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Outline

There are several surveys of algorithms for
solving Toeplitz linear systems with an
emphasis on their numerical properties and on
possibilities for parallelism'. Today, I shall
concentrate on a few interesting results.

An outline of the talk:

e Stability and weak stability.

e The Levinson-Durbin algorithm for
positive definite symmetric Toeplitz
matrices (Yule-Walker equations).

e The Bareiss algorithm for general Toeplitz
matrices.

e The BBH algorithm for general Toeplitz
matrices and least squares problems.

e A weakly stable algorithm for general
Toeplitz solvers.

e Parallelism (mentioned as we go).

Copyright © 1993, R. P. Brent. rpb143t !See for example Bunch (1985), Brent (1991).
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Notation Condition Number of A
Let If the singular values of A are o1,...,0,, where
ap o Gp—1 o1 >...> 0, >0, then the spectral condition
A= number of A is
Al—m " Qp—m

be a real m x n Toeplitz matrix, so
Gij = Gj

for 1 <i<m,1<j<n. We assume that
m > n and that A has rank n. Often, for
simplicity, we assume m = n.

AT A has a Cholesky factorization
ATA=R"R,
where R is an upper triangular n X n matrix.

We assume that the diagonal elements of R are
positive, so R is unique. Also,

A=QR,

where @ is an m X n matrix with orthonormal
columns, i.e.

QTR =1

R = KQ(A) = 0’1/0’n.

We say that A is well-conditioned if k(A) is
“small” in some sense.

For convenience in stating the error bounds, we
often assume that oy is of order unity.

Let B be a principal k£ x k submatrix of A.

If A is symmetric positive definite then

(by an interlacing theorem for eigenvalues)

KQ(B) S KQ(A).

However, in general this is not true —
B could be badly conditioned or even singular
when A is well-conditioned.



A Useful Operator

A displacement operator
D: %an _ §R(7n—1)><(n—1)
is defined as follows: for any m x n matrix B,
D(B) =C,

where C is the (m — 1) x (n — 1) matrix with
entries

Cij = bit1,j+1 — bijs
1<i<m,1<75<n.
Note that DB = 0 iff B is Toeplitz.

Acronyms

BBH = Bojanczyk, Brent and de Hoog.

BBDH = Bojanczyk, Brent, Van Dooren
and de Hoog.

BBHS

Bojanczyk, Brent, de Hoog

and Sweet.

Error Bounds and “O” Notation

Let € be the machine precision. It is convenient
to subsume a polynomial in m and n into the
“0” notation®. Thus, an error bound of the
form || E|| = O(g) will mean that

Bl < P(m,n)e

for some polynomial P and all sufficiently
small . If the error bound depends on x then
this will be mentioned explicitly, e.g.

Bl = O(re).

We shall ignore O(e?) terms in the error
analyses.

The meaning of “sufficiently small” may depend
on & (for example, we may need x2e < 1).

2If the aim of error analysis is insight, then it is best
not to obscure the results with unimportant details. To
avoid ambiguity, we could write Om,.(€) or O™ (¢).

Numerical Quantities

We distinguish several classes of numerical
quantities —

1. Exact values, e.g. input data such as a;.

2. Computed values, usually indicated by a
tilde, e.g. ;.

3. Perturbed values given by error analysis,
usually indicated by a hat, e.g. @; ;,
or by the argument ¢, e.g. a;;(e).
These are not computed, but the error
analysis shows that they exist and gives
bounds on their difference from the
corresponding exact values.

Stability and Strong Stability

Consider algorithms for solving a nonsingular,
n X n linear system Az =b.

There are many definitions of numerical
stability in the literature. Our definitions follow
those of Bunch(1987). Definition 1 says that the
computed solution has to be the ezact solution
of a problem which is close to the original
problem. This is the classical backward stability
of Wilkinson.

Definition 1 An algorithm for solving linear
equations is stable for a class of matrices A if
for each A in A and for each b the computed
solution & to Ax = b satisfies Az = 3, where A
is close to A and b is close to b.

Note that the matrix A does not have to be in
the class A. For example, .4 might be the class
of nonsingular Toeplitz matrices, but A need
not be a Toeplitz matrix. If we do require

Aec Awe get what Bunch calls strong stability.



Closeness

In Definition 1, “close” means close in a relative
sense, using some norm, i.e.

IA = All/IAll = O(), IIb — bl/I[b]l = O(e).

Recall our convention that polynomials in n
may be omitted from O(e) terms.

We are ruling out faster than polynomial
growth in n, such as O(2"¢) or O(nlo%s)
(Gaussian elimination). Is this too strict ?

How Good is the Solution 7

Provided ke is sufficiently small, stability
implies that

12 = z|[/ll2]| = O(xe).

Example — Gaussian Elimination

For Gaussian elimination with pivoting,
Wilkinson shows that

14— Al = O(ge),

where g = g(n) is the “growth factor”. g
depends on whether partial or complete
pivoting is used. In practice g is usually small,
even for partial pivoting. However, a
well-known example shows that g(n) = 2"~ ! is
possible for partial pivoting, and examples from
boundary value problems show that exponential
growth can occur in practice. Even for complete
pivoting, it has not been proved that g(n) is
bounded by a polynomial in n. The conjecture
9(n) < n was recently disproved by Gould.

Thus, A must be restricted to matrices with
some special property (e.g. positive definiteness
or diagonal dominance) or to matrices of fixed
(or bounded) size in order for Gaussian
elimination with pivoting to satisfy Definition 1.

[Is the definition is too strict ?]
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Weak Stability

Definition 2 An algorithm for solving linear
equations is weakly stable for a class of
matrices A if for each well-conditioned A in A
and for each b the computed solution T to

Az = b is such that || & — z||/|z| is small.

In Definition 2, “small” means O(e), and
“well-conditioned” means that x(A4) is bounded
by a polynomial in n. It is easy to see that
stability implies weak stability.

Define the residual

r= A7 —b.

It is well-known that

R el | PR
L /R 14 N 1]

Thus, for well-conditioned A, ||Z — z||/||z]|| is
small if and only if ||r||/]|b]| is small. (This gives
an equivalent definition of weak stability.)

11

Cholesky Factorization

Consider the computation of the Cholesky
factor R of AT A, where A is an m x n matrix of
full rank n. A good O(mn?) algorithm is to
compute the QR factorization

A=QR

of A using Householder or Givens
transformations. The computed matrices C:), R
satisfy

A=QR
where @T@ =1, Q is close to Q, and A is close
to A. The algorithm is stable.
A different algorithm is to compute (the upper
triangular part of) AT A, and then compute the
Cholesky factorization of AT A by the usual
(stable) algorithm. The computed result R is
such that R7R is close to AT A. However, this
does not imply the existence of A and @ as
above, unless A is well-conditioned (Stewart).
We may say that we have a weakly stable
algorithm for computing R, whereas QR
factorization is a stable algorithm for
computing R.

12



The Levinson-Durbin Algorithm

In 1947, Levinson gave an algorithm for solving
a symmetric n x n Toeplitz system in O(n?)
operations and O(n) storage. In linear
prediction we want to solve a Toeplitz system
with a special right-hand side, called the
“Yule-Walker equations”:

Ax = b,

where

b= 7(&1,@2,. .. ,an)T.

Durbin (1960) streamlined Levinson’s algorithm
for this special case.

In the linear prediction problem, A is
symmetric positive definite, so we assume this
when discussing the Levinson-Durbin algorithm.
It is also convenient to assume that ag = 1 and
that ||b]| is not too small (if ||b|| is small then A
is close to I).

13

The Levinson-Durbin Recursion
The algorithm is defined by the recursion (for
j=1,2,...,n):

Kj = —(aj+zj-100j-1+--
+2j-1,5-101)/Ej1,

wj1+ Kjall,
K, ’

x; =
_ Ay o)
E; = (1-Kj)Ej 1,
where Ey =1,
— (- ) . \T
zj = (T3, 52, Tji5) 5
and
R _ (. o . \T
Ty = (5> Tjg—15- -+ Tj1)

is the reflection of z;. One can verify by
induction that x; solves the j-th order
Yule-Walker equations and

T
T =Tn = (-Tn,lamn,% ce axn,n)

solves Ax = b.
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Interpretation of K; and E;

The K; are called “reflection coefficients” or
“partial correlation coefficients” and satisfy

-1<K; <1

Note that the formula for K involves an inner
product.

The E; are the mean square prediction errors.

15

Matrix Factorization Interpretation

If

1 0 0 --- 0
Tn—1,1 1 0 0
C = Tn—1,2 Tp21 1 0
ITn—1n—1 Tn-2n—2 |

and

D= diag(Enfla En 2,..., EO)
then

A'=cp 10",

so the Levinson-Durbin algorithm computes a
Cholesky factorization of A~!. The factorization
can be used to find upper and lower bounds on
|A=Y|| (which is much the same thing as k(A)).

Note that A is sure to be poorly conditioned if
E,,_1 is small, i.e. if the mean square prediction
error is small. (But this is what we want

Catch 22 1)

16



Theorem 1 (Cybenko, 1980)

max< L 1 )

n—1 -
1+ |R |
<147 < T T
where
n—1
En1 = H(l 7K]2)a
j=1

and the K are the reflection coefficients.

Lemma 1 (Cybenko)

]l =

n
H1+K ‘

Theorem 2 (Cybenko)
If floating-point arithmetic is used with machine
precision ¢, then the residual r = AZ — b satisfies

[l =0 (6 (f[l(l +|K;) - 1)) .

17

Corollary 1
If all K; > 0, then |7[|/||z] = O(e).

Corollary 2

If all the reflection coefficients are non-negative,
then the Levinson-Durbin algorithm is weakly
stable.

Comparison with Cholesky

Cybenko notes that (in the case that K; > 0)
the bounds on the residual for the
Levinson-Durbin method and Cholesky’s
method are of comparable size. However, this
does not prove that the Levinson-Durbin
method is stable (in the sense of Definition 1).

18

What if some K; <0 ?

Cybenko’s analysis is not sharp if some of the
reflection coefficients are negative, because of
the absolute values |K;| in his inequalities®.
However, from Cybenko’s results we can deduce
a bound which is similar to that for Gaussian
elimination with partial pivoting. The proof is
easy, but I have not seen it stated before. From
Theorem 1,

1 1 n—1
<1 <mL=Tla-K),
@ STA Jo-x

so, from Theorem 2,
I _ oM™,
KE

where

32

M= e (KD - K = 3

(the maximum occurs at |K| = %). Thus

*Koltracht and TLancaster (1986) have improved Cy-
benko’s upper bound on k(A) in this case.
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Theorem 3

For the Levinson-Durbin algorithm with
positive definite symmetric A, but no restriction
on the signs of the reflection coefficients,

I =0 <m (%))

This is not too bad when compared with the
bound O(2"¢) for Gaussian elimination with
partial pivoting. In both cases, ||r| is usually
much smaller than the corresponding bound.

Corollary 3

The Levinson-Durbin algorithm for solving the
positive definite symmetric Yule-Walker
equations of bounded size n is weakly stable.

Numerical experiments (BBHS, Varah) suggest
that weak stability is all that we can expect to
prove.

20



The Bareiss Algorithm

The algorithms of Levinson, Durbin, Trench
and Zohar find an LU factorization of A~! and
(in the symmetric case) are related to the
classical Szeg6 recursions for polynomials
orthogonal on the unit circle. These algorithms
involve inner products, so it is not obvious how
to use more than ©(n/logn) processors
efficiently in their parallel implementation.

Another class of algorithms, typified by the
algorithm of Bareiss (1969), find an LU
factorization of A, and (in the symmetric case)
are related to the classical algorithm of Schur
for the continued fraction representation of a
holomorphic function in the unit disk. These
algorithms avoid inner products, and it is
straightforward to get speedups of order n when
using n processors in parallel.

Can we use more than O(n) processors to get
speedup greater than n with reasonable
efficiency 7

21

Numerical Properties of the Bareiss
Algorithm

Sweet (1982-1993) and BBHS (1993) have
shown that the numerical properties of the
Bareiss algorithm when implemented in
floating-point arithmetic are similar to those of
Gaussian elimination (without pivoting).

Thus, the algorithm is stable for positive
definite symmetric A. This is a stronger result
than has been proved for the Levinson
algorithm — we only showed that it was weakly
stable for bounded n.

For general Toeplitz A the Bareiss algorithm is
unstable, just like Gaussian elimination without
pivoting. In fact, both break down immediately
if a1,1 = 0, and exhibit instability if a;,; is small.
Sweet (1993) has shown that it is possible to
introduce pivoting into the Bareiss algorithm to
avoid instability*. However, in the worst case
the overhead of pivoting is O(n®) so we no
longer have a “fast” O(n?) algorithm.

*Using a connection between the Bareiss multipliers
and the Trench-Zohar algorithm, Sweet also shows how
to introduce pivoting into the Trench-Zohar algorithm.
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Fast Orthogonal Factorization

In an attempt to achieve stability without
pivoting, it is natural to consider algorithms for
computing an orthogonal factorization

A=QR

of A. The first such O(n?) algorithm was
introduced by Sweet (1982-84). Unfortunately,
Sweet’s algorithm is unstable’. Other O(n?)
algorithms for computing the matrices @@ and R
or R~! were given by BBH (1986), Chun

et al (1987), Cybenko (1987), and Qiao (1988),
but none of them has been shown to be stable
(or weakly stable). In several cases examples
show that they are not stable. Unlike the
classical O(n?) Givens or Householder
algorithms, the O(n?) algorithms do not form Q
in a numerically stable manner as a product of
matrices which are (close to) orthogonal.

5It depends on the condition of a submatrix of A — see

Luk and Qiao (1987).
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Experiments with the BBH Algorithm

Numerical experiments with the algorithm of
Bojanczyk, Brent and de Hoog (BBH for short)
suggest that the problem lies in the method for
computing the orthogonal matrix @; the
computed upper triangular matrix R is about
as good as can be obtained by performing a
Cholesky factorization of AT A, provided the
downdates involved in the algorithm are
implemented in a certain way. This result has
recently been proved by Bojanczyk, Brent and
de Hoog (1993). As a consequence, the method
of semi-normal equations (i.e. the solution of
RT Rz = ATb) can be used to give a weakly
stable algorithm for the solution of general
Toeplitz systems and Toeplitz least squares
problems.

24



Cholesky Downdating

The Cholesky downdating problem is: given a
upper triangular matrix R € R™*" and a vector
2 € R" such that RT R — 227 is positive definite,
find an upper triangular matrix U such that

UTU = RTR — za7.

The condition that RT R — z2” be positive
semi-definite is necessary for the existence of a
real U. Thus, we would expect the downdating
problem to be illconditioned if RTR — zz” has
small singular values, and this is what

Stewart (1979) shows.

25

Error Analysis of Linpack Downdating

There are several algorithms for the Cholesky
downdating problem. What is relevant to the
BBH algorithm is the error analysis. Observe
that there is an orthogonal matrix @ such that

(7 )=e()

Suppose the computed upper triangular matrix
is U. To simplify the statement of the error
bounds, suppose that ||R| = O(1).

Stewart (1979) has shown that, for the
“Linpack” algorithm,

z'(e) | _ R
( 0(6) - Q(E) OT I
where Q(¢) is an exactly orthogonal matrix,
l|z(e) — || = O(e),
and

1U(e) = Ul = O(e).

26

Analysis of BBDH “Algorithm C”

A similar result holds for downdating via
“Algorithm C” of Bojanczyk, Brent, Van
Dooren and de Hoog (BBDH).

We can regard z(¢) as a (backward)
perturbation of the input data z, and U(e) as a
(forward) perturbation of the computed result
U. Because of this mixture of forward and
backward perturbations, a result of this form is
sometimes called a “mixed” stability result.

The mixed error bound implies that
UTU = RTR — 22T + G(e),
where
leG(e)ll = O(e)-

A similar result holds if a sequence of (updates
and) downdates is performed, provided the
intermediate and final results are positive
definite.

27

Sketch of the BBH Algorithm

Suppose we are trying to find R such that
RTR = AT A, where A is Toeplitz. First
consider exact arithmetic. We partition A in
two ways:

faoly" Y (Aa] ¥
A= (2HE) - ()

where A_; is an (m — 1) x (n — 1) Toeplitz
matrix.
Similarly, we partition R in two ways:

T ul R | w
R = 11 = ]f R
0 Rb 0 Tnn

where Ry and Ry are (n — 1) x (n — 1) upper
triangular matrices.

28



Now
ATA — a% +272 | aoy” +2TA_;
T Naoy+ ATz | AT Ay +yyT
< AT A 4227 ‘ : ) .
Similarly,

2 T
T 7"1 1 | Tl}lu
R'R = T T
T11U ‘ Ry" Ry + uu

(2]

For future reference, it follows from these
equations that

D(ATA) = gyt —z=T
and

D(RTR) = Ry"Ry + wu” — R R,.

29

Equating ATA and RTR, we obtain
7"%,1 = a% + sz,
T1,1U = aoY + Azlz,

AT A +yy" =R Ry + u,

and
AT A +z7" = R"R..

Eliminating AT, A_; gives the relation
RbTRb = RtTRt + ny —uul — %27

which is the basis for the BBH algorithm.
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Computation of R, and R; in the BBH
Algorithm

Recall that
1 R
1| u t U
R = . = T
< 0 lzb ) ( 0 Tn,n )

RbTRb = RtTRt + ny —wul —z77,

and

If R; were known, then R could be computed
using one Cholesky updating step and two
Cholesky downdating steps. Also, since
updating and downdating algorithms can
proceed by rows, knowledge of the first £ rows
of R; is sufficient to allow the computation of
the first £ rows of Ry. It is easy to compute the
first row of R. (For future reference, suppose
that the computed first row of R is (711,47 ).)
It is clear that the k-th row of Ry defines the
(k 4+ 1)-th row of R;. Thus, we can compute Ry
and Ry row by row.
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Error Analysis of the BBH Algorithm

A straightforward extension of the mixed error
analysis for Cholesky downdating applies to our
problem of computing R; and Ry. Provided a
suitable variant of downdating is used, the
computed results R; and Ry, satisfy

RI'Ry=RI'R +yy" —aa” — zz" + eG(e)
where
eG(e)ll = O(e).

Here y, z and @ are inputs to the
up/downdating procedures. At this point we
make no claims about the size of | Ry — R/ and
IR, — Ry|. All we need is that R; and R, exist
and are bounded for sufficiently small ¢.
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The Computation of R in the BBH
Algorithm

Because of the algorithm for their computation,
the computed matrices Rt and f%b are related so
that we can define the “computed R”, say R, in
a consistent manner by

(o) - (oF)

R'R= f%1|~ fl’lﬂ _ [ BIR |
E‘R{Rb—i—ﬂﬂT R

Recalling our definition of the operator D, we

have
D(RTR) RI Ry + @i” — RI'R,
yy! — 72" +eG(e).

Also,
D(ATA) = yy" —z=T.

33

Bounds on E and F
If E=R'R— A" A and F = D(E) then
F =eG(e).
If 1 < j <i < n then, by the definition of D(FE),

€ij—€i—j+1,1 = fi1j—1+ fi—oj—2t -+ fij1,1-

The first row of RTR is 71,1(71,1, @"), which is
close to 71,1(r1,1,u’), so the first row of E has
norm O(e). Also, E is symmetric. It follows
that

Bl < (n—1)|F|[+O(e) = O(e),

where (as usual) a polynomial in n may be
hidden by the “O” notation. Thus, after scaling
to remove our assumption that o3 = O(1), we
have:
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Theorem 4 (BBH, 1993)

If the BBH algorithm is used with the
downdating steps performed in a suitable
manner, then the computed Cholesky factor R
of AT A satisfies

IR R — AT A|/| AT Al = O(e).

Note that || Ry — Rol|/|[R|l and [|Ry — Rel/|| Rl
may be of order ke, and that we have avoided®
the computation of Q = AR

6 An algorithm for computing Q is given in BBH (1986),
but it is not recommended.
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Normal and Semi-Normal Equations

Our aim is to solve a nonsingular n x n Toeplitz
linear system

using O(n?) arithmetic operations. In exact
arithmetic, the normal equations

AT Az = ATh
and the semi-normal equations

R"Rz = A"b

(where RTR = AT A) are equivalent to Az = b.
In most circumstances the use of the normal or
semi-normal equations is not recommended,
because the condition number k(A7 A) may be
as large as k(A)? (see Golub and Van Loan).
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Use of the Semi-Normal Equations

When A is Toeplitz (but not symmetric positive
definite) we may be able to justify use of the
semi-normal equations. This is because we do
not know any stable algorithm for

solving Az = b directly with O(n?) arithmetic
operations, but we can use the BBH algorithm
to compute (a numerical approximation R to) R
in O(n?) operations, and then solve the
seminormal equations in an additional O(n?)
operations.
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Weak Stability

Suppose Ris computed as in Theorem 4. We
can compute an accurate approximation d to

d = ATb in O(n?) operations (using the obvious
algorithm) or in O(nlogn) operations (using
the Fast Fourier Transform). Now solve the two
triangular systems RTw = d and Rz = w. We
can expect to obtain a result & for which

17 — /|| = O(x%e),

where k = r(A), provided k?c < 1. The
residual r = A% — b should satisfy

I7ll/ll]l = O(xe),
because ||ATr| = ||AT Az — ATb| = O(e||z|).

The method is weakly stable (according to
Definition 2), although probably not stable.

38

Comment on the Error Bounds

In applications of the semi-normal equations, it
is usually assumed that R is computed via an
orthogonal factorization of A, so there is a
matrix A such that RTR = AT A and

A=Al = O(e).
However, in our case we only have

|RT R — RTR|| = O(¢), which implies the
weaker bound

14— AJl = O(ke)

by Stewart’s perturbation analysis.
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Iterative Refinement

As Ake Bjorck has shown for other applications
of the semi-normal equations, it may be worth
performing at least one step of iterative
refinement (iterative improvement). The cost is
a relatively cheap O(n?) operations.

Storage Requirements

The algorithm just described for the solution of
the semi-normal equations requires working
storage O(n?) words, because the upper
triangular matrix R is not Toeplitz. However, it
is possible to reduce the storage requirement to

e O(n) words, at the expense of some
increase in the error bounds, or to

e O(nlogn) words, at no cost in the error
bounds, but with a factor O(logn) in the
time bound (using an idea of Griewank).

For details, see Bojancyzk, Brent and de Hoog
(1993).
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Toeplitz Least Squares Problems

If A e R™*™ is Toeplitz with full rank n, then
the semi-normal equations may be used to solve
the least squares problem

min || Az — b||s.

The use of semi-normal equations for the
general full-rank linear least squares problem is
discussed in detail by Bjorck (1987), and the
only significant difference in our case is that an
additional factor k appears in some of the error
bounds.
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Conclusion and Open Problems

e The Levinson-Durbin algorithm is weakly
stable for the symmetric positive definite
Yule-Walker equations of bounded size n.
Do we need the restriction on n ?

Is weak stability the best possible result ?
(Numerical experiments by Varah and
BBHS suggest that it might be.)

e The Bareiss algorithm is stable for
symmetric positive definite Toeplitz
systems.

What can be proved about stability and
overhead of pivoted Bareiss 7

How does it compare with the lookahead
methods of Chan and Hansen, Freund and
Zha, Gutknecht, etc ?
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Conclusion and Open Problems cont.

e BBH with semi-normal equations is
weakly stable for general nonsingular
Toeplitz systems.

Is weak stability the best possible result ?
Is the O(n) storage version less stable
than the O(n?) storage version ?

How does BBH compare with Cybenko’s
AR = @ algorithm and the lookahead
variant of Hansen and Gesmar ?

Is there a fast, stable algorithm for
computing Q = AR ?

Are there comparable stability results for
other fast Toeplitz QR algorithms ?

e How do the direct methods compare with
iterative methods using circulant
preconditioners ?

43

Some of the most relevant references:
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