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Abstract

This paper considers the parallel solution of large
eigenvalue problems on a mesh-connected proces-
sor array with distributed memories. New paral-
lel Jacobi algorithms are introduced for solving the
problem. The algorithms require a small number of
data communications between processing elements
on our computing model. They have been imple-
mented on the Fujitsu AP 1000. The paper also
reports our analytical and experimental results.

1 Introduction

The eigenvalue decomposition of a symmetric N x N
matrix A has the form

A=UAUT (1)
where U is orthogonal and A is diagonal. It has
many important applications in modern signal pro-
cessing. Because this problem is very computation-
ally intensive, parallel computation has been con-
sidered in recent years.

The Jacobi method is an iterative algorithm for
diagonalizing a symmetric matrix A. At each it-
eration a plane rotation is chosen to annihilate a
symmetric pair of off-diagonal elements a;; and aj;:
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where ¢ = cos(f) and s = sin(6). If the off-diagonal
elements are annihilated in a reasonable, systematic
order, the convergence rate to a diagonal matrix is
ultimately quadratic [3].
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Since the Jacobi method can easily be imple-
mented in parallel, a lot of attention has been paid
to using this technique for parallel computation of
eigenvalue problems. In this paper we describe
new parallel Jacobi algorithms for solving symmet-
ric eigenvalue problems and particularly focus on
data partitioning schemes since an algorithm with-
out partitioning is hardly usable in practice to solve
very large problems on a general-purpose parallel
computer.

In Section 2 we briefly describe our computing
model. Section 3 discusses an algorithm for par-
allel Jacobi ordering without partitioning. This
algorithm is well suited for our computing model
because it has lower communication requirements.
We introduce two partitioning schemes in Section 4.
The first (algorithm 1) is apparently new and the
second (algorithm 2) is derived from the Schreiber’s
partitioning method [6]. Both have been imple-
mented on the Fujitsu AP 1000. Our analytical
and experimental results are reported in Section 5.

2 Computing Model

The system on which our experiments are per-
formed is the Fujitsu AP 1000. This highly par-
allel computer is a distributed memory MIMD ma-
chine with up to 1024 independent 25 MHz SPARC
processors. Each processor has 16 MByte of dy-
namic RAM and 128 KByte cache. The topology
of the AP 1000 is a torus, with hardware support
for wormhole routing. There are three communi-
cation networks — the B-net, for communication
with the host; the S—net, for synchronization; and
the T-net, for communication between processors.
The T-net is the most significant for us. In prac-
tice it provides a bandwidth of about 6 MByte/sec
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Fig. 1: The computing model.

between processors. (Theoretically it can achieve
25MByte/sec.) For details of the AP 1000 architec-
ture and software environment, see [1][2].

It should be mentioned that the parallel algo-
rithms we describe in this paper are not restricted to
one particular machine. They can be implemented
efficiently on any system in which the processing
elements (PEs) are organised in a two—dimensional
(2-D) mesh and connected by a 2-D torus network,
as shown in Fig. 1. One-dimensional (1-D) arrays
are considered as a special case of 2-D arrays with
the number of rows (or columns) equal to one. Dif-
ferent algorithms might be peferable on MIMD ma-
chines with different topologies, e.g. hypercubes or
trees [4].

3 Parallel Algorithm without
Partitioning

One Jacobi iteration described in Equation 2 may
be denoted by using an index (or a Jacobi)
pair (i, j). For example, the Jacobi pair (1, 2) repre-
sents the Jacobi plane rotation operations for anni-
hilating the off-diagonal elements @, 3 and a3,;. For
an N x N problem, there are N(N — 1)/2 distinct
pairs. In serial computing these pairs are ordered
and then the Jacobi plane rotation operations as-
sociated with them are executed sequentially. We
refer to the sequence of these Jacobi pairs as a
“sweep”. One such sequence is the cyclic-by-row
ordering which is depicted below for N = 4:

(1,2) (1,3) (1,4) (2,3) (2,4) (3,4).

stage 1: (1,2)(3,4)5,6)

stage 2: 2(1,4)3.6)5

stage 3: (2, 4)(1, 6)(3, 5)

staped: 4(2,6)1,5)3

stage 5: (4, 6)(2,5)(1,3)

stage 6: 6(4,5)(2,3) 1
(a) N even

Fig. 2: The odd-even ordering.

(1,2)3,4)5
2(1,4@3,3)
2,4(1,53
4(2,5)1,3)
4,502,931

(b) N odd

The Jacobi plane rotation operations associated
with one Jacobi pair only involve two rows and two
columns of data items in the matrix. Therefore,
there are disjoint pairs, e.g. (1,4) and (2,3) in
the above ordering, which can be executed simul-
tanously. In a parallel implementation, we want
to perform as many non-interacting operations as
possible at each time “stage”. One example is the
odd-even ordering shown in Fig. 2.

In the following, we describe an algorithm for Ja-
cobi ordering without partitioning. We show that
the communication structure of this algorithm ex-
actly matches the computing model described in the
previous section. It also has lower communication
requirements than other well-known algorithms for
the same problem.

The algorithm is described through examples.
See Fig. 3(a) for N even and Fig. 3(b) for N odd.
In the figures, the horizontal arrows denote the in-
dex movement, while the up-and-down arrows in-
dicate that two indices within the column have to
be swapped before one index is moved to the other
column. If we ignore all the columns with an up-
and-down arrow inside, after N stages every index
will meet all other N — 1 indices exactly once. This
will make a total number of (N — 1)N/2 different
Jacobi pairs, which completes one sweep of Jacobi
ordering for N indices.

The index movement in Fig. 3 uses wraparound.
This ring structure just matches our computing
model. The mapping of the algorithm onto the
computing model is briefly described as follows. For
an N x N problem, we use 4 x 4 processing ele-
ments. Before the computation starts, the original
matrix is stored in the system in a natural order and
each processing element holds a 2 x 2 submatrix. In
each computational stage, each diagonal processing
element first generates a plane rotation to annihi-
late the off-diagonal elements of its submatrix and
then the rotation is sent to all other processing ele-
ments in the same row and the same column. The
off-diagonal processing elements, on receiving rota-
tions, then perform the submatrix updating. After
the rotations have been applied by the off-diagonal
processing elements, which completes one stage of
computation, columns and rows are interchanged
for the next stage.
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Fig. 3: The Jacobi ordering with low
communication requirements.

When one index is transferred from one Jacobi
pair to another between each two successive stages,
not only is one row of data items to be transferred
vertically, but also one column transferred hori-
zontally from the associated processing elements.
Thus, the more the transfer of indices, the higher
the cost for communications. We can see from Fig. 3
that only N/2 indices change their positions at each
stage. In contrast to other well-known Jacobi or-
dering methods, for example, those described in [5],
this smaller number will result in a less number of
data items to be interchanged between processing
elements during parallel computation.

4 Partitioning Schemes

An algorithm without partitioning is hardly useful
for general-purpose parallel computations in prac-
tice because the system configration is fixed, but
the size of user’s problem may vary. This section
will describe two partitioning schemes based on the
algorithm described in the previous section.

For simplicity we assume in the following discus-
sion that an N x N problem is to be solved using
a p x p square array for N = 2¢p, where ¢ is an
integer. For the data loading, the original matrix
is still stored in the system in a natural order, but
each processing element now holds a 2¢g x 2¢ sub-
matrix.
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Fig. 4: The first attempt at partitioning.

4.1 Algorithm 1

Our first partitioning algorithm is derived directly
from Fig. 3. Divide N indices into p groups with
each group holding 2¢ indices. An example of
N =18 and p = 3 is depicted in Fig. 4. In the figure
solid arrow lines indicate the indices interchange be-
tween groups, while the dashed arrow lines denote
the local permutation of indices within a group. Al-
though only one out of 2¢ indices needs to be in-
terchanged from each group at one stage, there is
a large number of indices taking part in the local
permutation. This will result in large number of
data items to be permuted within the local memory
of each processing element, which can seriously de-
grade the overall performance. To avoid this prob-
lem we apply a new strategy.

In order to simplify the discussion, we enumerate
indices in each group from 0 to 2¢—1 and the stages,
which are equal to the total number of indices, from
1 to N. Our new algorithm for indices interchange
is described as follows:

couni=1;
for (k=1 k <= N; k++){
send a index in position equal to
count to its left group;
receive one index from the right group and
place it in position equal to count;

couni+= 2;
count%= 2  g;
}

An example of N = 18 and ¢ = p = 3 is depicted
in Fig. 5(a). It should be mentioned that the index
exchanges denoted by the up-and-down arrows in
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(b) Jacobi pairs within each groups
Fig. 5: Partitioning algorithm 1.

Fig. 4 need to be maintained in order to make the al-
gorithm work correctly. Therefore, we are required
to use an extra pointer to indicate these exchanges.
The pointer first points to the position 1, and then
moves two positions up to the right each time after
one exchange until it reaches the right boundary.
Each time the index in the position pointed to by
the pointer will be exchanged. The counterpart of it
is the one in the position (2¢ — 1) minus the value of
the pointer. For example, if the value of the pointer
is 1 and ¢ = 3, then 2¢ — 1 — 1 = 4. Thus the in-
dices in positions 1 and 4 will be exchanged. The
equivalence can be seen by comparing the up-and-
down arrows in Fig. 4 and the left-and-right arrows
in Fig. 5(a).

If we are only concerned that every group will
still obtain the same indices at each stage after the
modification described above, but do not care where
the indices are actually placed in the group, we can
easily prove that the above algorithm is equivalent
to the one depicted in Fig. 4.

At stage 1 the indices in position 1 of each group
are interchanged. This is equivalent to stage 1 in
Fig. 4. Since there are no index exchanges within
each individual group, the indices in position 3 of

each group will be interchanged at stage 2 in order
to obtain the equivalence. For the same reason the
indices in position 2 + 1 will be interchanged at
stage 7 until count = 2¢+ 1. When count = 2¢ + 1,
one group needs to obtain an index which is origi-
nally placed in position 1 of its second right group.
However, this index has been moved to position 1
of its first right group at stage 1. Since the indices
movement forms a ring, we have proven the equiv-
alence.

In Fig. 4 the indices in each column form a Ja-
cobi pair. This order is scrambled by the new in-
terchange scheme. A question is whether these Ja-
cobi pairs can be reorganized in a simple way. The
answer to this is yes. The following describes how
easily the Jacobi pairs may be obtained. In order to
form correct Jacobi pairs, each index in the odd po-
sition, say ¢, will only be required to combine with
its counff)art in position i+ couni where the value of
count is defined previously. Since the value of count
is odd, i+ count must be even. The proof of the cor-
rectness of this process is similar to the one for our
new indices interchange scheme and is omitted. An
example is depicted in Fig. 5(b).

In the above algorithm it requires NV stages to
complete one sweep of Jacobi ordering of order V.
There is only one index to be interchanged at each
stage. The total number of indices transferred in
one sweep is then N for each group.

4.2 Algorithm 2

Our second algorithm is based on Schreiber’s parti-
tioning method [6], which is briefly discussed below.

Divide N indices into 2p blocks, each holding ¢
indices. Considering each block as a super-index
and using the ordering described in Section 3, each
super—index will meet every other super—indices in
some columns exactly once after 2p super-stages, as
shown in Fig. 6. Once two blocks are in the same
column, some operations are performed to obtain
Jacobi pairs by using indices in the blocks. If an in-
dex in one block is combined with every index in the
other block once only, each index in one block will
meet all the indices in other 2p — 1 blocks exactly
once after 2p super-stages. However, one sweep of
Jacobi ordering of order N has not been completed
unless the indices within the same block meet each
other once. Since this extra process is performed
locally within each individual block, it is combined
into the first super-stage in [6].

To summarize, N indices are first divided into 2p
blocks with equal number of indices. The order-
ing described in Section 3 is then applied. In each
super-stage, indices in one block will meet every in-
dex in the other block within the same column (ex-



- A~ A~ Aﬁ"'J
AL A A
C A=A A~
A A
—A A=A
AL A A
= A A A
A f!\a A,
= A A A
A A A
= A~ A A
super-stage 6: ‘XI A, A,

Fig. 6: Partitioning algorithm 2.
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cept the column containing up-and-down arrows) to
form Jacobi pairs. There are additional operations
performed in the first super-stage, that is, each in-
dex has to meet once every other index within the
same block. The algorithm takes 2p super-stages
to complete a sweep of Jacobi ordering of order N.
Since there are ¢ indices in one column to be inter-
changed at each super-stage, the total number of
indices transferred in one sweep from each column
or group is also V.

5 Analytical and Experimen-
tal Results

There are two key issues which affect the efficiency
of a parallel algorithm, that is, the cost of com-
munication and the active/idle ratio of processing
elements in the system. It is desirable if the al-
gorithm designed for a given problem can not only
minimize the communication cost, but also keep ev-
ery processing elements active all the time during
the computation.

Before we estimate the performance, we empha-
size the following factors: In both algorithms one
index corresponds to one row and one column.
Therefore, there are two rows and two columns of

data items in the matrix involved in one Jacobi
plane rotation operation (called one Jacobi pair)
and the amount of floating—point arithmetic oper-
ations executed in each associated processing ele-
ment is O(g) = O(N/p) since each processing ele-
ment holds a 2¢ x 2¢ submatrix. When a index is
transferred from one group to another, not only is
one row of data items transferred vertically, but also
one column is transferred horizontally from the as-
sociated processing elements. To simplify the anal-
ysis, we ignore any overlap of communication and
computation.

Communication costs:

We first estimate the communication costs. We
shall assume that the time required to send or re-
ceive a message of w words is ¢p + c;w, where ¢g is
a “startup” time and 1/c; is the transfer rate [1].

In Algorithm 1 there is only one index transferred
from one group to another at each stage. There
are 2¢ data items in one row or one column of the
submatrix in each processing element. The time re-
quired for one interchange is then 2(co + 2c19) =
2(co + c1 N/p). However, there are N interchanges
in one sweep. Therefore, the time spent for com-
munication in one sweep is 2N(¢o + e1V/p) =
2Nco + 2c1 N?/p.

Since therefq indices to be transferred from each
group in Fig. 6, the communication time in one
super-stage of Algorithm 2 is 2(co+c¢1(2¢?)). There
are only 2p super-stages in one sweep. Thus the
communication time spent in one sweep of Algo-
rithm 2 is 2p(2(co + ¢1(2¢?))) = 4pco + 21 N?/p.

By comparing the above two results, it can be
seen that the number of words or data items trans-
ferred during one sweep of operation is the same,
that is, 2N2%/p for both algorithms. Since Algo-
rithmn 1 requires more times for data interchange,
however, there is a difference in total “startup” time
which is 2¢p(N — 2p).

Active/idle ratio:

We now compare the time for floating—point
arithmetic operations in the two algorithms.

In order to simplify the comparison of the two al-
gorithms, we introduce the term “equivalent stage”.
The time consumed by one equivalent stage is the
time for executing the Jacobi plane rotations de-
noted by ¢ Jacobi pairs.

We first consider Algorithm 1. It is easy to see
from Fig. 5(b) that each group will generate exactly
g Jacobi pairs (excluding those with an up-and-
down arrow). Therefore, for Algorithm 1 the total
number of equivalent stages in one sweep is N.

Now consider Algorithm 2. Since an index in one



block only combines once with all the indices in the
other block of the same column and one block con-
tains ¢ indices, in each super-stage but the first one
there are ¢* Jacobi pairs formed in each column (ex-
cluding those with an up-and—down arrow), which
is q equivalent stages. For the extra operations in
the first super-stage there are an additional g(g—1)
Jacobi pairs. Since there are 2p super-stages in
one sweep, the total number of equivalent stages is
2pg+g—1=N+qg-1.

From the above discussion we see that Algo-
rithm 2 requires ¢ — 1 more equivalent stages in a
sweep than Algorithm 1. This results in some addi-
tional time for performing extra O(N3/p?) floating-
point arithmetic operations to complete a sweep.
The reason is explained as follows.

implemented on the Fujitsu AP 1000. While im-
plementing algorithm 2, we made a minor modi-
fication in order to enhance the active/idle ratio,
that is, we allow columns with an up-and-down ar-
row in Fig. 6 to generate Jacobi pairs like the other
columns. Thus some Jacobi pairs will be produced
more than once in one sweep. By doing this we
expect that the total number of sweeps may be re-
duced for solving a given problem. One set of our
experimental results is shown in Table 1. In this ex-
periment a 5 x 5 array is used. We can see that the
results agree with our analysis. When N is small,
Algorithm 2 is more efficient. This is because the
startup time in the AP 1000 is about 100 us for
each communication call. However, Algorithm 1 is
preferable as the problem size becomes larger.

[ Problem size N 50 [ 70 | 90 [ 110 [ 130 [ 150 [ 170 | 190
Algorithm 1 | time(sec.) | 1.04 | 2.26 | 4.50 | 7.10 | 11.2 | 17.4 | 22.4 | 34.0
sweeps 11 12 13 13 13 14 14 14

Algorithm 2 | time(sec.) | 0.731 | 2.03 | 3.81 | 7.16 | 11.1 | 17.0 | 23.5 | 34.1
sweeps 10 ] 12 12 13 12 13 12 13

Problem size N 210 | 230 | 250 | 270 | 290 | 310 | 330 | 350
Algorithm 1 | time(sec.) | 45.0 | 60.6 | 76.5 | 98.4 | 119 | 140 | 180 | 219
sweeps 14 15 15 16 16 15 16 17

Algorithm 2 | time(sec.) | 454 | 62.3 | 85.2 [ 99.2 | 126 | 160 | 183 | 225
sweeps 13 14 15 14 14 15 14 14

Table 1: Experimental results

It is easy to see from Fig. 3 that an index pair
with an up-and-down arrow will indicate only the
exchange of the two indices, but not generate any
Jacobi pair. This causes the associated processing
elements to be idle. In Algorithm 1 the total num-
ber of these index pairs is N/2 which is indepen-
dent of p or ¢q. Although there are only p super-
index pairs with an up-and-down arrow in Fig. 6,
one such pair is equivalent to ¢° index pairs. This
is because each column in Fig. 6 produces ¢ Jacobi
pairs. Thus the total is equivalent to pg? = ¢N/2
which is ¢ times the number in Algorithm 1. The
active/idle ratio of the system when using Algo-
rithm 2 is lower than the ratio for Algorithm 1 by
a factor of ¢.

It can be seen from the above analysis that Algo-
rithm 2 requires 2¢o(N — 2p) less time for commu-
nication. However, Algorithm 1 takes less time for
floating-point operations than Algorithm 2. Usu-
ally the startup time for communication is much
greater than one floating-point arithmetic opera-
tion in a system. If N is not large, Algorithm 2
may give better performance. However, if N >> p,
Algorithm 1 will be more efficient than Algorithm 2.

Both the above described algorithms have been

Even though the number of sweeps is reduced by
using the modified version of Algorithm 2, it still
takes longer time than Algorithm 1 when N is large.

6 Conclusions

This paper has described two practical parallel al-
gorithms (with partitioning) for solving eigenvalue
problems on memory distributed machines. The al-
gorithms require a minimum number of data com-
munications between processing elements when im-
plemented on a 2-D mesh connected system. We
have shown both theoretically and experimentally
that Algorithm 2 gives better performance when the
problem size is small, while Algorithm 1 is more
efficient as the problem size becomes larger. We
hope that in a near future startup time for commu-
nication in parallel machines will be dramatically
reduced with more advanced technology so that Al-
gorithm 1 will become more attractive even in the
case of small problem size.
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