PARALLEL COMPUTATION OF THE SINGULAR VALUE
DECOMPOSITION ON TREE ARCHITECTURES*

Zhou B. B. and Brent R. P.!
Computer Sciences Laboratory
Australian National University

Canberra, ACT 0200

Abstract We describe a new Jacobi ordering for
parallel computation of SVD problems. The ordering
uses the high bandwidth of a perfect binary fat-tree to
minimise global interprocessor communication costs.
It can thus be implemented efficiently on fat-tree ar-
chitectures.

1 Introduction

Let A be a real m x n matrix. Without loss of
generality we assume that m > n. The singular value
decomposition (SVD) of A is its factorization into a
product of three matrices

A=UxvT,

where U is an m X n matrix with orthonormal columns,
V' is an n x n orthogonal matrix, and ¥ is an n xn non-
negative diagonal matrix, say ¥ = diag(o1,---,0p)-

There are various ways to compute the SVD [2]. To
achieve efficient parallel SVD computation the best ap-
proach may be to adopt the Hestenes one-sided trans-
formation method [3] as advocated in [1].

The Hestenes method generates an orthogonal ma-
trix V such that

AV =H,

where the columns of H are orthogonal. The nonzero
columns H of H are then normalised so that

H=U,3,

with UTU, = I, &, = diag(0y,-,0,) and r < n is
the rank of A.

The matrix V can be generated as a product of
plane rotations. As in the traditional Jacobi algo-
rithm, the rotations are performed in a fixed sequence
called a sweep, each sweep consisting of n(n—1)/2 rota-
tions, and every column in the matrix is orthogonalised
with every other column exactly once per sweep. The
iterative procedure terminates if one complete sweep
occurs in which all columns are orthogonal and no

*Copyright © 1993, the authors. To appear in Proceed-
ings 22nd International Conference on Parallel Processing, St
Charles, Illinois, August 1993.

columns are interchanged. If the rotations in a sweep
are chosen in a reasonable, systematic order, the con-
vergence rate is ultimately quadratic [2].

Since one Jacobi plane rotation operation only
involves two columns, there are disjoint operations
which can be executed simultaneously. In a parallel
implementation, we want to perform as many non-
interacting operations as possible at each parallel time
step.

In this paper we present a new parallel Jacobi or-
dering. This ordering may be called a fat-tree order-
ing because it uses the high bandwidth of a fat-tree to
minimise global interprocessor communication costs.
Thus it can be implemented efficiently on the fat-tree
architectures.

The paper is organised as follows: Section 2 briefly
describes fat-tree architectures. Our fat-tree ordering
is described in Section 3 and compared with the (dif-
ferent) fat-tree ordering of [4]. Our conclusions are
given in Section 4.

2 Fat-Tree Architectures

A fat-tree, based on a complete binary tree, is a
routing network for parallel communication [5]. In a
fat-tree a set of processors is located at the leaves of
the tree and there are two channels corresponding to
each edge, that is, one from parent to child and the
other from child to parent. The number of wires in a
channel is called the capacity of the channel. If the lev-
els from bottom (the leaves) up are numbered 1,2, ...
and the capacity of the channels at level 1 is 7, the ca-
pacity of the channels at level k is given by 21y for a
(perfect) binary fat-tree. In other words, the capacity
of the channels in the tree is increased by a factor of
two for each increase in level. Thus, the overall com-
munication bandwidth at each level is constant. If a
factor of less than two is used (as in the CM5), we say
that the tree is a skinny fat-tree.

A problem which is compute-bound on a serial com-
puter may be communication-bound on a parallel com-

IE-mail addresses: {bing,rpb}@cslab.anu.edu.au
rpb138 typeset using IXTpX

puter. Thus a key issue in designing a parallel al-
gorithm for a given problem is how to minimise the
communication cost so that the computational capa-
bility of a parallel machine can be exploited to the full.
Experimental results on the CM5 [6] suggest that, in
order to achieve high performance on a skinny fat-tree
architecture, communication should be kept local (es-
pecially for large messages) and contention should be
avoided as far as possible.

3 Fat-Tree Ordering

In the following discussion we assume for conve-
nience that n is a power of 2. We say that a com-
munication is a level-r communication if the number
of levels that a message from one leaf to another has
to move up through the fat-tree (before coming down
to its destination) is . Thus, nearest neighbour com-
munication between siblings in a tree architecture is
level-one communication.

A fat-tree ordering was recently introduced in [4].
In the ordering of [4], most communications are local,
and global communications are minimised. However,
the disadvantages of the scheme recommended in [4]
are —

1. Convergence may be slower than usual, because
the number of rotations between any fixed pair
(1,J) is variable rather than constant.

2. The logic to generate forward and backward
sweeps is more involved than the logic to generate
just a forward sweep.

3. On average an extra half-sweep has to be per-
formed as the number of sweeps to termination
has to be an even integer.

In this section we introduce a new fat-tree ordering.
The communication cost is about the same as for the
ordering of [4]. Ouly one procedure is required for ev-
ery sweep, and the original order of the indices is main-
tained after the completion of each sweep. Therefore,
our ordering avoids all three problems noted above for
the ordering of [4].

Our fat-tree ordering is made up from two basic
orderings, the two-block ordering and the four-block
ordering, which are defined in Sections 3.1-3.2.

3.1 The two-block ordering

Suppose that there are two blocks, each containing
2% indices. The objective of the two-block ordering
is to let each index in one block meet each index in
the other block once, so 22 different index pairs are
generated. In the discussion below an ordering is called
an ordering of size 2* (or size 2* ordering) if each block
holds 2* indices.

step index pairs level

1 (1(1) 1(2)) (2(1) 2(2))

2 (1(1) 2(2)) (2(1) 1(2))

Figure 1: Basic module for two-block ordering.

The basic module for our two-block ordering is de-
picted in Fig. 1. In the figure each block contains
only two indices. The superscript (i) on each index
in the figure indicates to which block that particular
index belongs. Since there are only two indices in each
block, the procedure (or a sweep of the ordering) takes
only two steps to complete. At the first step, the in-
dices from the two blocks are interleaved, forming two
index pairs. The two indices in block 2 (or block 1)
are then interchanged so that another two index pairs
are generated at the second step.

We have assumed that each leaf on the tree holds
only two indices. Communication is required if in-
dices from different leaves are to be interchanged. It
can eagsily be seen that our basic module requires only
level-one communication if the block size is two, which
results in minimal communication cost on a tree ar-
chitecture. Therefore, in the derivation of our fat-tree
ordering we always divide a large problem into a num-
ber of problems of size 2 in order to minimise the total
communication cost. Also, the two indices in block 2
are exchanged after a sweep. If the same procedure is
repeated once, the order of indices will be restored.

We now consider the case where one block holds
more than two indices. We apply the divide and con-
quer technique, that is, a large problem is first di-
vided into smaller sub-problems, the sub-problems are
solved, and the sub-results are combined to obtain a
result for the original problem. In the following a block
is called a rotating block if the two indices (or two sub-
blocks of indices) in the block exchange their positions
during a two-block ordering. For example, see block 2
in Fig. 1.

We only consider the ordering of size 4 = 22. The
idea can easily be extended to the general case. In
this ordering each block is first divided into two sub-
blocks, each containing two indices. If each sub-block
is considered as a super-index, the basic module may
be applied. Since one super-index contains two in-
dices, each super-index pair forms a sub-problem of
size 2. Therefore, we have actually divided the orig-
inal problem into four half-size sub-problems. These
sub-problems are solved in two super-steps, two at a
time. The ordering is illustrated in Fig. 2.

index pairs level

1 (1) 12y (20 22)):(301) 3(2)) (4(1) 4(2))

e

2 3(1(1) 2(2)) (2(1) 1(2));(3(1) 4(2)) (4(1) 3(2))

size 2 ordering

3 (1(1) 4(2)) (2(1) 3(2)) (3(1) 2(2)) (4(1) 1(2))

4 (1(1) 3(2)) (2(1) 4(2)) (3(1) 1(2)) (4(1) 2(2))

Figure 2: The two-block ordering of size 4.

Since there are interchanges of indices between sub-
blocks (or super-indices), a level-two communication
is required between the two super-steps. It can be
seen from Fig. 2 that the two sub-blocks (1, 2) and (3,
4) in the second block have exchanged their positions
after one sweep. However, the original order of the
indices within each sub-block is maintained. This is
because we always let the sub-blocks from the original
second block be the rotating blocks when the ordering
of size 2 is applied, and these sub-blocks are rotated
twice during the computation. If the same procedure
is executed once again the level-two communication
is performed twice. Thus the order of the indices in
block 2 will be restored. The indices in block 1 do not
change their positions during the computation.

3.2 The four-block ordering

Suppose that we have four blocks, each containing
2% indices. Our aim is to let each of the 2¥2 indices
meet each other exactly once in a sweep of the or-
dering, to generate a total number of 2k+1(2k+2 — 1)
different index pairs.

We now consider the simplest case, where there are
only four indices involved in the ordering. To gener-
ate six different index pairs one sweep of the ordering
requires three steps. There are many ways to do this;
two of them are depicted in Fig. 3.

If we enumerate the indices from the left, starting
with 1, the original order of the indices will be (1, 2,
3, 4). This order is maintained after a sweep with the
first ordering depicted in Fig. 3(a). However, with the
second ordering depicted in Fig. 3(b) the positions of
indices 3 and 4 are reversed after the first sweep, and
the order is only restored after two consecutive sweeps
of the ordering.

step index pairs level index pairs

1 (1234 1 (123 49

2 (1 3)

Figure 3: Basic modules for four-block ordering.

The first algorithm has another advantage. It can
be seen from Fig. 3(a) that the left index in any index
pair is always smaller than the right index. If we store
the column with larger norm on the left after each step
of the SVD computation, then the singular values are
obtained in nonincreasing order.

Note that in Fig. 3(a) there is a left-right arrow
in an index pair in step 3. This indicates that the
two indices in that pair have to be swapped before
the communication between index pairs takes place
for the next step. This implies that the two associated
columns have to be exchanged in the SVD computa-
tion, which may degrade performance. However, this
problem can easily be avoided. (See [8] for details.)

3.3 The merge procedure

Our fat-tree ordering algorithm is derived by using
the following merge procedure. Suppose that there is
a total number of 2" indices. To begin the procedure
these indices are first organised into 2”72 groups, each
holding only four indices. The four-block ordering is
then applied so that the indices in each group will meet
each other once. Next each pair of two consecutive
groups is combined to form a super-group. Each group
in a super-group is also divided into two blocks, so
there are four blocks in each super-group. If each block
is considered as a super-index, the four-block ordering
may be applied. Each two consecutive super-groups
may further form a super-supergroup and the four-
block ordering is once again applied. The operation
terminates if the 2" indices are just in a big group
and the four-block ordering applied to this big group
is completed.

It should be noted that our objective is to let the
2™ indices meet each other exactly once in a sweep.
Thus the two indices are not allowed to meet if they
have met at a previous stage of the same sweep. In the
following we give an example to illustrate the merge

procedure. The method is easily extensible to prob-
lems of larger sizes.

Consider the case n = 3, or 2" = 8. We first di-
vide the indices into two groups. Each group holds
four consecutive indices. After a four-block ordering
procedure applied to each group, the indices in the
same group meet each other once. The two groups are
then merged to form a super-group. The four blocks
of indices in the super-group are organised in such a
way that the indices in blocks 1 and 2 from the left
group are interleaved and the indices in block 3 and 4
from the right group are organised in the same man-
ner. To be specific, blocks 1, 2, 3 and 4 contain indices
AW 310y (4™ 20y (1) 33)) and (4, 2?), re-
spectively (see Fig. 4). Note that the indices in each
original group have already been combined with each
other in the previous stage, which is exactly the com-
putation required in super-step 1 of the four-block or-
dering of Section 3.2. Thus, only super-steps 2 and 3
remain to be performed. Since the blocks are inter-
leaved in each super-index pair, the two-block ordering
procedure may be applied to let the indices from dif-
ferent blocks in each super-index pair meet each other
once, which completes the merge procedure. The de-
tails are illustrated in Fig. 4. It is clear that the order
of the indices is unchanged by the merge procedure.

4 Conclusions

A new Jacobi ordering algorithm for parallel com-
putation of SVD problems on fat-tree architectures has
been introduced. It is currently being implemented on
a 32-node CM35 at the Australian National University.
Since the CM5 has a skinny fat-tree architecture, it
is expected that the hybrid ordering described in [8],
which is a combination of our fat-tree ordering and a
ring ordering, will be the most efficient one, since that
ordering does not cause any contention and reduces
the number of global communications required by the
ring ordering. If the CM5 used a perfect fat-tree, then
our fat-tree ordering would be more attractive.

References

[1] R. P. Brent and F. T. Luk, “The solution of
singular-value and symmetric eigenvalue prob-
lems on multiprocessor arrays”, SIAM J. Sci. and
Statist. Comput., 6, 1985, pp. 69-84.

[2] G. H. Golub and C. F. Van Loan, Matriz Com-
putations, The Johns Hopkins University Press,
Baltimore, MD, second ed., 1989.

[3] M. R. Hestenes, “Inversion of matrices by
biorthogonalization and related results”,
Indust. Appl. Math., 6, 1958, pp. 51-90.

J. Soc.

step index pairs level
1 (1(1) 2(1)) (3(1) 4(1) 1(2) 2(2)) (3(2) 4(2)
2 (1(1) 3(1)) (2(1> 4(1) 1(2) 3(2)) (2(2) 4(2)
3 (1(1) 4(1)) (2@)_,3(1)) 1) 4(2) 2(.2L,3(2)
2
4 (1) 1@y (31 3(2)) (41 4(2)) (2(1) 2(2))
5 (1(1) 3(2) 3(1) 1(2) 2(1) 4(2) 4(1) 2(2)
>§< 2
6 (1(1) 4(2)) (3(1) 2(2)) (2(1) 3(2)) (4(1) 1(2))
7 (1(1) 2(2)) (3(1> 4(2)) (2(<LL,1(2)) (4(<LL,3(2>)

Ak

1 (1<1> 2(1)) (3(1> 4(1)) (1(2) 2(2)) (3(2) 4(2))

Figure 4: The four-block ordering for eight indices.

[4] T.J. Lee, F. T. Luk and D. L. Boley, “Computing
the SVD on a fat-tree architecture”, Proc. NATO
Advanced Study Institute on Linear Algebra for
Large Scale and Real-Time Applications, Leuven,
Belgium, August 1992, 231-240. Also Report 92-
33, Department of Computer Science, Rensselaer
Polytechnic Institute, Troy, New York, November
1992.

[5] C. E. Leiserson, “Fat-trees: Universal networks
for hardware-efficient supercomputing”, IEEE
Trans. Computers, C-34, 1985, pp. 892-901.

[6] R. Ponnusamy, A. Choudhary and G. Fox, “Com-
munication overhead on CM5: an experimental
performance evaluation”, in Frontiers ’92, Proc.
Fourth Symp. on the Frontiers of Massively Par-
allel Computation, IEEE, 1992, pp. 108-115

[7] J. H. Wilkinson, The Algebraic Eigenvalue Prob-
lem, Clarendon Press, Oxford, 1965, pp. 277-278.

[8] B.B. Zhou and R. P. Brent, Parallel Computation
of the Singular Value Decomposition on Tree Ar-
chitectures, Report TR-CS-93-05, Computer Sci-
ences Laboratory, Australian National University,
January 1993 (revised May 1993), 14 pp.

