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1. I n t r o d u c t i o n  

Toeplitz linear systems arise in many applications, and there are many algo- 
rithms which solve nonsingular n x n Toeplitz systems 

A x =  b 

in O(n 2) arithmetic operat ions [2,12,44,45,49,53,54,64,66,76,77,79,80,84]. Some 
algorithms are restricted to symmetric systems ( A - - A  r)  and others apply to 
general Toeplitz systems. Because of  their recursive nature, most  O(n 2) algorithms 
assume that all leading principal submatrices of  A are nonsingular, and break down 
if this is not  the case. These algorithms are generally unstable, because a leading 
principal submatr ix  may  be poorly condit ioned even if A is well conditioned. 
Thus, stability results often depend on the assumption that A is symmetric positive 
definite, in which case the leading principal submatrices are at least as well con- 
ditioned as A. 
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Asymptotically faster algorithms exist [1,4,13,20,40,47,57,58]. Sometimes these 
algorithms are called superfast [1]. We avoid this terminology because, even 
though the algorithms require only O(n(logn) 2) arithmetic operations, they may 
be slower than O(n 2) algorithms for n < 256 (see [1,20,67]). We prefer the term 
asymptotically fast. 

The numerical stability properties of asymptotically fast algorithms are generally 
either bad [16] or unknown, although some positive partial results have been 
obtained recently [42]. Attempts to stabilise asymptotically fast algorithms by 
look-ahead techniques have been made [40], but the look-ahead algorithms 
are complicated and their worst-case behaviour is unclear. Thus, we do not con- 
sider asymptotically fast algorithms further, but restrict our attention to O(n 2) 
algorithms. 

We are concerned with direct methods for the general case, where A is any nonsin- 
gular Toeplitz matrix. In this case no O(n 2) algorithm has been proved to be stable. 
For example, the algorithm of Bareiss [2] has stability properties similar to those of 
Gaussian elimination without pivoting [9,72,75], so is unstable and breaks down if 
a leading principal minor vanishes. Several authors have suggested the introduction 
of pivoting or look-ahead (with block steps) in the Bareiss and Levinson algorithms 
[18,19,28-30,74,75], and this is often successful in practice, but in the worst case the 
overhead is O (n 3) operations. The recent algorithms of Heinig [85] and of Gohberg et 
al. [34] may in some cases be as stable as Gaussian elimination with partial pivoting, 
but an error analysis [15] indicates that in the worst case the square of the condition 
number appears in the backward error bound. 

In an attempt to achieve stability without pivoting or look-ahead, it is natural to 
consider algorithms for computing an orthogonal factorization 

A = OR (1) 

of A. The first such O(n 2) algorithm was introduced by Sweet [72,73]. Unfortu- 
nately, Sweet's algorithm depends on the condition of certain submatrices of A, 
so is unstable [8,55]. Other O(n 2) algorithms for computing the matrices Q and 
R or R -1 in (1) were given by Bojanczyk et al. [8], Chun et al. [21], Cybenko [23], 
Luk and Qiao [55,63], and Nagy [59]. To our knowledge none of them has been 
shown to be stable. In several cases examples show that they are not stable. 
Unlike the classical O(n 3) Givens or Householder algorithms, the O(n 2) algorithms 
do not form Q in a numerically stable manner as a product of matrices which are 
(close to) orthogonal. 

Numerical experiments with the algorithm of Bojanczyk, Brent and de Hoog 
(BBH for short) suggest that the cause of instability is the method for computing 
the orthogonal matrix Q; the computed upper triangular matrix k is about as 
good as can be obtained by performing a Cholesky factorization of A rA, provided 
the downdates involves in the algorithm are implemented in a certain way (see 
section 4). This result is proved in section 5. As a consequence, in section 6 
we show how the method of semi-normal equations (i.e. the solution of 
R r R x  = Arb) can be used to give a weakly stable algorithm for the solution of 
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general Toeplitz or hankel systems. The result also applies to the solution of  full- 
rank Toeplitz or Hankel  least squares problems. For  a discussion of  the rank- 
deficient case and a " look-ahead"  modification of  Cybenko's  algorithm, see [43]. 

In section 2 we introduce some notat ion and conventions. The concepts of  
stability and weak stability are defined in section 3. The Cholesky downdat ing 
problem, which arises in the BBH algorithm, is discussed in section 4. Numerical  
results are discussed in section 7, and some conclusions are given in section 8. 

If  H is a Hankel  matrix, and J is the permutat ion matrix which on premultipli- 
cation reverses the order of  the rows of  a matrix, then J H  is Toeplitz. Also, 
( j H ) r ( j H )  = H r H .  Thus, our results apply equally to Hankel  and Toeplitz 
matrices. Our results might also be extended to more general classes of  matrices 
with a displacement structure [50-52]. For  simplicity we restrict our attention to 
the Toeplitz case. 

2. N o t a t i o n  a n d  c o n v e n t i o n s  

Let 

I a! �9 �9 �9 a n _ ! ) a ~ " , .  ~ 

a! m " " " an-m 

be a real m • n Toeplitz matrix, so ai j -- aj_ i for 1 < i < m, 1 _< j <_ n. We assume 
that m >_ n and that A has rank n. Thus A r A  has a Cholesky factorization 
A r A  = R r R ,  where R is an upper triangular n x n matrix. We assume that the 
diagonal elements of  R are positive, so R is unique. Also, A -- QR, where Q is an 
m x n matrix with or thonormal  columns. 

If  the singular values of  A are o5 , . . . ,  o-,, where al >_ . . .  >_ cr, > 0, then the 
spectral condition number  of  A is 

= g 2 ( A )  = Crl/ff n. 

For  convenience in stating the error bounds,  we often assume that  Ol is of  order 
unity, which can be achieved by scaling. 

A displacement operator ~ : N T M  ~ 11~ ("- l )•  is defined as follows: for any 
m x n matrix B, ~ (B)  = C, where C is the (m - 1) x (n - 1) matrix with entries 
Cg d = bi+ l.j+ l - bid, 1 <_ i < m, 1 <_ j < n. Note that ~ B  = 0 iff B is Toeplitz. 

Let e be the machine precision. In our analysis we neglect terms of  order O(e2). 
This can be justified by considering our  bounds as asymptotic expansions in the 
(sufficiently small) parameter  e. 

It is often convenient to subsume a polynomial  in m and/or  n into the " O "  
notation, and indicate this by a subscript. Thus, an error bound of  the form 

IlEll = Om(e) 
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means that  

IIEII _< e(m)e 

for some polynomial  P and all sufficiently small e. This nota t ion  is useful because 
minor  changes in the a lgor i thm or changes in the choice of  no rm will be absorbed 
by a change in the polynomial  P(m). It is often stated (e.g. by Bj6rck [6]) that  the 
primary purpose of  rounding error analysis is insight, and insight can be aided by the 
suppression of  superfluous details. 

I f  the error  bound  depends on n then this will be ment ioned  explicitly (e.g. 
IIEII = The meaning  of  "sufficiently small"  may  depend on n. For  
example, we may  need c < 1/n 2. We distinguish several classes of  numerical  
quantities: 

1. Exact values, e.g. input  data  such as ai. 
2. C o m p u t e d  values, usually indicated by a tilde, e.g. fi;. 
3. Per turbed values given by error  analysis, usually indicated by a hat,  e.g. h;,j, 

or by the a rgument  e, e.g. ai, j(e). These are not  computed ,  but  the error 
analysis shows that  they exist and gives bounds  on their difference f rom the 
corresponding exact values. Sometimes the per turbat ions  are of  compu ted  
quantities, e.g. u~(e). 

3. S t ab i l i t y  and weak s t ab i l i t y  

In this section we give definitions of  stability and weak stability of  algori thms for 
solving linear systems. 

Consider  a lgori thms for solving a nonsingular ,  n • n linear system Ax = b, 
so m = n. There are many  definitions of  numerical  stability in the literature, for 
example [5,6,9,11,16,22,36,48,56,60,69]. Definitions 1 and 2 below are taken f rom 
Bunch [17]. 

Definition 1 
An algori thm for solving linear equat ions  is stable for a class of  matrices d if for 
each A in d and for each b the c o m p u t e d  solut ion 2 to Ax  = b satisfies A2 =/~, 
where .4 is close to A and/~ is close to b. 

Definition 1 says that,  for stability, the computed solut ion has to be the exact 
solut ion of  a problem which is close to the original problem. This is the classical 
backward stability of  Wilkinson [81-83]. We interpret  "close" to mean  close in 
the relative sense in some norm,  i.e. 

II A - AII/IIAI[ -- O.(e), II ~ - bll/llbll = o . (e ) .  (2) 

i Wilkinson [81] states " . . .  there is a danger that the essential simplicity of the error analysis may be 
obscured by an excess of detail." 
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Note that the matrix J is not required to be in the class d .  For example, z~' 
might be the class of nonsingular Toeplitz matrices, but A is not required to be a 
Toeplitz matrix. If we require A E d we get what Bunch [17] calls strong stability. 
For a discussion of the difference between stability and strong stability for Toeplitz 
algorithms, see [46,78]. 

Stability does not imply that the computed solution 2 is close to the exact 
solution x, unless the problem is well-conditioned. Provided ~e is sufficiently 
small, stability implies that 

I1 - xli/llxll--- (3) 
For more precise results, see Bunch [17] and Wilkinson [81]. 

As an example, consider the method of Gaussian elimination. Wilkinson [81] 
shows that 

IId - al l / l lh l l  = On(ge), (4) 

where g = g(n) is the "growth factor", g depends on whether partial or complete 
pivoting is used. In practice g is usually moderate, even for partial pivoting. How- 
ever, a well-known example shows that g(n) = 2 n- 1 is possible for partial pivoting, 
and recently it has been shown that examples where g(n) grows exponentially with n 
may arise in applications, e.g. for linear systems arising from boundary value 
problems. Even for complete pivoting, it has not been proved that g(n) is bounded 
by a polynomial in n. Wilkinson [81] showed that g(n) <_ n O~176 and Gould 
[38] recently showed that g(n) > n is possible for n > 12; there is still a large 
gap between these results. Thus, to be sure that Gaussian elimination satisfies 
definition 1, we must restrict sr to the class of matrices for which g is On(l). In 
practice this is not a problem, because g can easily be checked a posteriori.  

Although stability is desirable, it is more than we can prove for many useful 
algorithms. Thus, following Bunch [17], we define the (weaker, but still useful) 
property of weak stability. 

Definition 2 
An algorithm for solving linear equations is weakly  stable for a class of matrices ~r 
if for each well-conditioned A in d and for each b the computed solution 2 to 
A x  = b is such that 112 - xll/llxll is small. 

In definition 2, we take "small" to mean On(e), and "well-conditioned" to mean 
that ~(A) is On(I), i.e. is bounded by a polynomial in n. From (3), stability implies 
weak stability. 

Definition 2 could be criticised for being too vague. For example, it permits an 
error of order n~~176 In practice, when proving that an algorithm satisfies definition 
2 we usually prove something stronger. See, for example, equation (40) below. 

Define the residual r = A 2  - b. It is well-known [82] that 

1 Ilrll < tl Z - xl_______ll < llrl_ l (5) 
I lb l l -  llxll - Ilbll" 
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Thus, for well-conditioned A, - x l l / l l x l l  is small if and only if I l r l l / l lb l l  is small. 
This observation clearly leads to an alternative definition of weak stability: 

Definition 3 
An algorithm for solving linear equations is weakly stable for a class of matrices d 
if for each well-conditioned A in d and for each b the computed solution ~ to 
Ax = b is such that IIA  - b l l / l l b l l  i s  small. 

Now consider computation of the Cholesky factor R of ArA,  where A is an m x n 
matrix of full rank n. A good O(mn 2) algorithm is to compute the QR factorization 

A = OR 

of A using Householder or Givens transformations [36]. It can be shown [82] that 
the computed matrices Q, k satisfy 

A = r R ,  (6) 

where 6 r 6  = I, 6 is close to Q, and .4 is close to A. Thus, the algorithm is stable in 
the sense of backward error analysis. Note that IIArA - U k l l / l l A r h l l  i s  small, but 
IIO- - a l l  and IIR - RII/IIRII are not necessarily small. Bounds on 116 - a l l  and 
I I R  - RIF/ItRI[ depend on t~, and are discussed in [35,70,83]. 

A different algorithm is to compute (the upper triangular part of) ArA, and then 
compute the Cholesky factorization of A rA by the usual (stable) algorithm. The 
computed result /~ is such that R r k  is close to ArA. However, this does not 
imply the existence of .4 and 6 such that (6) holds (with ,~ close to A and some 
6 with 6 r 6  = 1) unless A is well-conditioned [71]. By analogy with definition 3 
above, we may say that Cholesky factorization of ArA gives a weakly stable 
algorithm for computing R, because the "residual" ArA - k r k  is small. 

4. Cholesky  upda t ing  and  downda t ing  

4.1. Updating 

The Cholesky updating problem is" given an upper triangular matrix R E R n• 
and a vector x E 1~", find an upper triangular matrix U such that 

UrU = RrR + xx  r. (7) 

The updating problem can be solved in a numerically stable manner by transform- . . T . 

mg the matrix (~) to upper triangular form (~r) by applying a sequence of plane 
rotations on the left. For details, see [36]. 

4.2. Downdating 

The Cholesky downdating problem is: given a upper triangular matrix R E ~" • 
and a vector x E ]~" such that R r R -  xx  r is positive definite, find an upper 
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triangular matrix U such that 

u T  u = RT R - x x  r. (8) 

Proceeding formally, we can obtain (8) from (7) by replacing x by ix. However, the 
numerical properties of the updating and downdating problems are very different. 
The condition that R r R -  x x  r be positive semi-definite is necessary for the 
existence of a real U satisfying (8). Thus, we would expect the downdating problem 
to be ill-conditioned if R r R  - x x  r has small singular values, and Stewart [71] shows 
that this is true. 

There are several algorithms for the Cholesky downdating problem [3,7,10,11, 
24,25,32,36,61,65] and we shall not discuss them in detail here. What is relevant 
to us is the error analysis. To simplify the statement of the error bounds, suppose 
that IIRII = O . ( 1 ) ,  which implies that Ilxll = O n ( l ) .  Observe that, in exact arith- 
metic, there is an orthogonal matrix Q such that 

( X u ) = Q ( R T ) .  (9) 

Suppose the computed upper triangular matrix is 0.  Stewart [71] shows that, for 
the "Linpack" algorithm [24], 

T(e) 

U(e) ) = Q ( e ) ( R r ) '  

where Q(e) is an exactly orthogonal matrix, 

IIx(e)-  xll = O~ 

and 

(10) 

(11) 

II - 011 : ( 1 2 )  

We can regard x(e) as a (backward) perturbation of the input data x, and 0(()  as 
a (forward) perturbation of the computed result U. Because of this mixture of 
forward and backward perturbations, a result of this form is sometimes called a 
"mixed" stability result. If the problem is ill-conditioned, the backward perturba- 
tion is more significant than the forward perturbation. 

It is important to note that the error analysis does not show that the computed 
matrix 0 is close to the exact result U, or that Q(e) is close to Q, unless U is well- 
conditioned. 

A stability result of the same form as (10)-(12) has been established by Bojanc- 
zyk et al. [7] for their "Algorithm C". Because Algorithm C computes U one row at 
a time, several (updates and/or) downdates can be pipelined, which is not the case 
for the Linpack algorithm. 2 

z The recent algorithm of Bischof et ai. [3] can also be pipelined, but we do not know if it gives results 
which satisfy equations (10)-(12) or (13)-(14). 
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The result (10)-(12) implies that 

(jr(j  = RrR _ xx r + G(e), (13) 

where 

IIa(e)ll-- o,(e). (14) 

Clearly a similar result holds if a sequence of (updates and) downdates is per- 
formed, provided that the final and intermediate results are positive definite. 

5. A weak stability result for the BBH algorithm 

Our main result (theorem 1 below) is that the BBH algorithm computes R about 
as well as would be expected if the Cholesky factorization of ArA were computed 
by the usual (stable) algorithm. More precisely, the computed k satisfies 

A TA - RTR = Ore(ellA TAll). (15) 

To avoid having to include IIArAll in the error bounds, we assume for the time 
being that al(A) = O(1). 

First consider exact arithmetic. We partition A in two ways: 

(a ~ y T ) ( A _ I  .~ ) 
A = = FT ' 

A_ 1 an-m 
where A_I is an (m - 1) x (n - 1) Toeplitz matrix, 

y = ( a l , . . .  ,a,,_l) r, 

z =  ( a _ l , .  T , 

= (an_l,... ,an_m+1) T, 

= ( a l _ m , . . . ,  a,_m_l) r. 

Similarly, we partition R in two ways: 

( uT) ( Rt U )  R : r l ' l  

0 R b 0 T ' rn,n 

where Rb and R, are (n - 1) x (n - 1) upper triangular matrices, 

U ---- ( r l ,z ,  . . . , rl,n) T, 
= (rl,., . . .  ,r._l,.) r. 

From (16), 

A T A = (  a~+zTz I a o y T + z r A - l ) = ( A r , A - l + Z ' Z r  
\ aoy + Ar-i z ArxA_l + yyr j 

(16) 

(17) 

, (18) 
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where the dots indicate entries which are irrelevant for our purposes. Similarly, 
from (17), 

RrR= (r~,l ] rl,1 ur "~= 
\rl,lu R~Rb+UUrj (R!R.. t ,  ) ,  (19) 

Equating ArA and RrR, we obtain 

2 = a~ + zTz~ rl,1 

rl,lu = aoy + Ar_lz, 
r = RfRb + uu r, A_IA_~ + yyr 

(20) 
(21) 

(22) 

and 

A T I A _ I  .~_ ~.~T RTt Rt" (23) 

Eliminating Ar_IA_~ from (22)-(23) gives the relation 

R~Rb = Rrt Rt + yyr _ uu r _ ~,r, (24) 

which is the basis for the BBH algorithm. If R t were known, then Rb could be com- 
puted from (24) using one Cholesky updating step and two Cholesky downdating 
steps, as discussed in section 4. Also, since updating and downdating algorithms 
can proceed by rows, knowledge of the first k rows of R t is Sufficient to allow the 
computation of the first k rows of Rb. It is easy to compute the first row of R 
from relations (20)-(21). (For future reference, suppose that the computed first 
row of R is (?t.l,fir).) It is clear from (17) that the kth row of Rb defines the 
(k + 1)th row of R,. Thus, we can compute Rt and Rb row by row. For details see [8]. 

A straightforward extension of the result (13)-(14) applies to our problem of 
computing R t and Rb. Provided the "Algorithm C" variant of downdating [7] is 
used, the computed results k t and Rb satisfy 

k f f k b  = kTtkt .of_ yyr _ fifir _ ~,~,r + G(e), (25) 

where 

Ila(,)ll = Ore(e). (26) 

Here y, ~ and fi are inputs to the up/downdating procedures (fi may differ slightly 
from the exact u because fi has been computed from (20)-(21)). At this point we 
make no claims about the size of Ilkb -Rbll and Ilk,- R,[[. All we need is that 
Rb and k t exist and are bounded for sufficiently small e. 

Because of the algorithm for their computation, the computed matrices k t and 
Rb are related so that we can define the "computed R", say R, in a consistent 
manner by 

2 fir ) 
0 hb 
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From (27) we have 
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Recall our definition of the operator ~ in section 2. From (28) we have 

N(/~rh) = kffkb + fifir _ ktrkt" (29) 

Thus, from (25), 

(3O) 

IIRffkb- R~Roll = Ore(ell RTRII) 

IIRTRt- RTRtl] = O~(~IIR rRII). (35) 

From (33) and Stewart's perturbation analysis [71], it follows that 

I lk-  RII/IIRII = O~(~c). (36) 
Note that the condition number tc appears in (36) but not in (33)-(35). 

(34) 

and 

Also, from (18), 

~(Ar  A) = yyr - ~ r. (31) 

I f E  = R r k  - A r A  and F = ~(E)  then, from (30)-(31), 

F=G(e) .  (32) 

If 1 _< j < i < n then, by the definition of ~(E) ,  

j - 1  

ei,: - ei_j+l,l ~-- ~_,(ei-k+l,y-k+1 -- ei-kd-k) =fi-1,j-I +f'-2,:-2 +''" + f'-:+l:. 
k=l 

The first row of/~r/~ is ~1,i (r1,1, fir), which is close to rl,1 (ri,1, ur), so the first row of 
E has norm Ore(c). Also, E is symmetric. It follows that 

Ilfll _< ( n -  1)llFll + Om(~) = Ore(c). 

Thus, after scaling to remove our assumption that o 1 = O(1), we have proved: 

Theorem 1 
If the BBH algorithm is used with the downdating steps performed as in 
"Algorithm C"  of [7], then the computed Cholesky factor k of ArA satisfies 

I l U k  - A rail = o,,(ell arAll ). (33) 

Since ArA = RTR, a comparison of the partitioned forms (19) and (28) shows 
that 
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The importance of performing the downdating steps as in "Algorithm C" of [7] 
is not clear. There are several variants of downdating which are applicable to 
Toeplitz QR factorisation [3,7,59,62] and those which we have tried numerically 
appear to give comparable results. However, the proof of theorem 1 depends on 
the bound (26), which holds for "Algorithm C" but not necessarily for other 
variants of downdating. 

6. T h e  s e m i - n o r m a l  e q u a t i o n s  

Suppose that our aim is to solve a nonsingular n x n Toeplitz linear system 

Ax = b, (37) 

using O(n 2) arithmetic operations. In exact arithmetic, the normal equations 

AVAx = Arb (38) 

and the semi-normal equations 

RrRx = Arb, (39) 

where R satisfies (1), are equivalent to (37). 
In most circumstances the use of the normal or semi-normal equations is not 

recommended, because the condition number ~;(ArA) may be as large as ~;(A) 2 
(see w of Golub and Van Loan [36]). When A is Toeplitz (but not symmetric 
positive definite) we can justify use of the semi-normal equations. This is because 
the usual stable algorithms for solving (37) directly require O(n 3) arithmetic 
operations, but we can use the algorithm of section 5 to compute (a numerical 
approximation k to) R in O(n 2) operations, and then solve the seminormal 
equations (39) in an additional O(n 2) operations. 

From theorem 1, we can compute an upper triangular matrix k such that (33) 
holds. We can also compute an accurate approximation d r to d = Arb in O(n 2) 
operations (using the obvious algorithm) or in O(n log n) operations (using the 
Fast Fourier Transform). Now solve the two triangular systems Rrw = d and 
Rx = w. We expect to obtain a result ~ for which 

I1 - xll/llxll = (40) 

where e; = ~(A), provided ~2~ << 1. The residual r = A~ - b should satisfy 

Ilrl] - O.(~c),  (41) 
IIAIIIIxll 

because IIArrll = IIAr - Arbll-O.( llArallllxll). F r o m  (40), the method is 
weakly stable (according to definition 2), although we cannot expect the stronger 
bound (3) to be satisfied. 

The bounds (40)-(41) are similar to those usually given for the method of normal 
equations [36], not those usually given for the method of semi-normal equations 
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[5,60,65]. This is because, in applications of the semi-normal equations, it is usually 
assumed that k is computed via an orthogonal factorization of A, so there is a 
matrix ,,i such tha t /~rR = .~r~ and 

[ IA-  ati/ilali = On(e). (42) 

However, in our case we only have ]]krk - RrR]]/][RrR]] = O.(e), which implies 
the weaker bound 

II A - AII/IIAII = o,,(~e) (43) 

by Stewart's perturbation analysis [70,71]. 
An alternative to the use of (39) was suggested by Paige [60]: compute R such 

that R r R  = AA r, solve R r R w  = b by solving two triangular systems, then set 
x = Arw. We prefer to use (39) because it is also applicable in the rectangular 
(least squares) case - see section 6.2. 

6.1. Storage requirements 

The algorithm described above for the solution of the semi-normal equations 
(39) requires working storage O(n a) words, because the upper triangular matrix 
R is not Toeplitz. However, it is possible to reduce the storage requirement to 
O(n) words. Recall that k is generated row by row. Thus, we can solve Rrw = d 
as R is generated, accumulating the necessary inner  products with O(n) storage. 
We now have to solve Rx = w without having saved R. Provided the O(n) rotations 
defining the updates and downdates have been saved, we can regenerate the rows of 
/} in reverse order (n, n - 1 , . . . ,  1) and solve Rx = w as this is done. A similar idea 
was used in [14] to save storage in a systolic implementation of the Bareiss algo- 
rithm. 

The regenerated matrix R' differs slightly from k because of rounding errors. 
Numerical experiments suggest (though we have not proved) that Ilk'-kll = 
On(he). If true, this would imply that the method is weakly stable, and (40) 
would hold, but the right hand side of (41) would need to be multiplied by n. 

An alternative is to use an idea which was suggested by Griewank [39] in a 
different context. Suppose we have a procedure ~-(k) which generates k consecutive 
rows of k in a forward direction (say rows d + 1 , . . . , d  + k), and ~(k)  which 
generates k consecutive rows in a backward direction (say rows d + k , . . . ,  d + 1). 
In each case O(n) words of storage suffice for the initial conditions. Then ~(2k) 
can be defined recursively: 

1. Generate rows d + 1 , . . . ,  d + k using o~(k), with row d for initial conditions 
if d > 0, saving row d + k. 

2. Generate rows d + 2k , . . . ,  d + k + 1 using ~(k)  with row d + k for initial 
conditions. 

3. Generate rows d + k , . . . ,  d + 1 using .~(k) with row d for initial conditions if 
d > 0 .  
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From the discussion in section 5, ~-(k) requires O(kn) operations and O(n) 
storage. Thus, we can prove by induction that ~(k)  requires O(knlogk) opera- 
tions and O(nlogk) storage. Overall, to generate the n rows of k in reverse 
order takes O(n21ogn) operations and O(nlogn) storage. Thus, at the cost 
of a factor O(logn) in the operation count, we can reduce the storage require- 
ments from O(n 2) to O(nlogn). The numerical properties of this method are 
exactly the same as those of the method which uses O(n 2) storage, since exactly 
the same rows of k are computed. The scheme described here is not optimal in 
its use of storage, but is within a factor of two of the optimal scheme described 
in [39]. 

6.2. Toeplitz least squares problems 

If A E ]~mxn is Toeplitz with full rank n, then the semi-normal equations (39) 
may be used to solve the least squares problem 

min I l a x  - bll=. (44) 
The use of semi-normal equations for the general full-rank linear least squares 
problem is discussed in detail by Bj6rck [5], and the only significant difference in 
our case is that the bound (43) holds instead of (42), so an additional factor ~; 
appears in some of the terms in the error bounds. 

6.3. Operation counts 

We briefly estimate the number of arithmetic operations required by the BBH 
algorithm and some of its competitors. We assume that the Toeplitz matrix A is 
real. Some of the operation counts can be reduced by using fast Givens transforma- 
tions [31,36], but for simplicity we ignore this possibility. We only count multipli- 
cations; the number of additions is comparable. 

For simplicity, first consider the case m = n. In the BBH algorithm, the com- 
putation of R takes 7n 2 + O(n) multiplications. The computation of Arb takes n 2 
multiplications if done in the obvious way, or O(nlogn) multiplications if the 
FFT is used. Solving two triangular systems takes nZ+ O(n) multiplications. 
Thus, to solve a Toeplitz linear system by the method of section 6 takes 
9n2+ O(n) multiplications, or 8n2+ O(nlogn) if the FFT is used. This is much 
cheaper than the 19n2+ O(n) multiplications of the BBH QR factorisation 
algorithm given in section 3 of [8], which computes Q explicitly. Thus, considering 
both speed and stability, it is best to avoid the computation of Q. 

For the method of Nagy [59], the multiplication count is 16n 2 + O(n), and for 
Cybenko's method [23] it is 23n~+ O(n). The method TpH of [34] requires 
21n2/2 + O(nlogn) real multiplications, and the method KGO of [34] requires 
13n2/2+O(nlogn) complex multiplications. Thus, the method of section 6 
should be faster than any of these methods, although the methods in [34,85] may 
be competitive if the Toeplitz matrix A is complex. 
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2ran + 
2mn + 
IF); 

For the rectangular case (m > n), the corresponding multiplication counts 
(omitting low-order terms and assuming that the FFT is not used) are: 

2mn + 7n 2 for the method of section 6; 
9n 2 for the method of Nagy [59] using the semi-normal equations; 
14n 2 for the method of Nagy [59] using inverse factorisation (algorithm 

9mn + 14n 2 for the method of Cybenko [23]; 
13mn + 7n 2 for the method of [8], computing Q explicitly�9 

For details of the components making up these operation counts, see table 4.1 of 
[591. 

6�9149 Iterative refinement 

Iterative refinement (sometimes called iterative improvement) can be used to 
improve an approximate solution 2 to the linear system (37) or the linear least 
squares problem (44). In practice this gives an accurate solution in a small 
number of iterations so long as the residual is computed accurately and the working 
precision is sufficient to ensure convergence [36,37,68,83]�9 It is not always necessary 
to use double-precision arithmetic [5,48]�9 

A related idea is to improve the accuracy of Rb and Rt by using Bj6rck's 
"Corrected Semi-Normal Equations" [5,62] or Foster's scheme of iterative 
improvement [26]. However, if the aim is simply to solve a linear system, then it 
is more economical to apply iterative refinement directly to the system. 

6.5. Ill-conditioned problems 

For very ill-conditioned Toeplitz linear systems and least squares problems, it 
may be desirable to use regularisation, as discussed in section 5 of [59]. We do 
not consider this here, except to note that our algorithm can easily be modified 
to compute the Cholesky factorisation of A r A  + aI,  where a is a positive regular- 
isation parameter. Only small changes in equations (20)-(23) are required�9 

7. N u m e r i c a l  results  

The algorithm described in sections 5 and 6 has been implemented in Pascal on 
an IBM PC and DEC VAX. In table 1 we give some results for randomly chosen 
n x n Toeplitz systems on a DEC VAX with e = 2 -56 _~ 1.4 • 10 -17. The elements 
ak defining the Toeplitz matrix 

A = 

a o  " "" a n - I  ' ~  
\ 

a l - n  " " " a 0  
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Table 1 
Weakly stable solution of Toepfitz systems. 
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n # ' g  ~l (R) el e2 e3 e~ 

50 0.0 3.3'3 6.7 9.2'-4 5.2'-3 1.4'-3 
50 1.0 3.6'3 1.7' 1 6.2'-3 2.7'-2 2.1'-3 
50 1.0' 1 9.8'2 4.0' 1 3.1'-1 3,7'- 1 9.4'-2 
50 1.0'2 1.0'4 1.0'2 2.0'- I 5.3'- 1 7.0'-2 
50 1.0'3 1.5'5 3.4'1 4.6'-1 3.0'-1 4.6'-2 
50 1.0'4 9. I'5 1.0'2 1.0 1.2 9.2'-2 
50 1.0'5 6.3'6 9.2 1.4'-1 1.6'-1 2.9'-1 

1 O0 0.0 1.2'3 1.4' 1 6.2'-4 4.7'-3 1.6'-3 
100 1.0 1.8'3 1.5' 1 5.2'-4 4.4'-3 3.1'-3 
1 O0 1.0' 1 5.2'3 8.7' 1 8.5'-2 1.6'- 1 3.3'-2 
100 1.0'2 3.3'4 1.2'2 4.2'-I 3.7'-1 3.5'-2 
100 1.0'3 4.0'5 1.4'2 2.2'-1 6.6'-1 4.8'-2 
100 1.0'4 8.8'6 1.5'2 1.0 8.9'-1 2.6'-2 
100 1.0'5 7.8'6 3.8'1 5.5'-1 8.4'-1 1.4'-1 

200 O. 0 5.7' 3 1.9' 1 1.3'-4 1.7'- 3 8.7'-4 
200 1.0 1.2'6 8.4'1 1.0'-5 1.9"4 1.6'-3 
200 1.0' 1 5.6'5 1.6' 1 3.6'-3 7.0'-3 4.7'-3 
200 1.0'2 2.4'4 2.1'2 3.0 2.7 1.4'-1 
200 1.013 7.9'5 1.4' 1 8.2'-2 6.6'-2" 5.2'-2 
200 1.0'4 5.5'6 2.8'2 6.1'-1 5.0'-1 4.3'-2 
200 1.0'5 1.3'8 3.6'2 1.8'-1 3.8'-1 4.3'-2 

were chosen  f rom a no rmal  d is t r ibut ion  wi th  specified mean /~  and  s t anda rd  devia- 
t ion or. (The cond i t ion  n u m b e r  t~(A) tends to increase with lu/ l.) The  solut ion  
vec tor  x was  chosen  with normal ly  d i s t r ibu ted  c o m p o n e n t s  (mean  0) and  the 
vec to r  b c o m p u t e d  f rom b ~ A x .  A consequence  is tha t  Ilxll/llbll is unl ikely to be 
large, even if  A is poo r ly  condi t ioned ,  b u t  this is typical  o f  m o s t  appl icat ions.  
Tab le  1 gives the cond i t ion  n u m b e r  

/~1(R) = IIRII~" lie-Ill,, 
which  is a rough  a p p r o x i m a t i o n  to s ; 2 ( R ) =  ~2(A) (the 1-norm was  used  for  
c o m p u t a t i o n a l  convenience) .  

Tab le  1 gives 

IIkTk _ ATAII~ 
 IIATAII , 

I1 - xlh 
e 2 - -  e~l(R)2llxll2, 

Ilrlh 
e3 = ~,~,(R)llAll~ltxlh' 
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where r = A 2 -  b. From theorem 1 and the bounds (40)-(41), we expect these 
quantities to be bounded by (low degree) polynomials in n. The results confirm this. 

For comparison, the last column of table 1 gives e~, the value of the normalised 
residual e 3 obtained via Cholesky factorization of ArA. It can be seen that e 3 is not 
much larger than e~. 

We also tried Toeplitz matrices `4 with some singular principal submatrices 
(e.g. A with a_ 1 = a 0 = a l ) .  The results were similar to those given in table 1. 

8. Conclusion 

The method described in section 6 for the solution of general nonsingular 
Toeplitz or Hankel linear systems 3 requires O(n 2) operations, is weakly stable, 
and makes no assumption about the conditioning of submatrices of .4. We do 
not know any other methods which have been proved to be stable or weakly 
stable and have worst-case time bound O(n2). Algorithms which involve pivoting 
and/or look-ahead [18,27,41,43,75] may work well in practice, but seem to require 
worst-case overhead O(n 3) to ensure stability. 

Our method should be faster than O(n 3) methods which ignore the Toeplitz 
structure, even if the working precision has to be increased (i.e. e reduced) in our 
method to ensure that n2e << 1. Storage requirements are O(n2), but may be 
reduced to O(n logn) or O(n) as discussed in section 6.1. 

We have not looked in detail at all the fast Toeplitz QR factorization algorithms 
mentioned in section 1. It is quite likely that some of these give weakly stable 
algorithms for the computation of the Cholesky factor R of ArA, but no proofs 
have been published. 

It remains an open question whether there is a fast Toeplitz QR algorithm which 
is backward stable for the computation of Q and R (or R-l). Such an algorithm 
would give a stable algorithm for the solution of Ax = b without recourse to the 
semi-normal equations. 
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