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Motivation

Ramanujan gave many beautiful formulas for 7
and 1/7. See, for example, J. M. Borwein and
P. B. Borwein, Pi and the AGM, John Wiley
and Sons, New York, 1987; also (same authors)
“Ramanujan and Pi”, Scientific American,
February 1988, 66 73.

Euler’s constant
v=-T'(1) ~ 0.577

is more mysterious than 7. For example, unlike
7, we do not know any quadratically convergent
iteration for v. We do not know if ~ is
transcendental. We do not even know if + is
irrational, though this seems likely. All we know
is that if v = p/q is rational, then ¢ > 101000,
This follows from a computation of the regular
continued fraction expansion for 7.

Analogy with ((3)

Apéry proved ((3) irrational using the series
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and, in Chapter 9 of his Notebooks, Ramanujan
gives several similar series, some involving ((3).

Ramanujan rediscovered Euler’s formula

where

is a Harmonic number. Harmonic numbers also
occur in formulas involving 7 (examples later).

Thus, it is natural to look in the work of
Ramanujan for formulas involving ~, in the
hope that some of these might be useful for
computing accurate approximations to ~, or
even for proving that ~ is irrational.

Ramanujan’s Papers and Notebooks

Ramanujan published one paper specifically
on 7: “A series for Euler’s constant v”,
Messenger of Mathematics 46 (1917), 73-80
(reprinted in Collected Papers of Srinivasa
Ramanugjan). In the paper he generalizes an
interesting series which was first discovered by
Glaisher:
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This family of series all involve the Riemann
zeta function or related functions, so they are
not convenient for computational purposes.

Much of Ramanujan’s work was not published
during his lifetime, but was summarized in his
Notebooks. These were printed in facsimile in
1957, and edited editions have been published
by Berndt. In the following, page numbers refer
to Berndt’s edition (Part I for Chapters 1-9,
Part II for Chapters 10-15).

Note that what Ramanujan calls a “Corollary”
may in fact be an independent result.



~v in Ramanujan’s Notebooks

Scanning Berndt, we find many occurrences of
7. Some involve the logarithmic derivative (z)
of the gamma function, or the sum

H,=> 1/k,
k=1

which we can interpret as ¢(z+ 1)+ v if z is not
necessarily a positive integer (Ch. 8, pg. 181).
There are also applications of the result

H,=Ilnn+~+0(1/n)

as n — 00. See, for example, Berndt’s proof of
Ch. 14, Entry 22(iii), pg. 280: a complicated
formula involving

o0

Z cos~/an
)
“= n(cosh \/an — cos/an)

where a > 0.

Other interesting formulas involving v occur in
Chapters 14-15, e.g. Ch. 15, Entry 1,
examples (i ii), pp. 303 304.

Chapter 4, Entry 9

Due to limitations of time, we shall concentrate
on Chapter 4, Entry 9, Corollaries 1-2 (pg. 98),
because these are potentially useful for
computing . Corollary 1 is

2 (_1)k1gh
Z:: k'k ~lnz+ 7 (1)

as © — oo. In fact, Euler showed that
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and this has been used by Sweeney and others
to compute Euler’s constant (one has to be
careful because of cancellation in the series). In
Ch. 12, Entry 44(ii), Ramanujan states Euler’s
result that the error is between e=*/(1 + ) and

e */x.

A Generalization

Ramanujan’s Corollary 2, Entry 9, Chapter 4
(page 98) is that, for positive integer n,
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k=1
so (1) is just the case n = 1.

Berndt (using a result from Olver’s book)
shows that (2) is false for n > 3. In fact, the
function defined by the left side of (2) changes
sign infinitely often, and grows exponentially
large as x — oo. However, Berndt leaves the
case n = 2 open.

We shall sketch a proof that (2) is true in the
case n = 2. In fact, we shall obtain an exact
expression for the error in (2) as an integral
involving the Bessel function Jy(z), and deduce
an asymptotic expansion.

The exact expression for n = 2 is a special case
of a formula given on page 48 of Y. L. Luke,
Integrals of Bessel Functions, 1962. However,
the connection with Ramanujan does not seem
to have been noticed before.

Avoiding Cancellation

In Chapter 3, Entry 2, Cor. 2, page 46,
Ramanujan states that the sum
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occurring in (1) can be written as
—z
e Z Hkﬁ
k=0

This is easy to prove (Berndt, page 47).
Thus (1) gives

) ok 2 Lk
ZH’CE/ZQ ~ Inz + 7. (3)
k=0 k=0

This is more convenient than (1) for
computation, because there is no cancellation in
the series when « > 0. Later we indicate how
Ramanujan might have generalized (3) in much
the same way that he attempted to

generalize (1).



Ramanujan’s Corollary for n = 2

The following result! shows that (2) is valid for
n = 2. Recall that
(o)
(=1)*(z/2)*
Tl) =2 —

k=0

is a Bessel function of the first kind and order
Zero.

Theorem 1 Let

Then, for real positive x,

_ [* @)
e(z) = /2I " dt.

'R. P. Brent, Austral. Math. Soc. Gazette, to appear.
Also Report CMA-MRO02-93, ANU, Feb. 1993. Avail-
able by ftp from dcssoft.anu.edu.au in the directory
pub/Brent.

Sketch of Proof. Proceed as on pg. 99
of Berndt, and use the fact that

o et — Jo(2t) B
/0 (%) dt = 0. (4)

A slightly more general result than (4) is given
in equation 6.622.1 of Gradshteyn and Ryzhik,
and is attributed to Nielsen. An independent
proof is given in the Report mentioned above.

Corollary 1 Let e(x) be as in Theorem 1.
Then, for large positive z, e(z) has an
asymptotic expansion

1 iy
e(z) = S <cos <2x + Z) +

13sin (2z + §) +o(i>>.

162 x?

We see that, for computational purposes, it is
much better to take n =1 than n =2 in (2),
because the error for n = 1 is O(e™"/x).
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A Different Generalization

We obtained (2) from (1) by replacing z*/k! by
(z*/ED™ /n. A similar generalization of (3) is

0 zk n oo [k n
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as © — 00. (3) is just the case n = 1.

It is easy to show that (5) is valid for all
positive integer n. An essential difference
between (2) and (5) is that there is a large
amount of cancellation between terms on the
left side of (2), but there is no cancellation in
the numerator and denominator on the left side
of (5). The function (z*/k!)" acts as a
smoothing kernel with a peak at k ~ z —
Since

1
3

Hy=Ink 4+~ +O(1/k),

the result (5) is not surprising. What may be
surprising is the speed of convergence.
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Speed of Convergence

Brent and McMillan (Math. Comp. 34 (1980),
305-312) show that

[e’¢] .Tk n [e’¢] .CCk n .
kZ::OHk (F> /kz_%(u) = Inz+y+0(e” %)
(6)

as r — 0o, where

1, ifn=1;
o= 2nsin®(7/n), ifn > 2.

In the case n = 2, (6) has error O(e~**). Brent
and McMillan used this case with z ~ 17,400 to
compute v to more than 30,000 decimal places.
From Corollary 1, the same value of z in (2)
would give less than 8-decimal place accuracy.
Also, more than 15,000 decimal places would
have to be used in the computation to
compensate for cancellation of terms

Qi (e?/z?) in (2) !

The case n = 3 of (6) is interesting because
max ¢, = c3 = 4.5. However, no one seems to
have used n > 2 in a serious computation of .
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Suggestion for Further Work

Our analysis has assumed that n in (2) and (6)
is a positive integer. It would be interesting to
consider the behaviour of the functions
occurring in these equations for positive but
non-integral values of n, especially in the range
1<n<2.

Conclusion

We did not succeed in proving that v is
irrational, or in finding better algorithms for
computing 7, but the quest was worthwhile
because it provided an excellent motivation to
read Ramanujan’s papers and Notebooks.
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