
E�cient Implementation of Sorting Algorithms on
Asynchronous Distributed-Memory Machines�

Zhou B. B., Brent R. P. and Tridgell A.y
Computer Sciences Laboratory

The Australian National University
Canberra, ACT 0200, Australia

Report TR-CS-93-06
March 1993

(revised May 1993)

Abstract

The problem of merging two sequences of elements which are stored separately in two pro-
cessing elements (PEs) occurs in the implementation of many existing sorting algorithms. We
describe e�cient algorithms for the merging problem on asynchronous distributed-memory
machines. The algorithms reduce the cost of the merge operation and of communication,
as well as partly solving the problem of load balancing. Experimental results on a Fujitsu
AP1000 are reported.

1 Introduction

This paper considers an important aspect of parallel sorting algorithms on asynchronous dist-
ributed-memory machines. The algorithms of interest to us �rst perform a local sort on each
processing element (PE), then perform a sequence of merges to globally sort the data. Each
merge involves pairs of PEs. The two PEs in a pair merge their two sorted sequences, and
each PE keeps half of the merged sequence. It is known that this \merge-split" scheme can be
applied to achieve high e�ciency if a large sorting problem is to be solved on a machine with
many relatively small processing elements [1, 3].

The most straightforward method for merging is �rst to transfer a sequence of elements from
one PE to the second PE, then to merge the two sequences in the second PE, and �nally to
transfer the upper half (or lower half) back to the �rst PE. This method is ine�cient, both
because of its memory requirements, and because of the load imbalance { only one PE in each
pair is active during the merging. The e�ciency can be improved by taking advantage of the
following observations.

To merge two sequences of elements, it is only necessary for each PE to transfer a portion of
its sequence to the associated PE. In many sorting methods, e.g., odd-even transposition sort [3],
Batcher's merge-exchange sort [2], and parallel Shell sort [6], the entire set of elements becomes
more nearly sorted after each iteration, so the portion of the sequence to be transferred from
a PE tends to decrease. If we have an algorithm which can e�ciently �nd the exact number
of elements to be transferred between any pair of PEs, we may reduce the cost of the merge
�Copyright c
 1993, the authors.
yE-mail addresses: fbing,rpb,tridgeg@cslab.anu.edu.au rpb142tr typeset using LaTEX



operation and communication, as well as partly solving the problem of load balancing. This idea
was used by Tridgell and Brent [7]. They introduced an algorithm �nd exact that �nds the exact
number of elements to be transferred in log2N communication steps, where N is the length of
the sequence stored in each PE's local memory. At each communication step one element is
sent and received by each PE. The algorithm works well on distributed memory machines such
as the Thinking Machines CM5 and the Fujitsu AP1000, because these machines have a small
\startup" time for communication and a small message latency, so the time for running the
�nd exact procedure is small in comparison to the total communication time. On a machine
with a high message latency, the algorithm would be costly. In this paper we introduce a new
algorithm (Algorithm 2 below), which requires only log�N communication steps (for � � 2) to
�nd the exact number of elements to transfer, if we allow � � 1 elements to be transferred at
each step. By properly choosing �, the running time of the algorithm can be reduced.

In Section 2 algorithms for �nding the exact number of elements to be transferred are de-
rived. Experimental results on the Fujitsu AP1000 are given in Section 3. We use the odd-even
transposition sorting method as an example to show the e�ciency gained by using the algo-
rithm. The odd-even transposition sort requires only nearest-neighbour communication in a
one-dimensional array, so is applicable to most special-purpose machines with restricted com-
munication topologies. Conclusions are drawn in Section 4.

2 Algorithms

To simplify our discussion, we assume in the following that the elements are distinct, are sorted
in increasing order in each PE, and that each PE has the same number (N) of elements. A pro-
cessing element is referred to as PE1 (or PE2) if it stores the �rst half (or the second half) of
the total elements after a merge. The elements in each PE are enumerated from 0 to N � 1.
The (k + 1)th element in PE1 (or PE2) is referred to as ek (or e0k), for 0 � k < N .

In the following Lemma we set e�1 and e0�1 to �1 and eN and e0N to +1 so that the
inequalities still hold in two extreme cases when K = 0, that is, no element in PE1 is smaller
than any element in PE2; and when K = N , that is, no element in PE1 is greater than any
element in PE2.

Lemma 1 To merge two sorted sequences of N elements each stored in one PE, the exact
number of elements to be transferred between the two PEs is N � K, for 0 � K < N , if and
only if the following inequalities are satis�ed:(

eK > e0N�K�1;
eK�1 < e0N�K :

(1)

Proof. Our aim is to merge two sorted sequences and store the �rst half in PE1 and the second
half in PE2. Suppose that K is chosen so that the two inequalities in (1) are satis�ed. Since the
original sequences are sorted, we have eK > eK�1 and e0N�K > e0N�K�1. We transfer the last
N �K elements from PE1 to PE2 and the �rst N �K elements from PE2 to PE1. It is easy to
see that, after the transfer, the largest element in PE1 is max(eK�1; e0N�K�1), and the smallest
element in PE2 is min(eK ; e0N�K). Thus, no element in PE1 is greater than any element in PE2.
On the other hand, if K is chosen so that either of the two inequalities in (1) is not satis�ed,
there must be at least one element in PE1 that is greater than the smallest element in PE2 after
the transfer.

2



Corollary 1 Given an arbitrary index k, 0 � k < N , we have(
ek < e0N�k�1 if 0 � k < K;
ek > e0N�k�1 if K � k < N: (2)

0

K�1
K

k

N�1

0

N�K�1
N�K

N�k�1

N�1

0

K�1
K

k

N�1

(a) K � k < N

N�K�1

0

N�k�1

N�K

N�1

(b) 0 � k < K

Figure 1: A graphical expression of Corollary 1.

Proof. An illustration of the proof is given in Fig. 1. The two vertical lines represent the two
sequences, while an arrow line pointing from the left (or right) sequence to the right (or left)
sequence indicates ex > e0N�x�1 (or ex < e0N�x�1). Assume that there is an index k for k � K.
We have ek � eK and e0N�K�1 � e0N�k�1, since the original sequences are sorted. However, it
is known from (1) that eK > e0N�K�1. Thus the element ek must be greater than e0N�k�1. The
proof for the �rst inequality is similar.

Corollary 2 The index K in (1) is unique.

Proof. Suppose that there is another index K 0 satisfying the inequalities (1), as shown in
Fig. 2. If K 0 > K, we have K 0 � 1 � K, and thus the element eK0�1 is greater than e0N�K0 ,
by Corollary 1. Similarly, eK0 is smaller than e0N�K0�1 if K 0 < K. In either case the result is a
contradiction. Thus K 0 satis�es the inequalities (1) if and only if K 0 = K.

Algorithm 1

Using the above lemmas, a simple \bisection" algorithm can be derived to �nd the exact number
of elements to be transferred between two PEs, or more speci�cally, to �nd the unique index K
which satis�es the inequalities (1). We outline the algorithm.

At any stage the index K is known to lie in a certain range. The boundary indices, that
is, the �rst and last elements of the range, are called top and bottom respectively1. Thus, K
is known to be in (top; bottom]. PE1 sends the middle element of the interval, emid , to PE2.

1Note that with our conventions top � bottom.

3



0

K

K 0

N�1

K�1

K 0�1

0

N�K 0N�K 0�1

N�K�1
N�K

N�1

0

N�K 0

N�K�1
N�K

N�1

N�K 0�1

(a) K 0 > K (b) K 0 < K

0

K

K 0
K 0�1

K�1

N�1

Figure 2: A graphical expression of Corollary 2.

This element is then compared with e0N�mid�1 in PE2, and the result is sent back to PE1. If
e0N�mid�1 is greater than emid , the index K must be in the half-open interval (mid, bottom];
otherwise it must be in the half-open interval (top, mid], by Corollary 1. This is illustrated in
Fig. 3. In either case the interval (top, bottom] can be updated.

The procedure is applied until there is only one element in the interval. It is easy to see that
dlog2Ne steps2 are required to �nd the index K.

This algorithm was derived by Tridgell and Brent [7], and has been implemented on both
the CM5 and the Fujitsu AP1000. The results are good because both machines have a small
message latency, so the time for �nding K is small in comparison with the total communication
time. On a machine with a high message latency, the communication costs due to multiple small
messages would be considerable.

A modi�cation of Algorithm 1 can reduce the search interval by more than a factor of two
at each step, and thus reduce communication startup costs. The modi�cation follows from
Lemma 2. In the lemma, if ek > e0N�top�1, we de�ne k0 = top, and if ek < e0N�bottom�1, we
de�ne k00 = bottom.

Lemma 2 Suppose that K is within the interval (top; bottom] and that k is an index in the
interval. If ek is greater than e0N�k�1 and e0N�k0�1 is the �rst element in PE2 which is greater
than ek for k0 in the interval and k0 < k, then index K must be in the half-open interval (k0; k].
If ek is smaller than e0N�k�1 and e0N�k00�1 is the �rst element in PE2 which is smaller than ek
for k00 in the interval and k < k00, then index K must be in the half-open interval (k; k00].

Proof. We only prove the case ek < e0N�k�1. The proof for ek > e0N�k�1 is similar. Since
ek < e0N�k�1, we have k < K by Corollary 1, and so eK�1 � ek. We know from (1) that
e0N�K > eK�1, so e0N�K > ek. Since ek > e0N�k00�1, we also have e0N�K > e0N�k00�1. Thus
ek00 > e0N�k00�1 and K � k00 by Corollary 1. This gives k < K � k00 (see Fig. 4).

2A single step requires communication in both directions between PE1 and PE2. By alternating the roles of
PE1 and PE2, s steps could be performed with s+ 1 communications.

4



(a) emid < e0N�mid�1 (b) emid > e0N�mid�1

K�1
K

mid

top

N�1
bottom

0

�
N�KN�K�1

N�mid�1

N�top�1

N�bottom�1

N�1

�

�

�
N�K�1
N�K
N�mid�1

N�bottom�1

N�top�1

N�1

0 0

mid
K�1
K

N�1

top

bottom

0

�

�

�

�

Figure 3: Deciding the new search interval for the next step.

Using Lemma 2, a search procedure is required at each step in order to �nd the index k0
or k00. Since the search interval may be reduced by more than half, the number of steps may be
less than the number required by Algorithm 1. Note that the number of steps may still be close
to log2N in the worse case, which may occur when K is close to 0 or N � 1. In next paragraph
we describe a new algorithm (Algorithm 2), in which � � 1 elements (� � 2) are allowed to be
transferred from PE1 to PE2 at each step, and the total number of steps is about log�N . By
properly choosing �, the time to �nd K can be reduced signi�cantly.

Algorithm 2

Divide the search interval into � smaller intervals with each of these intervals containing ci
elements. We may obtain � � 1 elements in PE1. The original index of the �rst of these
elements is top + c1, and the original index for the lth element is

Pl
i=0 ci, where c0 = top. The

� � 1 elements are sent from PE1 to PE2. Once the elements are received by PE2, a similar
procedure to that for �nding the exact number described previously is applied to �nd, from the
�� 1 elements, the index of the kth element which satis�es the two inequalities(

eL > e0N�L�1
eL�ck < e0N�(L�ck)�1

(3)

where eL is the kth element and L is its original index. Likewise eL�ck is the (k � 1)th element
and L � ck is its original index. The only di�erence between this procedure and Algorithm 1
is that all computations are performed locally and no extra communication is required in the
procedure since the �� 1 elements have already been sent from PE1 to PE2.

Lemma 3 If the above procedure is applied, the index K must be in the half-open interval
(L� ck; L].

Proof. We prove that the two inequalities (3) cannot both be satis�ed if index K is not in the
interval. If L < K�1, we have eL < e0N�L�1 by Corollary 1. We also have eL�ck > e0N�(L�ck)�1

5



k0

K
K�1

N�1

k

0

N�K

N�1

N�k�1

N�k"�1
N�K�1

0

N�1

0

k"
K

K�1

k

(a) ek < e0N�k�1 (b) ek > e0N�k�1

N�k�1

N�K�1
N�K

N�1

0

N�k0�1

Figure 4: A graphical expression of Lemma 2

if L�ck > K. It is easy to see that in either case the inequalities in (3) cannot both be satis�ed.
Therefore, index K must be in the interval L� ck < K � L.

Since � � 1 elements are sent to PE2 at each step, a much smaller search interval can be
decided for the next step, and the total number of steps required to �nd the exact number is
decreased. Supposing that all intervals have equal size at each step, the total number of steps is
only log�N . If � is not very large, the \startup" time for communication will be dominant in the
running time of Algorithm 2. Therefore, Algorithm 2 will be more e�cient than Algorithm 1, by
a factor of about log2 �. Our experimental results on the Fujistu AP1000 con�rm this prediction.

It is worth noting that the two algorithms are exactly the same if � is set to one and the
two intervals at each step are equally divided in Algorithm 2. Therefore, Algorithm 1 is just a
special case of Algorithm 2.

3 Experimental Results

We use the odd-even transposition sort as an example to show that the e�ciency can be gained
by adopting the algorithms described in Section 2. Our experimental results were obtained on
the Fujitsu AP1000 located at the Australian National University. The Fujitsu AP1000 is a
distributed memory MIMD machine with up to 1024 independent 25 MHz SPARC processors
for processing elements. (Our machine has 128 PEs.) Each PE has 16 MByte of dynamic
RAM and 128 KByte cache. The topology of the machine is a torus, with hardware support
for wormhole routing. The communication network (T-net) provides a theoretical bandwidth of
25 Mbyte/sec between PEs, and in practice about 6 MByte/sec is achievable. For details of the
AP1000 architecture and software environment see [4, 5].

The odd-even transposition sort is not optimal for the AP1000 (better methods are given
in [7]), but we use it because it only requires nearest-neighbour communication in a one-
dimensional array. The methods of [7] take advantage of the wormhole routing and use more
general communication patterns (for example, communication along the edges of a hypercube).

6



Table 1: Experimental results.

Problem size (millions) 1.280 5.120 10.24 12.80 25.60 38.40 51.20 64.00
Program 1 time (sec.) 12.58 58.57 118.8 148.9 298.0 447.4 596.7 746.0
Program 2 time (sec.) 6.688 29.96 61.96 77.94 156.1 235.2 313.5 394.8

In our examples the 128 PEs are con�gured as a one-dimensional array.
The original odd-even transposition sorting algorithm described in [3], and the modi�ed

algorithms that utilise Algorithms 1 and 2, have been implemented to sort large sets of 32-bit
integers on 128 PEs. The algorithms described in Section 2 work almost equally well on the
AP1000 for moderate values of �. This is because the AP1000 has a small message latency (less
than 100 �sec). Thus, the cost of �nding K is only a small portion of the total communication
cost, and the overall e�ciency gained by using � > 2 is small.

Some experimental results are given in Table 1. In this table \Program 1" is the program
implemented for the original odd-even transposition sorting algorithm, and \Program 2" is a
modi�ed version which incorporates Algorithm 2 (as discussed in Section 2) with � = 10. It is
clear that the use of Algorithm 2 approximately doubles the e�ciency of the sort.

4 Conclusions

We have described several algorithms for �nding the exact number of elements to be transferred
between two PEs when merging two sequences of elements stored separately in the PEs. Al-
though the algorithms require a number of communication steps to send/receive small messages
between the PEs, a large gain in merging e�ciency can be obtained. This is because the merge
operations are performed by two PEs instead of just one PE, the computational load is better
balanced, and the cost of transferring large messages between the PEs may be reduced.

When the odd-even sorting method is implemented on the AP1000, Algorithm 1 and Algo-
rithm 2 (with � > 2 but not too large) are almost equally e�ective in reducing the merge time.
This is because the AP1000 has low message latency. The di�erence between the Algorithms 1
and 2 would be more signi�cant on a machine with a high message latency.

References

[1] S. G. Akl, Parallel Sorting Algorithms, Academic Press, Orlando, Florida, 1985.

[2] K. E. Batcher, \Sorting networks and their applications", Proc. AFIPS 1968 Spring Joint
Comput. Conf., 1968, 307{314.

[3] G. Baudet and D. Stevenson, \Optimal sorting algorithms for parallel computers", IEEE
Trans. on Computers, C{27, 1978, 84{87.

[4] R. P. Brent (editor), Proceedings of the CAP Workshop '91, Australian National University,
Canberra, Australia, November 1991.

[5] R. P. Brent and M. Ishii (editors), Proceedings of the First CAP Workshop, Fujitsu Research
Laboratories, Kawasaki, Japan, November 1990.

7



[6] G. C. Fox, M. A. Johnson, G. A. Lyzenga, S. W. Otto, J. K. Salmon and D. W. Walker,
Solving Problems on Concurrent Processors, Volume 1, Prentice-Hall, Englewood Cli�s, New
Jersey, 1988.

[7] A. Tridgell and R. P. Brent, An Implementation of a General-Purpose Parallel Sorting Algo-
rithm, Report TR-CS-93-01, Computer Sciences Laboratory, Australian National University,
February 1993.

8


