
Parallel Implementation of QRD Algorithms

on the Fujitsu AP1000∗

Zhou, B. B. and Brent, R. P.†

Computer Sciences Laboratory
Australian National University

Canberra, ACT 0200

Abstract

This paper addresses several important aspects of parallel implementation of QR de-
composition of a matrix on a distributed memory MIMD machine, the Fujitsu AP1000.
They include: Among various QR decomposition algorithms, which one is most suitable
for implementation on the AP1000? With the total number of cells given, what is the best
aspect ratio of the array to achieve optimal performance? How efficient is the AP1000 in
computing the QR decomposition of a matrix? To help answer these questions we have
implemented various orthogonal factorisation algorithms on a 128-cell AP1000 located at
the Australian National University. After extensive experiments some interesting results
have been obtained and are presented in the paper.

1 Introduction

Orthogonal QR decomposition [11] has many useful applications, e.g., to the solution of linear
least squares problems, or as a preliminary step in the singular value decomposition.

The widely used methods for QR decomposition of a matrix A fall into two classes – those
using Householder transformations and those using Givens rotations. The QR algorithms
based on Givens rotations require about twice the number of arithmetic operations as the
algorithms using Householder transformations, but the latter require about twice as many
memory references as the former. On a single processor, Householder transformations are
usually cheaper than Givens rotations because the cost of a floating point operation dominates
the cost of a memory reference. However, which of the two methods is superior in parallel
computation is very much dependent upon the machine configuration. For example, on the
Denelcor HEP, a shared memory multiprocessor, memory access times dominate floating point
operation times, and it is reported in [8] that Givens-based algorithms are twice as fast as
Householder-based algorithms. Different results obtained on distributed memory machines can
be found in [13, 15].

When implementing QR decomposition algorithms on the AP1000, we are interested in:

∗Copyright c© 1993, the authors. To appear in Proc. 17th Australian Computer Science Conference,
Christchurch, New Zealand, Jan. 1994.

†E-mail addresses: {bing,rpb}@cslab.anu.edu.au rpb145 typeset using LATEX



• Of the various QR decomposition algorithms, which one is most suitable for implemen-
tation on this machine?

• When the total number of cells (processors) is given, what is the best aspect ratio of the
cell array to achieve optimal performance?

• How efficient is the AP1000 in solving this particular problem?

To answer these questions, we implemented various orthogonal decomposition algorithms on the
AP1000. This paper presents some results obtained through extensive tests of these algorithms.

The manner in which matrices are stored is very important on a distributed memory ma-
chine such as the AP1000. In §2 we describe two methods adopted in our experiments. §3 is
concerned with different QR decomposition algorithms. The data communication required for
parallel implementation of these algorithms on machines like the AP1000 is also discussed. In §4
we present experimental results and analyze these results to give some theoretical explanations.
§5 gives the overall conclusions.

2 Mapping Matrices over the AP1000

The AP1000 [3, 5, 12] is a distributed memory MIMD machine with up to 1024 independent
SPARC processors which are called cells. Each processor has a 128 KByte direct-mapped copy-
back cache, 16 MByte of memory, and a Weitek floating-point unit (FPU) of theoretical peak
speed 8.33 MFLOP (single precision) and 5.67 MFLOP (double precision). The topology of
the AP1000 is a torus, with hardware support for wormhole routing. The routing hardware
(T-net) provides a theoretical bandwidth of 25 MByte/sec between any two cells; in practice,
about 6 MByte/sec is attainable by user programs. The routing hardware supports row and
column broadcasts, so a broadcast usually takes about the same time as a comparable cell to
cell transfer.

The local memory in each cell is accessible to other cells only via explicit message passing.
Thus the distribution of data over the AP1000 is a very important issue for efficient solution
of a given problem.

Various matrix mapping schemes have been discussed in [2, 4, 6]. Two of them, which
are used in our experiments, are described here. The first one is the scattered representation.
Assume that the cells form an ncely × ncelx grid with ncely and ncelx the number of rows and
columns, respectively. Then (assuming C conventions, so indices run from 0) the elements ai,j

of the given matrix A are stored in cell (i mod ncely, j mod ncelx). The matrix stored locally
on each cell has the same shape as the global matrix A, so the computational load on each cell
is approximately the same. We use this mapping scheme to implement unblocked algorithms
on the AP1000.

To implement blocked algorithms, a blocked panel-wrapped representation is adopted. In
this scheme an integer blocking factor r is chosen, the matrix A is partitioned into r × r blocks
Ai,j , and the blocks Ai,j are distributed as for our scattered representation, i.e., the block Ai,j is
stored on cell (i mod ncely, j mod ncelx). Like the elements ai,j in the scattered representation,
the blocks Ai,j are evenly distributed over the entire system, provided r is not too large.

In reporting our results we ignore the time required to send the data matrix A from the host
processor to the cells. This is because, in most applications, the matrix A is already available
in the cells, because it is known a priori or has been computed in earlier computations. Note
that local disks are now available as an option on the AP1000, so data can be stored locally
and transferred in parallel to the cells, and the host-cell communication link need no longer be
a bottleneck.

2



3 Algorithms

In this section several algorithms for QR decomposition are described. Communication issues
relating to implementation of the algorithms on distributed memory machines (such as the
AP1000) with a two-dimensional grid or torus topology are also discussed.

3.1 Row and column Householder algorithms

The QR decomposition of an m× n matrix using Householder transformations takes n stages
(assuming m ≥ n). Each stage annihilates the subdiagonal elements of a column via two steps:
the first step constructs a Householder vector v such that the first column of a sub-matrix is
transformed into a multiple of the first coordinate vector e1; the second step uses v to modify
the remaining columns of the sub-matrix. The two steps may be written as

(I − 2
vvT

vT v
)Ak−1 =

(
ρ sT

0 Ak

)
where the matrix I − 2vvT /vT v is a Householder transformation and the matrices Aj , of size
(m− j)× (m− j), are the sub-matrices involved in the computation at the (j + 1)th stage of
the algorithm.

Application of a Householder transformation to a matrix A may be broken into the following
two operations –

zT = vT A (vector-matrix multiplication)

and

Â = A− βvzT (rank-one modification)

where β = 2/vT v. Thus, the Householder matrix I − 2vvT /vT v is never formed explicitly.
Let us consider the data communication required by a parallel implementation of the House-

holder algorithm on the AP1000. When constructing the Householder vector v in the first step
of the kth stage, we need to compute the 2-norm of the first column of the sub-matrix Ak−1.
Since the matrix is distributed over the entire system, communication between cells in the
leading column of the array is required. (Here the leading column of the array is a column
of cells in which the first column of Ak−1 resides. Similarly, a leading row of the array is a
row of cells in which the first row of Ak−1 resides.) Because operations to avoid overflow and
to normalise the Householder vector v (so that v1 = 1) are necessary in the implementation,
communication in the vertical direction occurs three times for the construction of v at each
stage.

To obtain the vector zT in the second step, the Householder vector v is broadcast hori-
zontally to all other columns of the array, local vector-matrix multiplications are performed in
each cell, and then the partial results are accumulated in the corresponding cells in the leading
row of the array (this is called the global summation procedure). To minimise the commu-
nication cost in the global summation, a minimum spanning tree communication pattern is
adopted, that is, rows of the array cooperate pairwise to accumulate the partial results so that
the final resulting vector is obtained in about log2 ncely communication steps, where ncely is
the number of rows of the array. (For future reference, we note that in LU factorisation [2, 4]
the communication pattern is simpler as the global summation procedure is not required.)

After zT is obtained in the leading row of the array, it is broadcast vertically to all other rows
of the array. The rank-one modification is then performed, without any further communication.

3



It is clear from the description above that in each stage all communications but one (the
broadcast of v) take place in the vertical direction. Thus the communication is predominantly
row oriented. Premultiplying a matrix by a Householder transformation is often called a row
Householder update procedure [11], so we call the algorithm described above the row House-
holder algorithm. If the transpose of the matrix A is stored, the QR decomposition will require
post-multiplication of Householder transformations, which is called the column Householder
update procedure [11]. Thus, we call the corresponding algorithm the column Householder
algorithm. It is easy to verify that the communication involved in parallel implementation of
the column Householder algorithm is predominantly column oriented.

3.2 Block Householder algorithms

The standard Householder algorithm, as described above, is rich in matrix-vector multipli-
cations. On many serial machines, including the AP1000 cells, it is impossible to achieve
peak performance if the QR decomposition is performed via the standard Householder trans-
formations. This is because matrix-vector products suffer from the need for one memory
reference per multiply-add. The performance may be limited by memory accesses rather than
by floating-point arithmetic. Closer to peak performance can be obtained for matrix-matrix
multiplication [6, 7, 9].

The main idea of the block Householder QR method is as follows. The columns of a matrix
to be decomposed are divided into blocks, each holding r columns. At each stage of the block
algorithm the standard Householder algorithm is applied to the first block of the sub-matrix to
generate r Householder transformations Hi = I − 2viv

T
i /vT

i vi, 0 < i ≤ r. These Householder
matrices are combined and represented in block (WY ) form [11]:

H1H2 · · ·Hr = I + WY T

where W is an m× r matrix and Y is an m× r trapezoidal matrix. After this is accomplished
the block Householder matrix is applied to update the rest of the sub-matrix. This updating
procedure can be broken into two steps:

ZT = W T A (matrix-matrix multiplication)

and

Â = A + Y ZT (rank-r modification).

These steps are rich in matrix-matrix multiplications.
The total number of floating point operations in the block algorithm is larger than in the

unblocked one, because extra computations are required to generate the matrix W in the block
algorithm. Experimental results given in [7] show that the block algorithm is more efficient
only if the size of block is much smaller than the size of the matrix to be decomposed.

There is another block representation of Householder matrices in which the product of
Householder transformations is written in the form [16]:

H1H2 · · ·Hr = I − Y TY T

where T is an r × r upper triangular matrix. The only advantage of this representation over
the WY form is that it requires less storage for the matrix T . Because the block size r needs to
be very small in order to obtain optimal performance on the AP1000 (see §4.3), the difference
in storage requirements is not significant, so we use the simpler WY form.

4



The communication pattern for our implementation of the block Householder algorithm on
the AP1000 is similar to that for our implementation of the standard Householder algorithm.
However, in addition to extra floating point operations, extra communication is required to
generate the matrix W (or T ) if the cells are configured in a two-dimensional mesh. Thus, the
block Householder algorithm involves a tradeoff between reduced memory access and increased
communication. A similar tradeoff occurs in a blocked implementation of LU factorisation [2].

3.3 Givens and hybrid algorithms

The idea of the Givens algorithms is to apply a sequence of elementary plane rotations Gij

which are constructed to annihilate the ijth element of a given matrix. A plane rotation is
defined by a 2× 2 orthogonal matrix of the form

G =

(
c s
−s c

)

where c2 + s2 = 1. If a 2× n matrix(
a11 a12 · · · a1n

a21 a22 · · · a2n

)

is premultiplied by G, a zero can be introduced into the a21 position.
Several parallel algorithms for pipelined implementation of Givens rotations have been

introduced in the literature. However, most of the algorithms are designed for implementation
on application-specific machines, e.g., those described in [1, 10]. Each time a plane rotation is
applied, there is a requirement for data exchange between the corresponding two rows of the
array. The high cost in data communication would significantly degrade the overall performance
on a machine where a communication takes much longer than a floating-point operation. Thus,
the pipelined Givens algorithms are not suitable for machines like the AP1000.

To avoid the high communication cost, a greedy scheme suggested in [14] can be adopted.
Each stage of the algorithm takes two steps. In the internal elimination step of the kth stage,
each cell in the leading column of the array applies Givens rotations to introduce zeros in the
subcolumn corresponding to the first column of the sub-matrix Ak−1, until only one nonzero
element remains. The rotations are then broadcast horizontally to all other columns of the
array to update the remaining columns of Ak−1. In the recursive elimination step the remaining
subdiagonal elements (one in each cell of the leading column) are annihilated. To minimize
the communication cost in this step, a minimum spanning tree communication pattern similar
to that described in §3.1 can be adopted. However, the operations between each two vertical
communication steps in the recursive elimination procedure involve a horizontal data broadcast
and a plane rotation application, so the procedure is much more expensive than the global
summation procedure in the Householder algorithm.

It is well known that the complexity of the Householder method in terms of floating point
operations is roughly half that of the Givens method. The overall computational cost of the
greedy Givens algorithm can be decreased if Householder transformations, instead of Givens
rotations, are applied in the internal elimination step. This leads to the hybrid algorithm [15].
The hybrid algorithm should be more efficient than either the pipelined Givens or the greedy
Givens algorithms on the AP1000.

5



cells 128 64
aspect ratio 128 32 8 2 0.5 64 16 4 1 0.25
time (sec) 10.4 8.51 7.75 7.58 9.16 14.6 12.8 11.2 11.2 14.8

cells 32 16
aspect ratio 32 8 2 0.5 16 4 1 0.25
time (sec) 26.1 23.7 23.5 25.1 48.9 48.7 47.3 52.1

cells 8 4 2
aspect ratio 8 2 0.5 4 1 0.25 2 0.5
time (sec) 96.1 95.4 97.1 190 189 195 379 386

Table 1: Execution time of the column Householder algorithm for a 1000× 1000 matrix.

4 Experimental Results and Discussion

Several algorithms for QR decomposition have been implemented on the 128-cell AP1000 lo-
cated at the Australian National University. Many results have been obtained through extensive
tests. In the following some of these experimental results are presented together with a theo-
retical discussion. In all cases the matrices are dense (our algorithms do not take advantage
of sparsity) and the runtimes are independent of the input data (since the algorithms do not
involve pivoting). For simplicity we only present results for the QR decomposition of square
matrices and only count the time for the computation of the triangular factor R, not for accu-
mulation of the orthogonal transformations. In all cases double-precision (64-bit) floating-point
arithmetic is used.

4.1 Effect of array configuration

Suppose that the total number of cells is P = ncely × ncelx . The aspect ratio is the ratio
ncely : ncelx . For simplicity, we assume that P is a power of two; it follows that the aspect
ratio is also a power of two. The AP1000 can be logically configured with any positive integer
ncely and ncelx provided P does not exceed the maximum number of physical cells (128 for
our machine). However, there is some loss of efficiency if ncely > 16 or ncelx > 8 since the
logical configuration is simulated on a 16× 8 hardware configuration.

We estimate the effect of array configuration by fixing the problem size and varying the
aspect ratio of the array. In this experiment the unblocked column Householder algorithm is
applied to factorise a dense 1000 × 1000 matrix. It can be seen from Table 1 that there is a
decrease in the total computational time when the aspect ratio increases from less than one to
one or two. This is due to the nature of the communication pattern of the algorithm. Since
the communication required in the column Householder algorithm is column oriented, that is,
the horizontal communication volume is higher than the vertical communication volume, the
number of columns in the cell array should be decreased so that the overall communication
cost may be reduced. However, Table 1 shows that further increasing the aspect ratio (even to
P , that is, using a one dimensional array to eliminate all the horizontal communication), the
performance gets worse. There are two reasons for this –

1. When the aspect ratio is increased, the height of the array is also increased, which results
in a longer communication distance for data broadcast in the vertical direction. The
longer the distance between the sending cell and the receiving cells, the more expensive

6



cells 128 64 32 16 8 4 2
hybrid 8.07 12.0 24.0 47.9 96.1 192 391

row Householder 8.09 12.0 23.8 47.6 95.8 190 391
column Householder 7.58 11.2 23.5 47.3 95.4 189 379

Table 2: Execution times of different algorithms for a 1000× 1000 matrix.

is the communication, especially if the broadcast is performed using a binary tree rather
than by the T-net hardware.

2. Since there are ncelx columns in the array, the communication bandwidth for vertical
broadcasts is (at most) 25ncelx MByte/sec. Similarly, the communication bandwidth for
horizontal broadcasts is (at most) 25ncely MByte/sec. Thus, the time for v vertical and
h horizontal broadcasts is roughly proportional to

T =
v

ncelx
+

h

ncely
.

If P = ncelx × ncely is fixed, T is minimised when the aspect ratio is h/v. Since the
column Householder algorithm has h > v, we expect the optimal aspect ratio to be
slightly (but not too much) greater than unity.

The results given in Table 1 show that the optimal ratio is either one or two.

4.2 The Householder method versus the hybrid method

As described in §3.3, the pipelined Givens and the greedy Givens algorithms are not as efficient
as the hybrid algorithm on a two-dimensional distributed memory machine. We now consider
the (row) hybrid algorithm. Since the unblocked row Householder method is applied for the
internal elimination steps, we compare the results with those obtained using the pure unblocked
row (and column) Householder algorithms.

Since the programs are written in the C programming language, matrices are stored in
row-major order. Thus, access to a column in the row Householder algorithm will not be
contiguous. This is why the performance of the row Householder algorithm is slightly worse
than the performance of the column Householder algorithm, as shown by the last two rows
of Table 2. If the programs were written in Fortran, which stores matrices in column-major
order, the ranking would be reversed.

A theoretical complexity analysis of various QR decomposition algorithms on distributed
memory machines [15] predicts that the hybrid algorithm should be more efficient than the
Householder algorithm. However, our experimental results on the AP1000 do not agree with
this conclusion. Table 2 shows that the two algorithms take about the same time to solve a
1000× 1000 problem on the AP1000.

The recursive elimination procedure in the hybrid algorithm and the global summation in
the Householder algorithm both act as synchronisation points during the computation, and
this is one of the key factors in determining the active/idle ratio of cells in the system. As
described in §3.3, the computation involved in a recursive elimination procedure is much more
expensive than that in a simple global vector summation. The former will take a longer time
to complete and thus decrease the active/idle ratio. Therefore, there is no obvious reason
to choose the hybrid algorithm instead of the row or column Householder algorithm as the
preferred algorithm for solving the QR decomposition problem on machines like the AP1000.

7



matrix size 256× 256
block width 1 2 4 8 16 32
time (sec) .741 .994 .887 .887 1.02 1.38
matrix size 512× 512
block width 1 2 4 8 16 32
time (sec) 2.64 3.26 2.88 2.93 3.30 4.41
matrix size 1024× 1024
block width 1 2 4 8 16 32
time (sec) 12.7 14.4 13.1 13.3 14.5 18.0
matrix size 1536× 1536
block width 1 2 4 8 16 32
time (sec) 44.1 45.2 39.5 37.8 39.9 46.4
matrix size 2048× 2048
block width 1 2 4 8 16 32
time (sec) 115 116 103 82.3 84.5 95.0
matrix size 4096× 4096
block width 1 2 4 8 16 32
time (sec) 867 862 754 580 571 604

Table 3: Execution time of the block Householder algorithm on an 8× 8 array.

4.3 Effect of the block width and matrix size

To measure the effect of block width on the performance, we have implemented the block WY
Householder algorithm. In the experiment the number of cells involved in the computation is
fixed at 64, i.e., an 8×8 array is used. To solve a problem of a given size, different block widths
are applied, with experimental results as given in Table 3. Two points should be stressed.
First, the block Householder algorithm is more efficient than the unblocked algorithm only if
the size of the matrix to be decomposed on each cell is larger than the local cache size. Since
the AP1000 has a 128 KByte cache, a 128 × 128 double-precision matrix will fit into the cache.
Thus, on a configuration of 64 = 8× 8 cells, a (distributed) 1024× 1024 matrix will fit into the
local caches on each cell. This explains why the unblocked algorithm is more efficient than the
blocked algorithms for matrices of size 1024× 1024 and smaller.

The second point is that the optimal block width is about 8 (or 16 for larger matrices).
During the generation of the matrices W and Y in each stage of the block column Householder
algorithm, only the cells in the leading row of the array are active; all other cells remain
idle, requesting data from the corresponding cells in the leading row. The greater the block
width, the longer the time for those cells to wait, and the lower the active/idle ratio. This is
why the optimal block width is fairly small. (For simplicity, our Householder implementation
uses the same block width in the algorithm as in the blocked panel-wrapped data distribution.
Logically, these two parameters could be different. In our implementation [3] of LU factorisation
we distributed data with block width 1, so we were able to use a larger blocking factor in the
LU decomposition without decreasing the active/idle ratio.)

Table 4 gives the results obtained when the number of cells involved in the computation
varies, but the size of the matrix is fixed at 1000×1000. It can be seen that the block algorithm
is more efficient if the number of cells is less than 64 and that the optimal block width is about 8,

8



cells 4 (2× 2)
block width 1 2 4 8 16 32
time (sec) 189 172 143 130 131 143

cells 8 (4× 2)
block width 1 2 4 8 16 32
time (sec) 95.4 87.4 73.8 69.3 71.7 82.9

cells 16 (4× 4)
block width 1 2 4 8 16 32
time (sec) 47.3 45.4 39.1 36.9 38.6 45.2

cells 32 (8× 4)
block width 1 2 4 8 16 32
time (sec) 23.5 23.9 21.3 20.9 23.0 29.1

cells 64 (8× 8)
block width 1 2 4 8 16 32
time (sec) 11.2 13.2 12.1 12.2 13.8 17.9

cells 128 (16× 8)
block width 1 2 4 8 16 32
time (sec) 7.58 8.72 7.93 8.17 9.50 13.1

Table 4: Execution time of the block Householder algorithm for a 1000 × 1000 matrix using
different numbers of cells

which is consistent with the observations above.
As described in §3.2, extra computations and communications are required to generate the

matrix W in the block Householder algorithm. Thus the algorithm will not be as efficient
as its unblocked counterpart when the size of a matrix to be decomposed is small. It is
interesting to note that Tables 3 and 4 illustrate two different views about algorithms such
as the block Householder algorithm on massively parallel supercomputers. In a pessimistic
view, the advantage of using this kind of block algorithm to solve a problem of a given size
diminishes as the number of cells and the cache size increase with advances in technology
(Table 4). However, massively parallel supercomputers are intended to be used for solving
large problems. In an optimistic view, this kind of block algorithm becomes advantageous as
the problem size increases (Table 3).

4.4 Speedup and efficiency

Let tP denote the time to execute a given job on P processors. The speedup SP and the
efficiency EP for a system of P processors are defined as SP = t1/tP and EP = SP /P . Since
Householder algorithms are preferred for the AP1000, the column Householder algorithm is
applied to decompose a 1000× 1000 matrix in measuring the speedup and the efficiency. The
results are given in Table 5. The efficiency is close to 0.5 for P = 128 and higher for small
P . This is similar to results for the Linpack benchmark [2], although the efficiency of the
Householder algorithms is slightly (up to about 8%) lower. The results confirm the assertion [2]
that the AP1000 is a good machine for the solution of dense numerical linear algebra problems
such as the solution of linear equations, least squares, eigenvalue and singular value problems.

9



time for cells time speedup efficiency
one cell (sec) (SP ) (EP )

467 128 7.58 61.6 0.48
467 64 11.2 41.7 0.65
467 32 20.9 22.3 0.70
467 16 36.9 12.7 0.79
467 8 69.3 6.74 0.84
467 4 130 3.60 0.90
467 2 254 1.84 0.92

Table 5: Speedup and Efficiency of the Householder algorithm for a 1000× 1000 matrix.

5 Conclusions

The results of our experiments and theoretical analysis can be summarised as follows:

• Of the various orthogonal factorisation methods considered, the Householder transforma-
tion techniques are the most effective for QR decomposition of a matrix on the AP1000.

• The aspect ratio of the array significantly affects the performance, especially when the
total number of cells involved in the computation is large. Although communication in
the column (or row) Householder algorithm is predominantly column (or row) oriented,
the best aspect ratio of the array is either one or two.

• Because of extra computations and communications required in forming the matrix W
(or T ) in the block Householder algorithm, the block width needs to be small. The block
algorithm is more efficient than its unblocked counterpart only if the size of a matrix to
be decomposed is larger than 1024× 1024 on the 128-cell AP1000.

• QR decomposition of a matrix is more complicated than LU decomposition in terms
of both arithmetic operations and communications required for parallel implementation
(see §3.1). Thus, it is not surprising that the efficiency achieved for QR decomposition
on the AP1000 is slightly lower than for the Linpack Benchmark [2]. However, the
degradation in efficiency is less than 10%. This supports claims that the AP1000 is a
good machine for a variety of dense numerical linear algebra problems.

Acknowledgements

Support by Fujitsu Laboratories, Fujitsu Limited, and Fujitsu Australia Limited via the Fujitsu-
ANU CAP Project is gratefully acknowledged. Thanks are due to Iain Macleod for helpful
discussions and for assistance in improving the exposition.

References

[1] A. W. Bojanczyk, R. P. Brent and H. T. Kung, “Numerically stable solution of dense
systems of linear equations using mesh-connected processors”, SIAM J. Sci. and Statist.
Computing 5 (1984), 95–104.

[2] R. P. Brent, “The Linpack Benchmark on the Fujitsu AP1000”, Proc. Frontiers ’92
(McLean, Virginia, USA, October 1992), IEEE Press, 1992, 128–135.

10



[3] R. P. Brent (editor), Proceedings of the CAP Workshop ’91, Australian National Univer-
sity, Canberra, Australia, November 1991.

[4] R. P. Brent, “Parallel algorithms in linear algebra”, Proc. Second NEC Research Sympo-
sium (Tsukuba, Japan, August 1991), invited paper, to appear. Also Report TR-CS-91-06,
Computer Sciences Laboratory, ANU, August 1991, 17 pp. Available by anonymous ftp
from dcssoft.anu.edu.au in the directory pub/Brent .

[5] R. P. Brent and M. Ishii (editors), Proceedings of the First CAP Workshop, Fujitsu Re-
search Laboratories, Kawasaki, Japan, November 1990.

[6] R. P. Brent and P. E. Strazdins, “Implementation of the BLAS level 3 and Linpack bench-
mark on the AP1000”, Fujitsu Sci. Tech. J. 29, 1 (March 1993), 61–70.

[7] J. J. Dongarra, I. S. Duff, D. C. Sorensen and H. A. van der Vorst, Solving Linear Systems
on Vector and Shared Memory Computers, SIAM, Philadelphia, 1990.

[8] J. J. Dongarra, A. H. Sameh and Y. Robert, “Implementation of some concurrent algo-
rithms for matrix factorization”, Parallel Computing 3 (1986), 25–34.

[9] K. A. Gallivan, W. Jalby and U. Meier, “The use of BLAS3 in linear algebra on a parallel
processor with a hierarchical memory”, SIAM J. Sci. and Statist. Computing 8 (1987),
1079–1084.

[10] W. M. Gentleman and H. T. Kung, “Matrix triangularization by systolic arrays”, Proc.
SPIE, Volume 298, Real-Time Signal Processing IV, Society of Photo-Optical Instrumen-
tation Engineers, 1981, 19–26.

[11] G. H. Golub and C. Van Loan, Matrix Computations, second edition, Johns Hopkins Press,
Baltimore, Maryland, 1989.

[12] H. Ishihata, T. Horie and T. Shimizu, “An architecture for the AP1000 highly parallel
computer”, Fujitsu Sci. Tech. J. 29, 1 (March 1993), 6–14.

[13] S. Kim, D. Agrawal and R. Plemmons, Recursive least squares filtering for signal processing
on distributed memory multiprocessors, Tech. Rep., Dept. of Computer Science, North
Carolina State University, Raleigh, NC, 1988.

[14] J. J. Modi and M. R. B. Clarke, “An alternative Givens ordering”, Numer. Math. 43
(1984), 83–90.

[15] A. Pothen and P. Raghavan, “Distributed orthogonal factorization: Givens and House-
holder algorithms”, SIAM J. Sci. Statist. Computing 10 (1989), 1113–1134.

[16] R. Schreiber and C. Van Loan, “A storage efficient WY representation for products of
Householder transformations”, SIAM J. Sci. and Statist. Computing 10 (1989), 53–57.

11


