators which have good statistical properties and can
be implemented efficiently on vector processors and parallel machines. A proposal regarding
initialization of these generators is made. We also discuss the results of a trial implementation
on a Fujitsu VP 2200/10 vector processor.

1 Introduction – Requirements

Pseudo-random numbers have been used in Monte Carlo calculations [1, 15, 25, 29] since the
pioneering days of Von Neumann [28]. With the increasing speed of vector processors and parallel
computers, considerable attention must be paid to the quality of random number generators
available in subroutine libraries. A program running on a supercomputer might use 108 random
numbers per second over a period of many hours (or months in the case of QCD calculations),
so 1012 or more random numbers might contribute to the result. Small correlations or other
deficiencies in the random number generator could easily lead to spurious effects and invalidate
the results of the computation.

Applications require random numbers with various distributions (e.g. normal, exponential,
Poisson, . . .) but the algorithms used to generate these random numbers almost invariably
require a good uniform random number generator – see for example [2, 16, 32]. In this report
we consider only the generation of uniformly distributed numbers. Usually we are concerned
with real numbers un which are intended to be uniformly distributed on the interval [0, 1].
Sometimes it is convenient to consider integers Un in some range 0 ≤ Un < m. In this case we
require un = Un/m to be (approximately) uniformly distributed.

Pseudo-random numbers generated in a deterministic fashion on a digital computer can not
be truly random. What is required is that finite segments of the sequence u0, u1, · · · behave in
a manner indistinguishable from a truly random sequence. In practice, this means that they
pass all statistical tests which are relevant to the problem at hand. Since the problems to
which a library routine will be applied are not known in advance, random number generators in
subroutine libraries should pass a number of stringent statistical tests (and not fail any) before
being released for general use.

∗Copyright c© 1992, R. P. Brent. rpb132tr typset using LATEX

A sequence u0, u1, · · · depending on a finite state must eventually be periodic, i.e. there is a
positive integer p such that un+p = un for all sufficiently large n. The minimal such p is called
the period.

Following are some of the more important requirements for a good pseudo-random number
generator and its implementation in a subroutine library –

• Uniformity. The sequence of random numbers should pass statistical tests for uniformity
of distribution. In one dimension this is easy to achieve. Most generators in common
use are provably uniform (apart from discretization due to the finite wordlength) when
considered over their full period.

• Independence. Subsequences of the full sequence u0, u1, · · · should be independent. For
example, members of the even subsequence u0, u2, u4, · · · should be independent of their
odd neighbours u1, u3, · · ·. This implies that the sequence of pairs (u2n, u2n+1) should
be uniformly distributed in the unit square. More generally, random numbers are often
used to sample a d-dimensional space, so the sequence of d-tuples (udn, udn+1, . . . , udn+d−1)
should be uniformly distributed in the d-dimensional cube [0, 1]d for all “reasonable” values
of d (certainly for all d ≤ 6).

• Long Period. As mentioned above, a simulation might use 1012 random numbers. In such
a case the period p must exceed 1012. (Note that 232 < 1012.) For many generators there
are strong correlations between u0, u1, · · · and um, um+1, · · ·, where m = p/2 or (p + 1)/2
(and similarly for other simple fractions of the period). Thus, in practice the period should
be much larger than the number of random numbers which will ever be used.

• Repeatability. For testing and development it is useful to be able to repeat a run with
exactly the same sequence of random numbers as was used in an earlier run [15]. This
is usually easy if the sequence is restarted from the beginning (u0). It may not be so
easy if the sequence is to be restarted from some other value, say um for a large integer
m, because this requires saving the state information associated with the random number
generator.

• Portability. Again, for testing and development purposes, it is useful to be able to generate
exactly the same sequence of random numbers on two different machines, possibly with
different wordlengths. In practice it will be expensive to simulate a long wordlength on a
machine with a short wordlength, but the converse should be easy – a machine with a long
wordlength (say w = 64) should be able to simulate a machine with a smaller wordlength
(say w = 32) without loss of efficiency.

• Disjoint Subsequences. If a simulation is to be run on a machine with several proces-
sors, or if a large simulation is to be performed on several independent machines, it is
essential to ensure that the sequences of random numbers used by each processor are dis-
joint. Two methods of subdivision are commonly used [18]. Suppose, for example, that
we require 4 disjoint subsequences for a machine with 4 processors. One processor could
use the subsequence (u0, u4, u8, · · ·), another the subsequence (u1, u5, u9, · · ·), etc. For ef-
ficiency each processor should be able to “skip over” the terms which it does not require.
Alternatively, processor j could use the subsequence (umj , umj+1, · · ·), where the indices
m0, m1, m2, m3 are sufficiently widely separated that the (finite) subsequences do not over-
lap. This requires some efficient method of generating um for large m without generating
all the intermediate values u1, . . . , um−1.

2

• Efficiency. It should be possible to implement the method efficiently so that only a few
arithmetic operations are required to generate each random number, all vector/parallel
capabilities of the machine are used, and overheads such as those for subroutine calls
are minimal. This implies that the random number routine should return an array of
(optionally) several numbers at a time, not just one.

In Sections 2 and 3 we outline some popular classes of random number generators, and
consider to what extent they pass or fail our requirements. Then, in Section 4 we comment
on various implementations. In Section 5 we consider which algorithms are suitable for vector
and/or parallel machines, and in Section 6 we discuss the specific requirements for several
classes of machines (“Von Neumann”, vector, MIMD, SIMD, . . .). More detailed comments on
a vectorized implementation are given in Section 7.

The important (but often neglected) topic of how to initialize generators is discussed in
Section 8. Some comments on the user interface and choice of parameters are given in Section 9.

2 Linear congruential generators

Linear congruential generators were introduced by D. H. Lehmer in 1948 and are still probably
the most popular class of generators. An integer sequence (Un) is defined by an initial value U0

(the “seed”) and the recurrence

Un+1 = (aUn + c) mod m

where m > 0 is the “modulus”, a is the “multiplier” (0 < a < m), and c is an additive constant.
Often the modulus m is chosen to be a power of 2, say m = 2w where w is close to the

integer wordlength. In this case it is possible to achieve a full period p = m (provided c is odd
and 4|(a− 1)). This does not guarantee a good generator – consider the trivial case a = c = 1.

When m is a power of two the low-order bits of Un do not behave randomly – in fact the
low order k bits cycle with a period at most 2k. This should be enough to make us suspicious
of such generators! However, there is hope that the high-order bits behave randomly, so the
normalized sequence

un = Un/m

may be usable as a source of pseudo-random numbers in [0, 1].
To avoid the problem of nonrandomness of low-order bits, the modulus m is sometimes

chosen to be a prime number. For example, on a 32-bit machine we could take m = 231 − 1 or
m = 232 − 5. Provided U0 6= 0 and a is a primitive root mod m, it is possible to obtain period
p = m − 1, even if c = 0. It is sometimes convenient that an exact zero does not occur in the
sequence.

There is much theory regarding the best choice of multiplier a for linear congruential genera-
tors [16, 30], and an exhaustive search has been performed for certain moduli [7]. Marsaglia [19]
pointed out the fundamental weakness of the class of linear congruential generators. If d-tuples
(udn, udn+1, . . . , udn+d−1) of normalized numbers are considered as points in the d-dimensional
unit cube, then these points lie on a small number Nd of hyperplanes, far less than would be
expected of a truly random sequence with discretization error O(2−w). In fact

Nd ≤ (d!m)1/d = O(dm1/d).

For example, with m ≤ 231 and d = 6, Marsaglia’s bound gives Nd ≤ 107.
The reason for such behaviour is intuitively clear. There are 2wd points in the unit d-

cube with coordinates exactly representable as w-bit binary fractions. These points lie on 2w

hyperplanes with separation 2−w. However, a linear congruential generator with period p ≤ 2w

3

can give at most 2w of these points, and it is easy to see that some of these points have a large
separation Ω(2−w/d) from their nearest neighbours.

Although Marsaglia’s result shows that all linear congruential generators perform poorly in
high dimensions, there is still a great difference between the best such generators and generators
with poorly chosen multipliers. For example [7], a generator RANDU with m = 231, a = 65539,
c = 0 was used in the IBM Scientific Subroutine Library on System 360/370 computers for
many years. The multiplier a = 216 + 3 may have been chosen so that multiplication could be
performed by a small number of shifts and adds. However, using the relation

(a− 3)2 = 0 mod m

it is easy to see that
Un+2 − 6Un+1 + 9Un = 0 mod m

and
un+2 − 6un+1 + 9un = 0 mod 1.

This means that 3-tuples generated by RANDU lie on at most 16 planes (separated by distance
118−1/2 ' 0.092) in the unit cube.

Surprisingly, generators almost as bad as RANDU are still in use. The problems apparent
in the choice of multiplier for these generators can be detected using the “Spectral Test” [16] or
by a variety of statistical tests on the distribution of d-tuples, with d ≥ 3 and a sufficiently fine
grid.

3 Generalized Fibonacci generators

The Fibonacci numbers satisfy the recurrence

Fn = Fn−1 + Fn−2.

However, it is easy to see that the corresponding recurrence

un = un−1 + un−2 mod 1

does not give a satisfactory sequence of pseudo-random numbers because the inequality

un−2 < un < un−1

never holds, even though it would hold with probability 1/6 for a random sequence ([16],
ex. 3.2.2.2).

Attempts have been made to generalize the Fibonacci recurrence to obtain “generalized
Fibonacci” or “lagged Fibonacci” random number generators [12, 27, 16, 33]. Marsaglia [20]
considers generators F (r, s, θ) which satisfy

Un = Un−rθUn−s

for fixed “lags” r and s (r > s > 0) and n ≥ r. Here θ is some binary operator, e.g. addition
(mod m), subtraction (mod m), multiplication (mod m) or “exclusive or” (mod m = 2w). We
abbreviate these operators by +,−, ∗ and ⊕ respectively. Generators using ⊕ are also called
“shift register” generators or “Tausworthe” generators [11, 17, 18, 29, 35].

If θ is + or − (mod m) then a theory of generalized Fibonacci generators can be based on
the generating function

G(x) =
∑

Unxn

4

r s r s

127 97 2281 1252
258 175 3217 2641
521 353 4423 3004
607 334 9689 4187
1279 861 19937 10095

23209 13470

Table 1: 3-term generators

which is given by
G(x) = P (x)/Q(x) mod m,

where
Q(x) = 1− (xrθxs)

and P (x) is a polynomial of degree at most r− 1 determined by the initial values U0, . . . , Ur−1.
For example, if m = 2 and the initial values are not all zero, then the sequence has maximal
period 2r − 1 if and only if Q(x) is a primitive polynomial (mod 2). Tables of such primitive
polynomials are available [36, 37]. Verification is particularly simple if r is the exponent of a
Mersenne prime (i.e. 2r − 1 is prime) because then we only need to check that

x = x2r
mod (Q(x), 2)

which can be done by r squarings of polynomials (mod 2), involving a total of only O(r2)
operations [38]. (The more usual formulation in terms of r by r matrices [20, 21] instead of
polynomials is less efficient computationally because matrix multiplication is more expensive
than polynomial multiplication.) The table in [38] is for r ≤ 11213, but we have recently
extended it to r ≤ 23209, which should be sufficient for present purposes. In Table 1 we give
some examples of suitable pairs (r, s). For reasons discussed later, we require 0 < r − s < s.

If m = 2w and the lags r and s are chosen correctly, it is possible to obtain period

p =

2r − 1 if θ = ⊕,
2w−1(2r − 1) if θ = ± mod m,
2w−3(2r − 1) if θ = ∗ mod m.

(The initial values must be odd for θ = ∗, not all even for θ = ±, and not all zero for θ = ⊕.
For precise conditions, see [4, 21].) This shows one advantage of the generalized Fibonacci
generators over linear congruential generators – the period can be made very large by choosing
r large. However, one should refrain from using more than 2r− 1 numbers from such generators
with θ = ±, because Un and Un+p/2k differ in at most k bits (0 < k < w).

Marsaglia [20] reports the results of statistical tests on the generators F (17, 5, θ), F (31, 13, θ)
and F (55, 24, θ). The results for θ = ⊕ are poor – several tests are failed. All tests are passed for
the generators F (607, 273, θ) and F (1279, 418, θ), so the conclusion is that ⊕ generators should
only be used if the lag r is large.

Marsaglia’s results for θ = ± are good with one exception – the generators with r ≤ 55 fail
the “Birthday Spacings” test. This is not surprising because (in the case θ = −) the recurrence

Un = Un−r − Un−s mod m

shows that a small value of Un implies a small difference Un−r − Un−s. The Birthday Spacings
test is designed to test if such small differences occur more (or less) often than they should. If
θ = + a similar argument applies, since

Un−s = Un − Un−r mod m.

5

The conclusion is that these generators are probably acceptable if r and s are sufficiently large
(not necessarily as large as for the ⊕ generators).

Our argument against the simple Fibonacci recurrence also applies to the generalized Fi-
bonacci recurrence

un = un−r ± un−s mod 1,

because not all of the six orderings of (un, un−r, un−s) can occur. A statistical test based on this
fact can easily “fail” any F (r, s,±) generator. Even if r and s are not assumed to be known,
the test can check all possible r and s satisfying 0 < s < r < B say, where B is a prescribed
bound. The storage and number of operations required are of order B2. We call such a test a
“Generalized Triple” test. Clearly the existence of such tests is a reason for choosing a large r.

Empirically, and with some theoretical justification, we have found two ways to improve
the performance of generalized Fibonacci generators on the Birthday Spacings and Generalized
Triple tests. The simplest is to include small odd integer multipliers α and β in the generalized
Fibonacci recurrence, i.e.

Un = αUn−r + βUn−s mod m.

We denote these generators by G(r, s, α, β). The theory goes through with minor modifications.
Note that, because α and β are odd, the values of Un mod 2 are unchanged. By Theorem 2
of [4], the period is 2w−1(2r− 1) if m = 2w, provided the trinomial xr +xs +1 is primitive (mod
2) and U0, . . . , Ur−1 are not all even.

An alternative which avoids difficulties with the Birthday Spacings and Generalized Triple
tests but is almost as fast and easy to implement as the F (r, s,±) generators is to include
another term in the generalized Fibonacci recurrence, i.e.

Un = Un−r ± Un−s ± Un−t mod m,

where r > s > t > 0 are suitably chosen lags. We call such generators “4-term generalized Fi-
bonacci” generators in contrast to the usual 3-term generators, and denote them by F (r, s, t,±).
The generating function for the sequence (Un) is

G(x) = P (x)/Q(x) mod m,

where now
Q(x) = 1− (xr ± xs ± xt).

Clearly x + 1 is a factor of Q(x) (mod 2), so the maximal order when m = 2w is

p = 2w−1(2r−1 − 1).

This is achievable provided the initial values U0, . . . , Ur−1 are neither all even nor all odd, and
Q(x)/(x + 1) is a primitive polynomial (mod 2). It is easy to find such polynomials when r − 1
is the exponent of a Mersenne prime. For ease of implementation we prefer (r, s, t) satisfying
the constraints

0 < s/2 ≤ t < s < r < s + t

Some suitable triples (r, s, t) are given in Table 2.
Where there exist several triples with the same r, we prefer those with s ' ρr, t ' ρ2r,

where ρ = (51/2 − 1)/2 ' 0.618 is the “Golden ratio”.
Marsaglia’s results indicate that generalized Fibonacci generators with θ = ∗ mod m are

acceptable. In fact, these are the only class of generators other than “combination” generators
to pass all his tests. Unfortunately, it is more difficult to implement multiplication (mod m) than
addition/subtraction (mod m) because of the requirement for a double-length product unless m
is small enough for m2 to be representable in single-precision.

6

r s t

32 21 12
62 39 28
90 56 37
128 82 53
522 341 210
608 385 226
1280 802 481
2282 1441 864
3218 1981 1254

Table 2: 4-term generators

4 Comments on some available generators

We have discussed RANDU in the sub-section on linear congruential generators, and shown why
its use is not to be recommended. Even with an improved choice of multiplier, it would suffer
from having a period p = 231 which is far too short. It takes only 49 seconds to run through
the whole period of a similar generator at the actual observed speed of 44 million random
numbers per second on the Fujitsu VP 2200/10 at ANU. Similar comments apply to any linear
congruential generator with modulus representable as a 32-bit integer.

Attempts have been made to improve the statistical properties of linear congruential gener-
ators by shuffling (see [16], page 32). This does usually improve the d-dimensional uniformity
of the output for d > 1, but does little (if anything) to increase the period. Shuffling does
not improve the performance on some statistical tests, e.g. the Birthday Spacings test. Most
important, shuffling is slow and difficult to vectorize, so it is inappropriate to use it on vector
processors.

Instead of shuffling, the output of two generators could be combined by addition (mod 1)
or ⊕. These operations should vectorize, but the combination generator would still be two
to three times slower than a single generator, and the results are not guaranteed to pass all
statistical tests (see comments on the “Super-Duper” generator in the next section). For these
reasons, it seems preferable to use a single (good) generator.

Some generators, especially those based on the linear congruential method with multipliers a
power of two, suffer from poor resolution, because they return only single-precision (32-bit) real
numbers. Since most serious work on vector processors and fast parallel machines use double-
precision (64-bit) real numbers, it is desirable for a library routine to return double-precision
numbers (with the low-order 32 bits not all zero). If N random numbers are used in a simulation,
there is not much point in requiring resolution finer than 1/N . Thus, it may be acceptable for a
small number of the low-order bits (say up to four) to be zero when 64-bit numbers are returned.

The trend appears to be for generalized Fibonacci generators to supplant linear congruential
generators. For example, the recent reviews [1, 15] approve of the generators F (r, s,±) mod 2w,
provided the lags are large. Anderson uses F (607, 273,−) and shows how it can be implemented
efficiently on a vector processor.

Siemens Nixdorf in collaboration with the University of Karlsruhe have implemented a pack-
age of random number generators (RAND/VP). Our present (limited) information [13] is that
the generators are adapted from the generator UNI of [23], which is based on the generalized
Fibonacci generator F (97, 33,−). Marsaglia [22] now prefers his VLP generators (described
below).

The algorithm used in RAND/VP “has been modified to generate several streams of random

7

numbers in parallel” [13]. Presumably this means that the recurrence

un = un−97 − un−33 mod 1

is applied to vectors of length v > 1 rather than to single real numbers un. This is equivalent to
using the generator F (97v, 33v,−). As far as the statistical properties are concerned, it would
be better to use a single generalized Fibonacci generator F (r, s,−) with lags 0 < s < r ' 97v
chosen to give maximal period. As we outline below, it is possible to vectorize the generation
of a single stream of random numbers.

In his recent papers [22, 24] Marsaglia recommends a new class of generators, termed “very
long period” (VLP) generators. These are similar to generalized Fibonacci generators but can
achieve periods close to 2rw, whereas the generalized Fibonacci generators can “only” achieve
period O(2r+w). Our tests indicate that the VLP generators perform almost as badly on the
Birthday Spacings test as the generalized Fibonacci generators using addition/subtraction. Per-
haps this is why Marsaglia recommends combining them with a different class of generator [22].
In any event, the VLP generators require the computation of a “carry” or “borrow” which
propagates to the next term in the sequence. This dependence causes a problem on vector pro-
cessors. Although it is possible to vectorize each carry/borrow propagation step, the number of
operations required in the inner loop is significantly greater than for the generalized Fibonacci
generators.

5 Suggested vector and parallel algorithms

In this subsection we consider which classes of random number generators are suitable for im-
plementation on vector processors and/or parallel machines.

Linear congruential generators of the form

Un+1 = (aUn + c) mod m

can be implemented efficiently on a parallel machine with k processors or a vector processor
with vector registers of length k, using the relations

Un = anU0 +
(

an − 1
a− 1

)
c mod m

and

Uk(n+1) = akUkn +

(
ak − 1
a− 1

)
c mod m.

Note that an mod m can be computed in O(log n) operations using the binary representation of
n [16].

Despite the possibility of efficient implementation, linear congruential generators are not
recommended because of their poor d-dimensional distribution (for d > 1) and small periods.
Note that even when the multiplier a is chosen to pass the Spectral Test, the multiplier ak which
is effectively being used to produce each k-th term in the sequence may fail (in fact this is sure
to happen for some values of k).

The statistical properties of generators can be improved by combining two or more indepen-
dent generators, using ± (mod m), ⊕, or shuffling. If generators with relatively prime periods
p1 and p2 are combined, the period of the combined generator is generally p1p2.

Combination generators are not recommended because they are slow – usually two to three
times slower than the component generators. Also, they are not guaranteed to have good
statistical properties. For example, Marsaglia’s “Super-Duper” combination generator, which

8

combines a linear congruential generator and a shift register generator, fails the MTUPLE test
on substrings of low order bits [20].

Generalized Fibonacci generators can be implemented efficiently on vector/parallel ma-
chines [1, 29]. The Tausworthe/shift register generators must be treated with suspicion because
of their poor statistical properties for small and moderate lags [20]. Presumably the discrepancy
between their behaviour and ideal behaviour is a decreasing function of the lag r, so they pass
standard tests if r is sufficiently large, but for any fixed r they would probably fail a sufficiently
stringent test. This may or may not be relevant in a particular application, but it is hardly
acceptable for a library routine.

Generalized Fibonacci generators F (r, s, ∗) based on multiplication (mod 2w) pass all of
Marsaglia’s tests [20] (w is not specified, but presumably is at least 16). The problem with these
generators is that they are difficult to implement without double-precision multiplication if w
exceeds half the word-length. For example, to obtain 56-bit fractions (w = 56) would require the
multiplication of 56-bit integers mod 256. A library routine should have close to the maximum
precision allowed by the hardware, so returning a “random” number whose low-order bits are
all zero is unacceptable.

Generalized Fibonacci generators F (r, s,±) based on addition or subtraction (mod 2w) are
well-suited to vector and parallel machines. The lag r should be chosen large enough that the
Birthday Spacings test is passed. Preliminary tests indicate that r > 100 is satisfactory. This is
not a serious constraint because it is desirable to choose a large r to give long vector lengths and
a long period. The second lag s should not be either too small or too close to r. We recommend
s ' ρr, where ρ = 0.618 · · · is the golden ratio, subject to the constraint that the polynomial
xr +xs +1 is primitive (mod 2) so the period is at least 2r−1. Some pairs (r, s) are given above
in Table 1.

A nice feature of the generalized Fibonacci generators F (r, s,±) is that they can be imple-
mented in floating-point arithmetic without conversion from integer to floating-point (see [16],
page 27). This may give higher speed than competing methods, and also allows the genera-
tion of full (or almost full)-precision numbers. For example, on a machine with 32-bit integer
arithmetic and 56-bit floating-point fractions, it is possible to generate random numbers with
all 56 bits nonzero and random. (The idea is to use floating-point numbers to represent integers
scaled by 2−56 and ensure that all floating-point additions/subtractions are exact.) Despite this
observation, the fastest implementation on machines with fast floating-point hardware may well
be to use the hardware integer ↔ real instructions to obtain the fractional parts of numbers (or
vectors of numbers). This especially likely to be true if multipliers α, β other than ±1 are used.

At some cost in performance any worries about the Birthday Spacings test can be avoided by
using a 4-term (rather than the usual 3-term) recurrence, or by using a 3-term recurrence with
odd integer multipliers α, β > 1 (see above). There is some performance penalty. For example,
our implementation on the Fujitsu VP 2200 indicates that the loss of performance is 26 percent
for the 4-term recurrence, and 23 percent for the 3-term recurrence with non-unit multipliers.

6 Architectural considerations

In this section we consider the implementation of the generalized Fibonacci method F (r, s, +)
on the following classes of machines –

1. Single-processor “Von Neumann” machines, e.g. IBM PC, Sun Sparcstation, . . .

2. Vector processors, e.g. Cray 1/2 or Fujitsu VP series.

3. Local-memory MIMD multiprocessor, e.g. Fujitsu AP 1000.

4. Shared-memory SIMD multiprocessor, e.g. Connection Machine (CM 2).

9

On a single-processor “Von Neumann” machines there is little justification for using the
larger values of r given in Table 1. Probably r ≤ 1279 is sufficient. Large values of r require cor-
respondingly large arrays, which may be a problem on machines such as IBM PCs. Performance
for large r may also be degraded because of an increase in cache misses.

On a vector processor we can assume that ample memory is available, even for the largest
r given in Table 1. We certainly should use r large enough that vector operations on vectors
of length s and r − s can be performed efficiently. Comments based on our experience in
implementing the generalized Fibonacci methods on the Fujitsu VP 2200 are given in Section 7.

On a local-memory MIMD multiprocessor such as the Fujitsu AP 1000, the comments regard-
ing implementation on single-processor “Von Neumann” machines apply, because each processor
is such a machine. (If each processor has a vector unit and sufficient memory, as on the CM 5,
then the comments on vector processors apply.) Our initialization scheme (Section 8) ensures
that different random sequences will be generated in each processor provided that each processor
uses a different seed. Thus, it might be wise for the initialization routine to append the processor
ID to the user-supplied seed. For example, on the AP 1000, with a maximum of 1024 processors
(also called “cells”), the seed on processor cid might be 1024*useed + cid, where useed is the
seed supplied by the user (0 < useed < 221).

On a shared-memory SIMD multiprocessor such as the Connection Machine (CM 1 or CM 2),
with a large number (say P) of relatively slow processors, it is not appropriate for each processor
to generate an independent segment of the sequence (un). This would require total memory of
order Pr words. It is better to group the processors in sets of some moderate size (say 256 for
the sake of example). The processors in each set can cooperatively generate a single segment
of the sequence (un), with each processor generating each 256-th number in the sequence. This
scheme can be implemented efficiently provided s ≥ 256, and the total memory requirement is
only of order Pr/256 words. (We can think of each set of 256 processors as emulating a single
vector processor, and operating on vectors of length 256.)

7 Vectorization

In this section we consider in more detail the implementation of a generalized Fibonacci generator
on a vector processor, using our experience in implementing such a generator on the Fujitsu
VP 2200.

The usual implementation of generalized Fibonacci generators involves a ring buffer of length
at least r (the larger lag). This is inconvenient on a vector processor, but can be avoided in
several ways. One way is described in Anderson’s review [1]. We have implemented another
idea which is more efficient because it involves less copying. We have also removed Anderson’s
restriction on the number of random numbers which may be returned on each call of the library
routine.

Although it is clear in principle that the inner loops of the implementation should vectorize,
some care has to be taken to avoid dependencies which would inhibit vectorization. For example,
the recurrence

un = un−r + un−s mod 1

can be vectorized without difficulty in a loop whose repeat count is at most min(r, s). In our
implementation we have found that it is convenient to assume that r − s < s < r (which is
not a serious constraint, since we can always replace s by r − s). For good vector performance,
min(s, r − s) should not be too small.

In our implementation the user asks for any positive number (say N) of random numbers,
and provides a buffer BUF of size at least N words. We also maintain an array WORK of size r, not
accessed directly by the user, and the index of the last word used in WORK. There are essentially
two cases –

10

1. N < 2r. Copy previously-generated numbers from WORK to BUF. Generate batches of r
numbers directly in WORK as required. Each batch can be generated with two vectorizable
loops (generating s and r − s numbers).

2. N ≥ 2r. To avoid the copying overhead implicit in case 1, generate numbers directly in
BUF. For the first r numbers this requires access to WORK, but once the first r numbers
are in BUF, batches of s numbers can be generated using a vectorizable loop. The last r
numbers must be copied into WORK for use on the next call, as it is not assumed that BUF
is preserved between calls.

Logically, case 2 is superfluous, but it is important if the best performance is to be obtained on
machines for which arithmetic is as fast as (or faster than) memory access.

There is a question as to the best way to code the “mod 1” operation in Fortran or C. For
example, in Fortran we could use

X(N) = X(N) - INT(X(N))

if it is known that X(N) ≥ 0, or

IF (X(N) .GE. 1D0) X(N) = X(N) - 1D0

if it is known that 0 ≤ X(N) < 2. On the VP 2200 both forms vectorize, but the first is faster
because it avoids the need for masked operations. It is also more general, because if applies even
if X(N) ≥ 2 (which may be the case if α > 1 or β > 1). Note that both forms need modification
if α < 0 or β < 0 – in this case we would have to use something like

X(N) = X(N) + BIAS - INT(X(N) + BIAS)

where BIAS ≥ max(|α|, |β|, |α + β|), or possibly

IF (X(N) .LT. 0D0) X(N) = X(N) + 1D0

if (α, β) = (1,−1) or (−1, 1).
Care has to be taken in the initialization and choice of w because of the possible loss of the

least significant bit(s) when an intermediate result is greater than 1. (It is possible to avoid
losing any bits, but only with a significant performance penalty.) With the moderate restriction

|α|+ |β| ≤ 16,

a straightforward implementation loses only 4 bits (one hex digit), which seems acceptable. In
order to preserve the theory, which assumes exact arithmetic, the initialization routine should
ensure that the bits which could be lost due to rounding errors are always zero. For example,
on a machine with a 56-bit fraction and |α| + |β| ≤ 16, only the leading 52 bits in the fraction
should be set by the initialization routine. This amounts to using w = 52 rather than w = 56.

The results of some experiments on the Fujitsu VP 2200/10 at ANU are summarised in
Table 3. In order to understand their significance, it is necessary to know that the VP 2200/10
has two load/store pipes which communicate between memory and the vector registers. Each
pipe can load or store one 64-bit word per cycle. There is a vector unit with two multiply/add
pipelines, so potentially two multiplies and two adds can be performed each cycle. In Table 3,
“cycles” is the number of clock cycles per random number generated, using large lags r and s.
The results show that we save about 0.6 cycles per number by persuading the compiler to use
both load/store pipes (otherwise memory bandwidth is halved) and another 0.4 cycles if one of
the multipliers α, β is 1. Performance is no better if α = β = 1 than if α = 1, β > 1 because one

11

α Terms Pipes Loops Cycles
α > 1 3 1 normal 3.32
α > 1 3 2 normal 2.71
α > 1 3 2 unrolled 2.71
α = 1 3 2 normal 2.31
α = 1 3 2 unrolled 2.21
α = 1 4 2 unrolled 2.78

Table 3: Cycles per random number on the VP 2200/10

multiplication instruction is “free”, using a vector instruction which performs a multiplication
and addition. Loop unrolling saves another 0.1 cycles if α = 1 but not if α > 1, β > 1.

At 2.21 cycles per number we can generate 114 million numbers per second (at the current
clock speed of 4 nsec on the Fujitsu VP 2200/10 at ANU). This is about 2.6 times faster than a
vectorized implementation of the linear congruential method (with multiplier 231) and 34 times
faster than a method which shuffles the output of a linear congruential generator.

The number of cycles per number for the 4-term recurrence method is about 0.6 more than
for the corresponding 3-term recurrence method. In this case loop unrolling is worthwhile and
up to two multiplications are “free”.

The computations required during initialization (decribed in the next section) can be vec-
torized without difficulty.

8 Initialization

For both the 3-term and 4-term generalized Fibonacci methods, an important aspect is the
initialization of U0, . . . , Ur−1. This is often done using another generator, e.g. a linear conguential
generator. However, this introduces a source of confusion, loss of portability, and possible
statistical problems. It seems better to avoid the use of any other generator. We outline how
this may be done, and how the requirements given in Section 1 can be satisfied.

The idea is that the user will provide a single-precision integer seed, and the initialization
will guarantee that any two different seeds will give non-overlapping (sub-)sequences for all
practical purposes. On a parallel machine, different processors need only ensure that they use
different seeds. The key point is that the least significant bits satisfy a recurrence mod 2, and by
polynomial squaring we can efficiently “skip” along the sequence of least significant bits. If the
least significant bits in two subsequences differ, then because of carries the higher bits are also
sure to differ. Our implementation of the 3-term method has r > 90 and skips past seed× 260

elements of the sequence, so subsequences of 260 > 1018 elements are guaranteed to be different
so long as they are initiated with different seeds.

To be more specific, consider the three-term generator

Un = αUn−r + βUn−s mod 2w, (1)

where α and β are odd. (In practice, we work with un = Un/2w, but this makes no essential
difference.) The least-significant bits xn = Un mod 2 satisfy the recurrence

xn = xn−r + xn−s mod 2. (2)

We assume that at least one of U0, . . . , Ur−1 is odd, so at least one of x0, . . . , xr−1 is nonzero.
For simplicity we may as well assume that

x0 = 1, x1 = · · · = xr−1 = 0.

12

Let
Q(t) = tr − tr−s − 1.

From the theory of linear recurrences (mod 2) [4, 11], if

tn =
r−1∑
j=0

an,jt
j mod (2, Q(t)),

then

xn =
r−1∑
j=0

an,0xj mod 2.

Suppose we want to “skip” to xn, where n is large, so we do not want to generate all of the
intervening sequence. We can compute tn mod (2, Q(t)) in O(log n) steps using the “binary
method” (see [16], Sec. 4.6.3). Arithmetic on the coefficients is always performed mod 2, and at
each step a reduction mod Q(t) is performed. Because Q(t) is a trinomial, squaring (mod 2) and
reduction take only O(r) operations, so xn can be computed with O(r log n) operations. The
working space required is only about 2r bits.

To start generating the sequence from index n we need not only xn but also xn+1, . . . , xn+r−1.
To obtain these we may compute tn, tn+1, . . . , tn+r−1 mod (2, Q(t)) or, perhaps simpler, compute
xr, . . . , x2r−2 from the recurrence (2) and use

xn+k =
r−1∑
j=0

an,0xj+k mod 2

for k = 0, . . . , r − 1.
Assuming, as above, that no more than 260 consecutive random numbers will be required,

we take
n = 260seed

and generate xn, . . . , xn+r−1 as described. Now use these values as starting values for a sequence
satisfying the recurrence (1). Because the last bits differ (for at least 260 terms) from those
obtained from any other seed, the “disjoint subsequence” requirement of Section 1 is satisfied.

In practice it is unsatisfactory to use the first few numbers generated in this way, because
only their low order bits are nonzero (recall that un = Un/2w). We need to generate O(rw)
numbers, using the recurrence (1), and discard them. The following adaptive scheme takes a
negligible amount of time and appears to be satisfactory: generate batches of r numbers (say
v0, . . . , vr−1) until 10v0 > 1 and 10r min(v0, . . . , vr−1) > 1; then generate and discard 10 more
batches of r numbers.

9 The user interface

The implementor has to decide on the best form of library routine(s) to implement the general-
ized Fibonacci method. Some questions are –

1. Should separate double-precision, single-precision and integer routines be provided (as in
RAND/VP), or just double-precision ? Our opinion is that double-precision is sufficient,
for the user can easily convert from double to single or integer if necessary. The small cost
in performance and space is probably outweighed by the gain in having to document and
maintain only one routine.

13

2. Should the parameters r, s, α, β be predetermined or should the user have some choice ?
There is a tradeoff here between simplicity and flexibility. Also, while a large r is recom-
mended for extensive Monte Carlo work, a small r requires less space and initialization
overhead. In our implementation, the user can vary one free parameter which is easy to
understand – the size of the work area. The user provides the work area and the random
number generator determines a sensible choice of r, s, α and β depending on the size of
the work area. The library routine sets α > 1 for best statistical properties if r is small,
but α = 1 to obtain the highest possible speed if r > 1000. (Since the statistical properties
of the generators improve as r is increased, there seems little point in slowing them down
by using α > 1 when r is very large.) With this scheme, the user can “taylor” the random
number generator to suit the requirements of the problem, without having to be concerned
with the details of the implementation.

10 Conclusion

We have considered the requirements for uniform pseudo-random number generators on modern
vector and parallel machines, and considered the advantages and disadvantages of various popu-
lar classes of methods, including linear congruential and generalized Fibonacci. We have argued
that generalized Fibonacci generators (with a suitable choice of parameters) have good statis-
tical properties and can be implemented efficiently on vector processors and parallel machines.
A good scheme for the initialization of these generators has been outlined, and the results of an
implementation on a Fujitsu VP 2200/10 vector processor have been described. Our implementa-
tion appears to satisfy the requirements of uniformity, independence, long period, repeatability,
portability, disjoint subsequences for different seeds, and efficiency.

Acknowledgements

This work was supported in part by the Fujitsu-ANU research agreement. Thanks are due
to Dr A. Cleary, Dr R. Gingold, Dr M. Hegland and Dr P. Price for their assistance. The ANU
Supercomputer Facility provided time on the VP 2200/10 for the development and testing of our
implementation, and also for the discovery of the two new primitive trinomials given in Table 1.

References

[1] S. L. Anderson, “Random number generators on vector supercomputers and other advanced
architectures”, SIAM Review 32 (1990), 221-251.

[2] R. P. Brent, “Algorithm 488: A Gaussian pseudo-random number generator (G5)”, Com-
munications of the ACM 17 (1974), 704-706.

[3] R. P. Brent (editor), CAP Workshop 1991 – Proceedings of the Second Fujitsu-ANU CAP
Workshop, Australian National University, Canberra, November 1991.

[4] R. P. Brent, On the Periods of Generalized Fibonacci Recurrences, Technical Report TR-
CS-92-03, Computer Sciences Laboratory, ANU, March 1992.

[5] H. S. Bright and R. L. Enison, “Quasi-random number sequences from a long-period TLP
generator with remarks on application to cryptography”, Computing Surveys 11 (1979),
357-370.

[6] P. L’Ecuyer, “Efficient and portable combined random number generators”, Communica-
tions of the ACM 31 (1988), 742.

14

[7] G. S. Fishman and L. R. Moore, “An exhaustive analysis of multiplicative conguential
random number generators with modulus 231−1 ”, SIAM J. Sci. Stat. Computing 7 (1986),
24-45.

[8] P. Frederickson, R. Hiromoto, T. L. Jordan, B. Smith and T. Warnock, “Pseudo-random
trees in Monte Carlo”, Parallel Computing 1 (1984), 175-180.

[9] P. Frederickson, R. Hiromoto and J. Larson, “A parallel Monte Carlo transport algorithm
using a pseudo-random tree to guarantee reproducibility”, Parallel Computing 4 (1987),
281-290.

[10] M. Fushimi and S. Tezuka, “The k-distribution of generalized feedback shift-register pseu-
dorandom numbers”, Communications of the ACM 26 (1983), 516-523.

[11] S. W. Golomb, Shift Register Sequences, Holden-Day, San Francisco, 1967, Sections 2.5
and 3.4.

[12] B. F. Green, J. E. K. Smith and L. Klem, “Empirical tests of an additive random number
generator”, J. ACM 6 (1959), 527-537.

[13] O. Haan, RAND/VP Users Guide, Siemens Nixdorf, Munich, 1992.

[14] D. W. Heermann and A. N. Burkitt, “Parallelization of the Ising model and its performance
evaluation”, Parallel Computing 13 (1990), 345-357.

[15] F. James, “A review of pseudorandom number generators”, Computer Physics Communi-
cations 60 (1990), 329-344.

[16] D. E. Knuth, The Art of Computer Programming, Volume 2: Seminumerical Algorithms
(second edition), Addison-Wesley, Menlo Park, 1981.

[17] T. G. Lewis and W. H. Payne, “Generalized feedback shift register pseudorandom number
algorithm”, J. of the ACM 20 (1973), 456-468.

[18] J. Makino and O. Miyamura, “Generation of shift register random numbers on vector
processors”, Computer Physics Communications 64 (1991), 363-368.

[19] G. Marsaglia, “Random numbers fall mainly on the planes”, Proc. Nat. Acad. Sci. USA 61,
1 (1968), 25-28.

[20] G. Marsaglia, “A current view of random number generators”, Computer Science and Statis-
tics: The Interface (edited by L. Billard), Elsevier Science Publishers B. V. (North-Holland),
1985, 3-10.

[21] G. Marsaglia and L. H. Tsay, “Matrices and the structure of random number sequences”,
Linear Algebra and Applications 67 (1985) 147-156.

[22] G. Marsaglia, B. Narasimhan and A. Zarif, “A random number generator for PC’s”, Com-
puter Physics Communications 60 (1990), 345-349.

[23] G. Marsaglia, A. Zaman and W. W. Tsang, “Toward a universal random number generator”,
Statist. Probab. Lett. 9 (1990), 35-39.

[24] G. Marsaglia and A. Zaman, “A new class of random number generators”, The Annals of
Applied Probability 1 (1991), 462-480.

15

[25] T. Matsuura, S. Ichikawa, Y. Watase and M. Ikesaka, “Parallelizing the high energy physics
experimental program”, Proc. First Fujitsu-ANU CAP Workshop, Fujitsu Laboratories,
Kawasaki, 1990.

[26] A. De Mattheis and S. Pagnutti, “A class of parallel random number generators”, Parallel
Computing 13 (1990), 193-198.

[27] G. J. Mitchell and D. P. Moore, Unpublished, 1958 (cited in [16], 26).

[28] J. von Neumann, “Various techniques used in connection with random digits”, The Monte
Carlo Method, National Bureau of Standards (USA) Applied Mathematics Series 12 (1951),
36.

[29] M. Okuda, M. Fujisaki, K. Watanabe, A. Kawazoe, M. Yokokawa, H. Yamamota, H. Kabu-
raki, S. Inawashiro and F. Matsubara, “Particle simulations using Monte Carlo method”,
In [3], V-1–V-12.

[30] S. K. Park and K. W. Miller, “Random number generators: good ones are hard to find”,
Communications of the ACM 31 (1988) 1192-1201.

[31] G. E. Percus and M. H. Kalos, “Random number generators for MIMD parallel processors”,
J. Parallel and Distributed Computing 6 (1989), 477-497.

[32] W. P. Petersen, “Some vectorized random number generators for uniform, normal, and
Poisson distributions for CRAY X-MP”, J. Supercomputing 1 (1988), 327-335.

[33] J. F. Reiser, Analysis of Additive Random Number Generators, Ph. D. thesis and Technical
Report STAN-CS-77-601, Stanford University, 1977.

[34] M. Takano, F. Masukawa, Y. Naito, A. Kawazoe and M. Okuda, “Parallelization of Monte
Carlo code MCACE for shielding analysis and measurement of parallel efficiency on AP-
1000 with 64 cell processors”, In [3], M-1–M-8.

[35] R. C. Tausworthe, “Random numbers generated by linear recurrence modulo two”, Math-
ematics of Computation 19 (1965), 201-209.

[36] N. Zierler and J. Brillhart, “On primitive trinomials (mod 2)”, Information and Control 13
(1968), 541-554.

[37] N. Zierler and J. Brillhart, “On primitive trinomials (mod 2), II”, Information and Control
14 (1969), 566-569.

[38] N. Zierler, “Primitive trinomials whose degree is a Mersenne exponent”, Information and
Control 15 (1969), 67-69.

16

