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Abstract

We give a simple condition for a linear recurrence (mod 2%) of degree r to have the
maximal possible period 2¥~1(2" — 1). Tt follows that the period is maximal in the cases
of interest for pseudo-random number generation, i.e. for 3-term linear recurrences defined
by trinomials which are primitive (mod 2) and of degree r > 2. We consider the enumera-
tion of certain exceptional polynomials which do not give maximal period, and list all such
polynomials of degree less than 15.

1 Introduction
The Fibonacci numbers satisfy a linear recurrence
F,=F, 1+ F, ».
Generalized Fibonacci recurrences of the form
Ty = *tXp_s * Tper mod 2% (1)

are of interest because they are often used to generate pseudo-random numbers [1, 5, 6, 11, 13,
17]. We assume throughout that xg,...,z,_1 are given and not all even, and w > 0 is a fixed
exponent. Usually w is close to the wordlength of the (binary) computer used.

Apart from computational convenience, there is no reason to restrict attention to 3-term
recurrences of the special form (1). Thus, we consider a general linear recurrence

QoTn + Q1 Tn+1+ -+ @GTnsr =0 mod 2% (2)

defined by a polynomial

Q) =q +aqt+ ... +gt" (3)
of degree r > 0. We assume throughout that g and ¢, are odd. ¢y odd implies that the sequence
(z,) is reversible, i.e. x, is uniquely defined (mod 2*) by Zp41,- .., ZTp+r. Thus, (z,) is purely

periodic [19].
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In the following we often work in a ring Z,,[t]/Q(t) of polynomials (mod @) whose coefficients
are regarded as elements of Z,,, (the ring of integers mod m). For relations A = B in Z,,[t]/Q(t)
we use the notation

A=B mod (m, Q).

It may be shown by induction on n that if a,,...,an,—1 are defined by
r—1 )
=Yt mod (2°Q(1)) (4)
=0
then
r—1
Ty = Z Qn,jT;j mod 2%. (5)
§=0

Also, the generating function

G(t) =) zut" (6)

n>0

is given by

G(t) = mod 2, (7)

where

k=0 \j=0

r—1 k
P(t) =" (Z qr+j—k$j) t*
is a polynomial of degree less than r, and
Q) =t"Q(L/t) = got" + qut" " + ... + g

is the reverse of Q. In the literature, Q(t) is sometimes called the characteristic polynomial [4]
or the associated polynomial [19] of the sequence. The use of generating functions is convenient
and has been adopted by many earlier authors (e.g. Schur [15]). Ward [19] does not explicitly
use generating functions, but his polynomial U is the same as our Q, and many of his results
could be obtained via generating functions.

Let p,, be the period of ¢ under multiplication mod (2%, Q(t)), i.e. py, is the least positive
integer p such that

=1 mod (2%, Q(t)).

In the literature, p,, is sometimes called the principal period [19] of the linear recurrence, some-
times simply the period [4]. For brevity we define A = p;.

An irreducible polynomial in Z[t] is a factor of t* —t (see e.g. [18]), so A|2" — 1. We say
that Q(t) is primitive (mod 2) if A = 2" — 1. Note that primitivity is a stronger condition
than irreducibility?, i.e. Q(t) primitive implies that @Q(t) is irreducible, but the converse is
not generally true unless 2" — 1 is prime3. Tables of irreducible and primitive trinomials are
available [4, 10, 14, 16, 20, 22, 23, 24, 25).

In the following we usually assume that () is irreducible. Our assumption that go and g,
are odd excludes the trivial case Q(t) = t, and implies that Q(t) is irreducible (or primitive) of
degree 7 iff the same is true of Q(¢).

We are interested in the period p,, of the sequence (zy,), i.e. the minimal positive p such that

Tptp = Tp (8)

2For brevity we usually omit the “(mod 2)” when saying that a polynomial is irreducible or primitive. Thus
“Q(t) is irreducible (resp. primitive)” means that Q(¢) mod 2 is irreducible (resp. primitive) in Z[t].

3For example, the polynomial 1+ ¢+ t2 +¢* +¢° is irreducible, but not primitive, since it has A = 21 < 26 — 1.



for all sufficiently large n. In fact, because of the reversibility of the sequence, (8) should hold
for all n > 0. The period is sometimes called the characteristic number of the sequence [19].
In general the period depends on the initial values zg, ..., x,—_1, but under our assumptions the
period depends only on Q(t), in fact p, = py (see Lemma 2).
It is known [7, 12, 19] that
P < 2w—1)\

with equality holding for all w > 0 iff it holds for w = 3. The main aim of this paper is to give
a simple necessary and sufficient condition for

Ppw =2V (9)

The result is stated in Theorem 2 in terms of a simple condition which we call “Condition S”
(see Section 2). In Theorem 3 we deduce that the period is maximal if Q(¢) is a primitive
trinomial of degree greater than 2. Thus, in cases of practical interest for pseudo-random
number generation®, it is only necessary to verify that @(t) is primitive. This is particularly
eagy if 2" — 1 is a Mersenne prime, because then a necessary and sufficient condition is

t¥ =t mod (2, Q(t)).

The basic results on linear recurrences modulo m were obtained many years ago — see for
example Ward [19]. However, our main results (Theorems 2 and 3) and the statement of “Con-
dition S” (Section 2) appear to be new.

2 A Condition for Maximal Period

The following Lemma is a special case of Hensel’s Lemma [7, 8, 21] and may be proved using an
application of Newton’s method for reciprocals [9].

Lemma 1 Suppose that P(t) mod 2 is invertible in Zs[t]/Q(t). Then, for all w > 1, P(t) mod
2% s invertible in Zyw|[t]/Q(1).

We now give a sufficient condition for the periods p,, and p,, to be the same.

Lemma 2 If Q(t) is irreducible of degree r and at least one of xg, . .., Tr—1 is odd, then py, = py.

Proof
For brevity we write p = p,, and p = p,,. From (6),

G(t) = mod 2%,
where R(t) has degree less than p. Thus, from (7),
R(t)Q(t) = (1 —t*)P(t) mod 2%. (10)

Now P(t) mod 2 has degree less than r, but is not identically zero. Since Q(t) mod 2 is irreducible
of degree r, application of the extended Euclidean algorithm [7] to P(¢) mod 2 and Q(¢) mod 2

4A word of caution is appropriate. Even when the period p,, satisfies (9), it is not desirable to use a full cycle
of p, numbers in applications requiring independent pseudo-random numbers. This is because only the most
significant bit has the full period. If the bits are numbered from 1 (least significant) to w (most significant), then
bit k has period py.



constructs the inverse of P(¢) mod 2 in Z; [t]/Q(t). Thus, Lemma 1 shows that P(t) mod 2¥ is
invertible in Zow[t]/Q(t). It follows from (10) that

w1 mod (2, Q(t)),

and p|p. However, from (4) and (5), p|p. Thus p = p. O
As an example, consider Q(t) = 1 —t+t2. We have t3 = 1 mod (2, Q(t)), t> = —1 mod Q(¢),
and t® = 1 mod Q(t), so
3, ifw=1;
pw_{fi, ifw > 1, (11)

It is easy to verify that (11) gives the period p,, of the corresponding recurrence
Ty = Tpo1 — Tp—2 mod 2%

provided x¢ and x; are not both even.

The assumption of irreducibility in Lemma 2 is significant. For example®, consider Q(t) =
t2 —1 and w = 1, with initial values g = 21 = 1. The recurrence is z,, = £,,— mod 2, so p; = 1,
but p; = 2. Here P(t) = 1+t is a divisor of Q(t) = 1 — ¢2.

We now define a condition which must be satisfied by Q(=t) if the period p,, of the sequence
(x,,) is less than 2* !\ (see Theorem 2 for details). For given Q(t) the condition can be checked
in O(r?) operations®. This is much faster than the method suggested by Knuth [7] or Marsaglia
and Tsay [12], which involves forming high powers of r x r matrices (mod 8).

Condition S
Let Q(t) = 3750 qjt’ be a polynomial of degree r. We say that Q(t) satisfies Condition S if
Q)* + Q(—1)* = 2¢,Q(+%) mod 8.

Lemma 3 gives an equivalent condition” which is more convenient for computational pur-
poses. The proof is straightforward, so is omitted.

Lemma 3 A polynomial Q(t) of degree r satisfies Condition S iff

Z qiqk = €m mod 2 (12)
J+k=2m
0<j<k<r
for 0 <m <r, where

As an exercise, the reader may verify that the polynomial Q(t) = 1 — ¢ + ¢ satisfies both
the definition of Condition S and the equivalent conditions of Lemma 3. For other examples,
see Table 1.

For convenience we collect some results regarding arithmetic in the rings Zow [t]/Q(t).

5We thank a referee for suggesting this example.
50(rlogr) operations if the FFT is used to compute the convolutions in (12).
"For another equivalent condition, see (17) and (25).



Lemma 4 Let X(t) and Y (t) be polynomials over Z. Then, for w > 1,
X =Y mod (2¥,Q) = X? = Y? mod (21, Q). (14)
Also, if Q(t) is irreducible, then
X2 =Y%mod (2,Q) & X? =Y? mod (4,Q) (15)

and
X% =Y%mod (8,Q) & X = +Y mod (4,Q). (16)

Proof

If X =Y mod (2¥,Q) then X =Y + 2“R mod @ for some polynomial R(t) in Z[t]. Thus
X2 =Y2 4+ 2vHR(Y 4+ 2¥"'R) mod Q, and (14) follows.

Now suppose that Q(¢) is irreducible. If X? = Y2 mod (2, Q) then (X —Y)? = 0 mod (2, Q).
Since @ is irreducible, it follows that X =Y mod (2, Q). Thus, from (14), X? = Y2 mod (4, Q),
and (15) follows.

Finally, if @ is irreducible and X2 = Y2 mod (8, Q) then, as in the proof of (15), we obtain
X =Y mod (2,Q), s0 X =Y + 2R mod Q, where R(t) is some polynomial in Z[t]. Thus
4R(Y + R) =0 mod (8,Q), i.e. R(Y + R) =0 mod (2, Q). Since @ is irreducible, either
R =0mod (2,Q) or Y + R = Omod (2,Q). In the former case X = Y mod (4,Q), and in
the latter case X = —Y mod (4,Q). Thus X = Y mod (4,Q). The implication in the other
direction follows from (14). This establishes (16). O

The following Theorem is the key to the proof of Theorem 2. There is no obvious general-
ization to odd moduli.

Theorem 1 Let Q(t) mod 2 be irreducible in Zs[t]. Then
th=—-1 mod (4,Q(t))
iff Q(t) satisfies Condition S, and
th=1 mod (4,Q(t))

iff Q(—t) satisfies Condition S.

Proof
Let
2l (r=1)/2) |
V()= > qit!, W)= D aqjut/,
=0 =0

so Q(t) splits into even and odd parts:
Q) = V(%) +tW (). (17)
By the definition of A, t = t**! mod (2, Q(t)), so
V(2 = MW (2) mod (2,Q(t)). (18)
Because X (t?) = X (¢)? mod 2 for any polynomial X (¢) in Z[t], (18) may be written as

V()% =MW (t)? mod (2, Q(t)). (19)



A, being a divisor of 2" — 1, is odd, so t**! is a square. Thus, from (15),

V(t)? = MW (t)? mod (4, Q(t)). (20)
Also, since V(t) = V(—t) mod 2 and W (t) = W(—t) mod 2, we have
V(=t)? = "W (—t)? mod (4, Q(t)). (21)
To prove the first half of the Theorem, suppose that
th=—1 mod (4, Q(t)). (22)
Thus, from (20),
V()2 +tW(t)* =0 mod (4, Q(t)). (23)
It follows that
V() +tW ()’ —¢:Q(t) =0  mod (4,Q). (24)

However, the left hand side of (24) is a polynomial of degree less than r. Hence
V()2 +tW () — ¢ Q(t) =0 mod 4. (25)

Replace t by t? in the identity (25). From (17), the result is easily seen to be equivalent to Q(t)
satisfying Condition S.

To prove the converse, suppose that Q(t) satisfies Condition S. Reversing our argument, (23)
holds. Thus, from (20),

T W2 =0 mod (4, Q(t)).

Now W (t) has degree less than r, and W (t) # 0 mod 2 because otherwise, from (17), Q(t) =
V(t)?2 mod 2 would contradict the irreducibility of Q(¢). Thus, W (t) mod 2 is invertible in
Z>[t]/Q(t). From Lemma 1, W () mod 4 is invertible in Z4[t]/Q(t), and we obtain

M 4t=0 mod (4, Q(t)).
Since Q(t) # t mod 2, we can divide by ¢ to obtain
th=—1 mod (4, Q(t)).

This completes the proof of the first half of the Theorem.
The proof of the second half is similar, with appropriate changes of sign. Suppose that

th=1 mod (4,Q(t)). (26)
From (21),
V(=t)? = tW(—t)? mod (4, Q(t)). (27)
Thus, instead of (25) we obtain
V(=t)2 —tW(=t)? = (-1)"¢.Q(t) =0 mod 4. (28)

Replace ¢t by —t2 in the identity (28). The result is equivalent to Q(—t) satisfying Condition S.
The converse also applies: if Q(—t) satisfies Condition S then, by reversing our argument and
using irreducibility of Q(¢), (26) holds. O

We are now ready to state Theorem 2, which relates the period of the sequence (z,) to
Condition S. It is interesting to note that, in view of Theorem 1, Theorem 2 is implicit in
the discussion on page 628 of Ward [19]. More precisely, Ward’s case T > 1 corresponds to
Q(—t) satisfying Condition S, while Ward’s case (T' =1, K(z) = 1 mod 2) corresponds to Q(t)
satisfying Condition S. However, Ward’s exposition is complicated by consideration of odd prime
power moduli (see for example his Theorem 13.1), so we give an independent proof.



Theorem 2 Let Q(t) be irreducible and define a linear recurrence by (2), with at least one of
x0y- -, Tr—1 odd. Then the sequence (x,,) has period

P < 2972
for all w > 2 if Q(—t) satisfies Condition S,
P < 272N
for all w > 3 if Q(t) satisfies Condition S, and
P = 297N
for all w > 1 iff neither Q(t) nor Q(—t) satisfies Condition S.

Proof

From Lemma 2, p, = p,, is the order of ¢t mod (2%, Q(¢)). If Q(—t) satisfies Condition S
then, from Theorem 1,
th =1 mod (4,Q(t)).

Using (14), it follows by induction on w that
277 = mod (2%, Q(t))

for all w > 2. This proves the first part of the Theorem. The second part is similar, so it only
remains to prove the third part.

Suppose that p, = 2¥~!\ for all w > 0. In particular, for w = 3 we have period p3 = 4\.
Thus

A £ mod (8,Q(t))
and, from (16),
th # +1 mod (4, Q(t)). (29)
From Theorem 1, neither Q(t) nor Q(—t) can satisfy Condition S, or we would obtain a contra-
diction to (29).
Conversely, if neither Q(t) or Q(—t) satisfies Condition S, then we show by induction on w

that )
27 A =14 2YR, mod Q(t), (30)

where
Ry, #0 mod (2,Q(1)), (31)

for all w > 1. Certainly
th=1 mod (2,Q(t))

but, from Theorem 1,
A#1 mod (4,Q(1),
so (30) and (31) hold for w = 1. Defining
Ry =Ry 1(1+2° 2Ry 1) (32)

for w > 2, we see that (30) holds for all w > 1. It remains to prove (31) for w > 1. For w = 2, (31)
follows from Theorem 1 and (16), because t* # 41 mod (4, Q(t)) implies t** # 1 mod (8, Q(t)).
For w > 2, (31) follows by induction from (32), since 2“2 is even. It follows that

puw =2"7IN

for all w > 1. O



3 Primitive Trinomials

In this section we consider a case of interest because of its applications to pseudo-random number
generation:

Q(t) = qo + qst° + ¢, t"

is a trinomial (r > s > 0). Theorem 3 shows that the period is always maximal in cases of
practical interest. The condition r > 2 is necessary, as the example Q(t) = 1 —t+t? of Section 2
shows.

Theorem 3 Let Q(t) be a primitive trinomial of degree r > 2. Then the sequence (xy) defined
by (2) (with at least one of xg,...,x._1 odd) has period p, = 2V~1(2" —1).

Proof

From Theorem 2 it is sufficient to show that Q)(t) does not satisfy Condition S. (Since Q(—t)
is also a trinomial, the same argument shows that Q(—t) does not satisfy Condition S.)
Suppose, by way of contradiction, that Q(t) satisfies Condition S. We use the formulation of
Condition S given in Lemma 3. Since Q(¢) is irreducible, ¢qo = ¢s = ¢» = 1 mod 2. If s is even,
say s = 2m, then
> qjak =qoqs =1 mod 2,
jt+k=2m
0<j<k<r
S0 €, # 0, and (13) implies that ¢, # 0. Since 0 < m < s < r, this contradicts the assumption
that Q(t) is a trinomial. Hence, s must be odd.
If r is odd then r + s is even, and a similar argument shows that q(,4)/2 # 0, contradicting
the assumption that Q(¢) is a trinomial. Hence,  must be even.
Taking m = r/2, we see that €, # 0, so ¢, # 0. This is only possible if m = s, so

Q) =t>*+t°+1 mod 2.

In this case t** = 1mod (2,Q(¢)). Now r = 2s > 2, s0 35 < 2" — 1, and Q(t) can not be
primitive. This contradiction completes the proof. O
A minor modification of the proof of Theorem 3 gives:

Theorem 4 Let Q(t) = qo + qst° + qrt" be an irreducible trinomial of degree r # 2s. Then the
sequence (z,,) defined by (2) (with at least one of xg,...,x,_1 odd) has period p, = 2* 1\,

As mentioned above, it is easy to find primitive trinomials of very high degree r if 2" — 1 is
a Mersenne prime. Zierler [24] gives examples with r < 9689, and we found two examples with
higher degree: t19937 4+ ¢9842 1 1 and ¢23209 49739 1 1. These and other examples with r < 44497
were found independently by Kurita and Matsumoto [10]. Such primitive trinomials provide
the basis for fast random number generators with extremely long periods and good statistical
properties [3].

4 Exceptional Polynomials

We say that a polynomial Q(t) of degree r > 1 is exceptional if conditions 1-3 hold and is a
candidate if conditions 2-3 hold —

1. Q(t) mod 2 is primitive.

2. Q(t) has coefficients ¢; € {0,—1,+1}, and ¢o = ¢, = 1.



3. Q(t) satisfies Condition S.

By Theorem 2, if Q(t) is exceptional then Q(¢) and Q(—t) define simple linear recurrences
(mod 2%) which have less than the maximal period for w > 2.

Only the coefficients of Q(t) mod 4 are relevant to Condition S. If condition 2 is relaxed
to allow coefficients equal to 2 then, by Lemma 3, there is one such Q(t¢) corresponding to
each primitive polynomial in Zs[t]. With condition 2 as stated the number of these Q(t) is
considerably reduced.

It is interesting to consider strengthening condition 2 by asking for certain patterns in the
signs of the coefficients. For example, we might ask for polynomials Q(t) with all coefficients
g; € {0,1}, or for all coefficients of £Q(—t) to be in {0,1}. There are candidates satisfying
these conditions, but we have not found any which are also exceptional, apart from the trivial
Q(t) = 1—t+1t2. It is possible for an exceptional polynomial to have (—1)7g; > 0 for 0 < j < r.
The only example for 2 < r < 44 is

Q) =1—t+1> =5 +10 118 — 9 410 4 412 413 1 416 1 418 4 421
Observe that Q(—t) defines a linear recurrence with nonnegative coefficients
Tn421 = Tn + Tntl +Tnt2 + Tnts + Tnt6 + Tnt8 + Tnt9 + Tnt10 + Tnt12 + Tnt13 + Tnt16 + Tni18

which has period ps = p; = 22! — 1 when considered mod 2 or mod 4.

In Table 1 we list the exceptional polynomials Q(t) of degree r < 14. If Q(t) is exceptional
then so is Q(t). Thus, we only list one of these in Table 1.

The number v(r) of exceptional Q(t) (counting only one of Q(t),Q(t)) is given in Table 2.
The term “exceptional” is justified as v(r) appears to be a much more slowly growing function
of r than the number [4]

Aao(r) = (2" = 1)/r
of primitive polynomials of degree r in Zs[t] (where ¢ is Euler’s totient-function) or the total
number of polynomials of degree r with coefficients in {0, —1, +1}. Heuristic arguments suggest
that the number k(r) of candidates should grow like (3/2)" and that v(r) should grow like
(3/4)"A2(r). The arguments are as follows —

There are 2"~! polynomials Q(t) of degree r with coefficients in {0, 1}, satisfying

do = ¢» = 1. Randomly select such a Q(t), and compute €g, €1, ..., € from
Z q;qk = €m mod 2
j+k=2m
0<j<k<r

Extend Q(t) to a polynomial Q(t) with coefficients g,, € {—1,0, 1,2} such that
Gm = ¢m mod 2 and (13) is satisfied for 0 < m < r. The (unique) mapping is given
by

Qm = Gm + 2€¢,,, mod 4. It is easy to see that gy = ¢, = 1. If we assume that each ¢,
for 1 < m < r has independent probability 1/4 of assuming the “forbidden” value 2,
then the probability that Q(t) is a candidate is (3/4)"~!. Thus,

r(r) ~ (3/2)" L.

The argument is not strictly correct. For example, it gives a positive probability
that ¢; = 0, g2 = 1, but this never occurs for r > 2. However, the argument does
appear to predict the correct order of magnitude of k(r).



The probability that a randomly chosen Q(t) with gy = ¢ = 1 is primitive is just
Aa(r)/27~1. If there is the same probability that a randomly chosen candidate is
primitive, then the number of primitive candidates should be (3/4)"1Ay(r), and
v(r) should be half this number.

In Table 2 we give
. v(r)
v(r) = ;

)= Bt
the numerical evidence suggests that v(r) converges to a positive constant v(co) as r — oc.
However, 7(00) is less than the value 2/3 predicted by the heuristic argument. Our best estimate
(obtained from a separate computation which gives faster convergence) is

7(00) = 0.45882 & 0.00002

The computation of Table 2 took 166 hours on a VaxStation 3100. We outline the method
used. It is easy to check if a candidate polynomial is exceptional [7]. A straightforward method
of enumerating all candidate polynomials of degree 7 is to associate a polynomial Q(t) such that
¢o = ¢» = 1 with an (r — 1)-bit binary number N = by ---b,_1, where b; = ¢; mod 2. For each
such N, compute €, ..., €, from (12). Now (13) defines qo, ..., g, mod 4. If there is an index m
such that €, = 1 mod 2 but g, = 0 mod 2, then (13) shows that ¢,, = 2 mod 4, contradicting
condition 2. The straightforward enumeration has complexity 2(2"), but this can be reduced
by two devices —

1. If (13) shows that ¢, = 2 mod 4 for some m < r/2, we may use the fact that e, in (12)
depends only on qq, . . ., gam to skip over a block of 2" ~2™~1 numbers N. By an argument
similar to the heuristic argument for the order of magnitude of v(r), with support from
empirical evidence for r < 40, we conjecture that this device reduces the complexity of the

enumeration to
3 7“/2
(0] (rQQT <4) > = 0(r?3'/?).

2. Fix s, 0 < s < r. Since €,_,, in (12) depends only on ¢.—om, - - ., ¢, we can tabulate those
low-order bits b,_g - - - b._1 which do not necessarily lead to condition 2 being violated for
some @r—m, 2m < s. In the enumeration we need only consider N with low-order bits in
the table. We conjecture that this reduces the complexity of the enumeration to

s/2
O <’l“22r <i) ) _ O(T22T_83S/2)

provided care is taken to generate the table efficiently.

The two devices can be combined, but they are not independent. The complexity of the
combination is conjectured to be

o <T22T <3> (6r+53)/12> 0 <T23T/2 (3)58/12)
4 4 ’

where the exponent 5s/12 (instead of s/2) reflects the lack of independence. In the computation
of Table 2 we used s < 22 because of memory constraints. The table size is O(s3°/2) bits if the
table is stored as a list to take advantage of sparsity.
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Q)

2 1—t+t2
5 1—t—t2+t"+¢°
1—t+2 43—t —t54¢9
9 1—t+t2—t3 -t 484 ¢°
1T—t+t2—t3—t* — 5+ 16 48 49
10 L—t+ 24+t 415 — 4749 4+ ¢10
11 L—t4+82 -3 —t4 485 106 — 8 4 ¢!
12 14+ 82— S L9y 1L 412
L—t 417 —t5 448 — 7 — 10 4412 4413
1—t+t2—t3+t4—t5—t6—t7+t8+t12—|—t13
13 | 1—t— 2 — ¢4 46 447 48 149 4 410 4 412 4 413
R e i A L A e e e S
1ot 243 g5 8 g9 _ g1l _ 412 4 413
Tt + 2485 56 (T84 9 141
Lt 65—t — 15 4 10 7 445 41 — ¢! g1
| 1=t =8 =0 10 447 — % — 7 4413 4414

1_t—t2—t3—t5+t7+t9+t10—t11+t13+t14

Table 1: Exceptional Polynomials of degree r < 14

rolv(r) | o) | r | vir) v(r)

1 0 0 21 79 0.3923
2 1 1.78 || 22 94 0.4390
3 0 0 23 | 231 | 0.4837
4 0 0 241 129 | 0.4650
) 1 0.70 || 25 | 428 | 0.4388
6 0 0 26 | 448 | 0.4615
7 0 0 27| 883 | 0.4964
8 0 0 28 | 635 | 0.4218
9 3 0.83 || 29 | 1933 | 0.4410
10| 1 | 0.30 | 30| 1470 | 0.4619
11 1 0.13 || 31 | 4380 | 0.4721
12 1 0.22 || 32 | 3125 | 0.4636
13 ) 0.33 || 33 | 7232 | 0.4549
14 ) 0.37 || 34 | 8862 | 0.4656
15| 15 | 0.62 | 35 | 18870 | 0.4792
16 | 12 | 0.58 || 36 | 10516 | 0.4560
17 26 | 0.45 || 37 | 40082 | 0.4547
18 | 18 | 0.41 || 38 | 39858 | 0.4623
19| 62 | 0.53 || 39 | 75370 | 0.4712
20| 34 | 0.45 || 40 | 54758 | 0.4598

Table 2: Number of Exceptional Polynomials
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