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Abstract
A parallel sorting algorithm is presented for storage-e�cient internal sorting on

MIMD machines. The algorithm �rst sorts the elements within each node using a serial
sorting algorithm, then uses a two-phase parallel merge. The algorithm is comparison-
based and requires additional storage of order the square root of the number of elements
in each node. Performance of the algorithm on two general-purpose MIMD machines,
the Fujitsu AP1000 and the Thinking Machines CM5, is examined. The algorithm is
suitable for implementation on special-purpose parallel machines, e.g. parallel database
machines.
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1: Introduction and Aims

There is a large literature on parallel sorting { see, for example, [1, 2, 9] and the references
given there. Many of these papers have dealt with the problem from a theoretical point
of view, neglecting issues which are important in a practical implementation of a parallel
sorting algorithm [3, 7]. This paper describes a fast, practical parallel sorting algorithm
which has been implemented on several MIMD machines and used in applications such
as speech recognition and text retrieval. We aimed for an algorithm with the following
properties.

1. Speed. The algorithm is competitive with the fastest known algorithms.

2. Good memory utilisation. The number of elements that can be sorted is close to the
number that can be stored in the memory of the machine.

3. Flexibility. No restrictions are placed on the number of records to sort or the number
of processors.

4. Determinism. The algorithm does not use a random number generator.

5. Comparison-based. The only operation used on keys is binary comparison.
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Property 2 is especially important for special-purpose machines on which a single ap-
plication may occupy the whole machine. This memory utilisation constraint rules out
the usual implementations of radix sort and sample sort, which require workspace at least
equal to the original data size. Property 4 rules out methods such as sample-sort, which
depend on taking a pseudo-random sample of the input data. Property 5 rules out methods
such as radix sort.

Our algorithm �rst sorts the records within each processor using a fast serial sorting
algorithm, and then a two-phase parallel merge is performed. The �rst merge phase is very
e�cient and \almost" sorts the data. The second merge phase is guaranteed to sort, and
is e�cient when operating on data which is almost sorted. Working storage requirements
are negligible (of the order of the square root of the number of elements in each node).

Our algorithm is similar in many respects to parallel shellsort [4], but contains a number
of new features. For example, the memory overhead is considerably reduced.

An overview of the algorithm is given in Section 2. Because of space limitation, many
details had to be omitted from this paper, but they may be found in [11], which is avail-
able by anonymous ftp. The performance of our implementations on two MIMD parallel
machines, the Fujitsu AP1000 and the Thinking Machines CM5, is discussed in Section 3.

1.1: Notation

P is the number of nodes (also called cells or processors) available on the parallel machine,
and N is the total number of elements to be sorted. Np is the number of elements in a
particular node p (0 � p < P ).

Elements within each node of the machine are referred to as Ep;i, for 0 � i < Np and
0 � p < P .

When giving \big O" time bounds we usually assume that P is �xed. Thus, we do not
usually distinguish between O(N) and O(N=P ).

Speedup and e�ciency are de�ned as usual (see Section 3.1.).

1.2: Restrictions

The only operation assumed to be de�ned between elements is binary comparison, written
with the usual comparison symbols. For example, A < B means that element A precedes
element B. The elements are considered sorted when they are in non-decreasing order
in each node, and non-decreasing order between nodes. More precisely, this means that
Ep;i � Ep;j for all relevant i < j and p, and that Ep;i � Eq;j for 0 � p < q < P and all
relevant i; j.

We restricted ourselves to algorithms for sorting elements of a �xed size, because of
the di�culties of pointer representations between nodes in a MIMD machine. In short, we
were aiming to produce a parallel equivalent of the qsort() C library function.

To obtain good memory utilisation when sorting small elements, we avoided represen-
tations using linked lists. Thus, the lists of elements referred to below are implemented
using arrays, without any storage overhead for pointers.



1.3: Hardware

For purposes of illustration we examine the performance of implementations of the parallel
sorting algorithm on two parallel MIMD computers.

� Fujitsu AP1000 [5]. This machine contains 128 Sparc scalar nodes connected on
an 8 by 16 torus. Node to node communication is performed by hardware, using
wormhole routing. Each node has 16Mb of local memory and all are connected to a
host workstation via a relatively slow connection.

� Thinking Machines CM5 [13]. This machine contains 32 Sparc scalar nodes connected
by a communication network that has the topology of a tree. Each Sparc node has
two vector processors which are time-sliced to emulate four virtual vector processors.
Each virtual vector processor controls a bank of 8Mb of memory, giving the Sparc
node access to a total of 32 Mb of memory. In our algorithm no use is made of the
vector processors other than as memory controllers.

Both machines support a general message-passing model as well as a wealth of broadcast
and other communications primitives. Our implementation of parallel sorting only uses
a subset of message passing primitives common to both machines, and for this reason it
should be relatively easy to port to other MIMD machines.

There are a number of small but signi�cant implementation di�erences in the individual
nodes of the two machines {

� The clock speed is 32 MHz on the CM5, and 25 MHz on the AP1000.

� The cache line size is 32 bytes on the CM5, and 16 bytes on the AP1000.

� The cache size is 64KB on the CM5, and 128KB on the AP1000.

It will be apparent from the description below that our algorithm is ideally suited to
a machine with a hypercube topology. Neither the CM5 nor the AP1000 has a hypercube
topology, so communication patterns which would not cause network contention on a
hypercube may cause contention on the CM5 or the AP1000. This does not have a serious
impact on performance (see Section 3).

2: The Algorithm

The algorithm has four distinct phases (pre-balancing, serial sorting, primary merging,
and cleanup). The primary merging and cleanup phases both use the merge-exchange
operation. In Sections 2.1 to 2.5 below, we outline the purpose and implementation of
each phase, and describe the merge-exchange operation.

The pre-balancing and primary merging phases are logically unnecessary, and could in
principle be omitted. They are included to improve the performance. Without them, the
algorithm would still sort, but much more slowly.

The algorithm starts with a number of elements N assumed to be distributed over P
processing nodes. No particular distribution of elements is assumed and the only restric-
tions on N and P are those imposed by the physical constraints of the machine.



2.1: Pre-Balancing

The pre-balancing phase moves elements between the nodes so as to achieve as close to
an even distribution as possible. This phase is desirable to minimise the load imbalance
between nodes in later phases of the algorithm. The balancing is achieved by exchanging
elements between pairs of nodes. The communication pattern corresponds to the edges of
a hyper-cube in the case that the number of nodes is a power of 2. This method produces
approximately N=P elements in each node, with an error of order logP for each node if
the number of nodes is a power of 2.

In applications where the distribution of elements across nodes is known in advance to
be well-balanced, or on machines for which simulation of a hyper-cube is expensive (e.g.
a 1D or 2D systolic array without wormhole routing), the pre-balancing phase could be
omitted.

2.2: Serial Sorting

In the serial sorting phase there is no communication between nodes, but a fast comparison-
based serial sorting algorithm is applied to the elements in each of the nodes. At the end
of this phase the data is in the form of P sorted lists of elements, with approximately N=P
elements in each list.

The best serial sort is machine-dependent. The method chosen (after some experi-
mentation) for our implementation on Sparc nodes was a combination of quicksort and
insertion sort1.

2.3: Primary Merging

The data is considered almost sorted if it is possible to complete the sorting process in a
small proportion of the overall time for the algorithm. The aim of the primary merging
phase of the algorithm is to almost completely sort the data in a very e�cient manner.
This phase maintains the balancing of the lists between the nodes, and each of the lists
remains sorted.

The communication pattern of the primary merging phase is similar to that of the pre-
balancing phase. A merge-exchange operation is performed between nodes in a pattern
that reduces to the edges of a hypercube if P is a power of 2. This means that each node
must perform log2 P merge-exchange operations. The use of this hypercube pattern of
merging guarantees that each node has about the same amount of work to do at each step.
In practice this reduces the load imbalance between the nodes almost to nil and allows the
algorithm to achieve a high parallel e�ciency.

It is possible to omit the primary merging phase, but (at least on the AP1000 and
CM5) this increases the overall sorting time.

On a machine for which simulation of a hypercube is expensive, e.g. a 2D systolic array
without wormhole routing, a di�erent communication pattern could be used. There is
a wide choice because there is no need to guarantee that the output is sorted after the
primary merging phase.

1The implementation is a highly optimised adaptation of code written by the Free Software Foundation
for the GNU project. It was found to perform up to twice as fast as the standard C library function qsort().



2.4: Cleanup

The aim of the cleanup phase is to guarantee that the data is completely sorted, while con-
suming very little time for data that is almost sorted. The algorithm chosen was Batcher's
merge-exchange2 algorithm [6, Sec. 5.2.2]. The algorithm is actually a generalisation of
Batcher's merge-exchange algorithm, in that it operates on lists of elements rather than
on single elements. The generalisation is straightforward, and the proof of its correctness
is given in [6, problem 5.3.4.38]. It is important to note that the proof requires the lists
to have equal sizes, and small examples show that this restriction is necessary. However, a
device known as in�nity-padding (described in detail in [11]) allows us to circumvent this
restriction by implicitly padding the lists with \1 elements".

The cleanup algorithm de�nes a pattern of merge-exchange operations which merge
already-sorted lists of elements into completely sorted order. The algorithm takes
O((logP )2) steps on each of the nodes, and uses the same merge-exchange algorithm
that is used for the primary merging phase.

For reasons described in [11] the algorithm is very e�cient if the data is almost sorted
(this would not be true if we used Batcher's bitonic sort). In practice the cleanup is found
to take only a small proportion of the total time (see Section 3.4).

On some architectures Batcher's merge-exchange algorithm may not be the best choice.
For example, on a systolic array it would be preferable to use an algorithm which required
only nearest-neighbour communication. One such variation is described in [12].

2.5: Merge-Exchange

Suppose that p1 < p2. A merge-exchange between nodes p1 and p2 results in node p1
having all its elements less than or equal to those in the node p2, while maintaining the
ordering of elements within the nodes. The e�ciency of the merge-exchange algorithm has
a large in
uence on the overall e�ciency of the parallel sorting algorithm.

It is important that the merge-exchange algorithm should not use an excessive amount
of temporary storage, which would severely limit the number of elements that could be
sorted on a given hardware con�guration. Our algorithm requires 3

p
N=P elements of

temporary storage, which is a trivial amount in practice.
The �rst part of the merge-exchange algorithm is to determine exactly how many

elements from node p2 will be required by node p1 and vice versa. This is completed in at
most log2 (N=P ) steps, where each step requires one comparison and the transfer of one
element from node p2 to p1.

The next part is to transfer the elements between the nodes. This must be done so
that the space freed by moving elements from p1 to p2 can be used to contain the elements
coming from p2. The results of the �rst part allow this to be performed without the
allocation of additional memory.

In order to minimise working storage requirements, we devised a merge algorithm
which operates on lists of blocks of elements. This algorithm requires approximately N=P
memory movements and 3

p
N=P elements of additional storage. An important special

case occurs when the sizes of the two lists are very di�erent. Our algorithm is designed
to be particularly fast in this case. Details of this algorithm are discussed in [11], and a
possible improvement is given in [12].

2Not to be confused with Batcher's bitonic sorting algorithm [6, Sec. 5.3.4].



3: Performance

3.1: Estimating the Speedup

Speedup is usually de�ned to be the ratio of the time taken to solve the problem on a
single node (using the best known algorithm) to the time taken by the parallel algorithm.
E�ciency is de�ned to be speedup divided by the number of nodes. There is a di�culty in
measuring the speedup in practice, due to the limited memory available on each node. The
parallel sorting algorithm only performs at its best for values of N which are far beyond
that which a single node on the CM5 or AP1000 can hold. To overcome this di�culty, we
have extrapolated the timing results of the serial algorithm to larger N . Thus the speedup
is measured by comparing the parallel algorithm with the best serial algorithm running on
a hypothetical node with very large memory.

The quicksort/insertion-sort algorithm has an asymptotic average run time of order
N logN . However, there are signi�cant contributions of lower asymptotic order to the run
time. To estimate these contributions we performed a least squares �t of the form:

time(N) = a+ b logN + cN + dN logN:

The results of this �t are used to extrapolate the run time to problems which are too
large to �t on a single node, and thus to estimate the speedup.

3.2: Timing Results

Several runs have been made on the AP1000 and CM5 to examine the performance of the
sorting algorithm. Figure 1 shows the performance of the algorithm for sorting random
32-bit integers on the 128-node AP1000. The sorting speed (in millions of elements per
second) is plotted versus the total number (N) of 32-bit integers being sorted. N ranges
from values which would be easily dealt with on a workstation, to those at the limit of the
AP1000s memory capacity (2 Gbyte). For this example the comparison function was put
inline to reduce function call overheads.

Shown on the same graph is the performance of a hypothetical serial computer that
operates P times as fast as the P individual nodes of the parallel computer. For small N ,
this performance is calculated by sorting the elements on a single node and multiplying
the observed speed by P . For large N , extrapolation is used, as described in Section 3.1.

The graph shows that the performance of the sorting algorithm increases up to N '
4� 106, and slowly falls o� for larger N . The roll-o� point corresponds to the number of
elements that can be held in the 128KB cache of each node (i.e. 4 Mbytes overall cache).
The algorithm achieves an e�ciency of about 75% for large N .

A similar result for sorting 16-byte random strings is shown in Figure 2. In this case the
comparison function is the C library function strcmp(). The roll-o� point is now N ' 106,
again corresponding to the cache size.

The performance for 16-byte strings is approximately 6 times worse than for 32-bit
integers. This is because each data item is 4 times larger, and the cost of the function call
to strcmp() is much higher than the cost of an inline integer comparison. The speedup is
higher than that achieved for the integer sorting. The e�ciency is close to 85% for large N .
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Figure 1: Sorting 32-bit integers on the AP1000

3.3: Scalability

Figure 3 shows the e�ciency for sorting 105P 16-byte strings on the AP1000 as the number
of nodes P is varied. Because the number of strings per node is constant, the cache size
does not in
uence the shape of the graph.

The e�ciency decreases as P increases, because communication costs and load imbal-
ances become signi�cant. The graph 
attens out for larger P , which indicates that the
algorithm should have a high e�ciency when P > 128.

The two curves in Figure 3 show the trend when all con�gurations are included, and
when only con�gurations with P a power of 2 are included. The di�erence between these
two curves clearly shows the preference for powers of two in the algorithm. There are also
slight preferences for P the sum of adjacent powers of two (e.g. P = 48), and for even P
over odd P .

3.4: Time Breakdown

Figure 4 shows the proportion of time used by each phase when sorting N 16-byte strings
on the AP1000, for a range of values of N . The prebalancing phase is not shown in Figure 4,
since it takes a negligible time unless the data is initially very badly balanced.

For large N the serial sort of the elements in each cell is the most time-consuming
phase. This is as expected, because this phase of the algorithm has a theoretical average
time of �(N logN), whereas all other phases of the algorithm are O(N). This observation
also explains the high e�ciency of the algorithm.
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Figure 2: Sorting 16-byte strings on the AP1000

It is interesting to observe the small proportion of time taken by the cleanup phase for
large values of N . This demonstrates that the primary merge produces an almost sorted
data set, and that the cleanup phase takes advantage of this.

3.5: CM5 vs AP1000

The results presented so far are for the 128-node AP1000. It is interesting to compare
this machine with the CM5 to see if the relative performance is as expected. To make
the comparison fairer, we compare the 32-node CM5 with a 32-node AP1000 (the other
96 nodes are physically present but not used). Since the CM5 vector units are not used
(except as memory controllers), we e�ectively have two rather similar machines. The same
C compiler was used on both machines.

The AP1000 is a single-user machine and the timing results obtained on it are very
consistent. However, it is di�cult to obtain accurate timing information on the CM5.
This is a consequence of the time-sharing capabilities of the CM5 nodes. Communication-
intensive operations produce timing results which vary by a large factor from run to run.
To overcome this problem, the times reported here are for runs with a very long time
quantum for the time sharing, and with only one process on the machine at one time.
Even so, we have ignored occasional anomalous results which take much longer than usual.
This means that the results are not strictly representative of results that are regularly
achieved in a real application.

Table 1 shows the time taken by the various parts of the sorting algorithm on the
32-node AP1000 and CM5. In this example we are sorting 8 million 32-bit integers.
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Figure 3: Scalability of sorting on the AP1000

The communication and idle times are about equal, but the CM5 is faster than the
AP1000 on CPU-intensive operations. This is because of the higher clock speed (32MHz
versus 25MHz), the di�erent cache line sizes, and the higher memory bandwidth of the
CM5. For a more detailed discussion, see [11].

The results illustrate the signi�cance of minor architectural di�erences. On the other
hand, the di�erent connection topologies of the two machines are not re
ected in signif-
icantly di�erent communication times. This suggests that the parallel sorting algorithm
presented here can perform well on a variety of parallel machine architectures with di�er-
ent communication topologies. Our code has recently been ported to a 64-node NCUBE2,
which has a hypercube topology, and is reported to perform well [8].

Task CM5 time AP1000 time
Idle 0.22 0.23

Communicating 0.97 0.99
Merging 0.75 1.24

Serial Sorting 3.17 4.57
Rearranging 0.38 0.59

Total 5.48 7.62

Table 1: Sort times (seconds) for 8 million integers
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Figure 4: Timing breakdown by phase

4: Conclusions

We have presented a practical general-purpose parallel internal sorting algorithm that
comes close to achieving the best possible speedup over an optimised serial algorithm. The
algorithm is suitable for implementation on special-purpose, application-speci�c machines,
or on general-purpose parallel machines. An implementation of the algorithm on two
commercial machines has been discussed.

The algorithm derives its generality from the fact that it is comparison-based, and al-
lows for a user-supplied comparison function. This corresponds to the commonly available
serial sorting procedures that are the mainstay of internal sorting on serial computers.

The algorithm is frugal in its memory requirements, which allows data to be sorted
almost to the limit of a parallel machine's memory. This is important, because it is
unreasonable to expect data sets being sorted on a parallel machine to occupy only a small
fraction of the machine's memory.

Acknowledgements

Support from Fujitsu Laboratories, Fujitsu Limited, and Fujitsu Australia Limited via the
Fujitsu-ANU CAP Project is gratefully acknowledged. Andrew Tridgell was supported by
an ATERB postgraduate scholarship.



References

[1] M. Ajtai, J. Kolmos and E. Szermeredi, \Sorting in c log n parallel steps", Combina-
torica 3, 1983, 1-19.

[2] S. G. Akl, Parallel Sorting Algorithms, Academic Press, Toronto, 1985.

[3] G. E. Blelloch, C. E. Leiserson, B. M. Maggs, C. G. Plaxton, S. J. Smith and
M. Zagha, \A comparison of sorting algorithms for the Connection Machine CM-
2", Proc. Symposium on Parallel Algorithms and Architectures, Hilton Head, South
Carolina, July 1991.

[4] G. C. Fox, M. A. Johnson, G. A. Lyzenga, S. W. Otto, J. K. Salmon and D. W. Walker,
Solving Problems on Concurrent Processors, Volume 1, Prentice-Hall, Englewood
Cli�s, New Jersey, 1988.

[5] H. Ishihata, T. Horie, S. Inano, T. Shimizu and S. Kato, \CAP-II Architecture",
Proc. First Fujitsu-ANU CAP Workshop (edited by R. P. Brent and M. Ishii), Fujitsu
Research Laboratories, Kawasaki, Japan, November 1990.

[6] D. E. Knuth, The Art of Computer Programming, Volume 3: Sorting and Searching
(second edition), Addison-Wesley, Menlo Park, 1981.

[7] L. Natvig, \Logarithmic Time Cost Optimal Parallel Sorting is Not Yet Fast in
Practice!", Proc. Supercomputing 90, IEEE Press, 1990, 486-494.

[8] T. Rashid, personal communication, March 1993.

[9] H. H. Reif and L. G. Valiant, \A logarithmic time sort for linear size networks",
J. ACM 34, 1987, 60-76.

[10] K. Thearling and S. Smith, \An Improved Supercomputing Sorting Benchmark",
Proc. Supercomputing 92, IEEE Press, 1992, 14-19.

[11] A. Tridgell and R. P. Brent, An Implementation of a General-Purpose Parallel Sort-
ing Algorithm, Report TR-CS-93-01, CS Lab, ANU, February 1993, 24 pp. Avail-
able by anonymous ftp from andosl.anu.edu.au (Internet number 150.203.15.95) in
the directory pub/tridge/sorting/par sort, and from dcssoft.anu.edu.au in the
directory pub/Brent.

[12] B. B. Zhou, R. P. Brent and A. Tridgell, E�cient Implementation of Sort-
ing Algorithms on Asynchronous Distributed-Memory Machines, Technical Report
TR-CS-93-06, CS Lab, ANU, March 1993. Available by anonymous ftp from
dcssoft.anu.edu.au in the directory pub/Brent.

[13] CM-5 Technical Summary, Thinking Machines Corporation, October 1991.


