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Abstract

Random number generators are widely used in
practical algorithms. Examples include
simulation, number theory (primality testing
and integer factorization), fault tolerance,
routing, cryptography, optimization by
simulated annealing, and perfect hashing.
Complexity theory usually considers the
worst-case behaviour of deterministic
algorithms, but it can also consider average-case
behaviour if it is assumed that the input data is
drawn randomly from a given distribution.
Rabin popularised the idea of “probabilistic”
algorithms, where randomness is incorporated
into the algorithm instead of being assumed in
the input data. Yao showed that there is a close
connection between the complexity of
probabilistic algorithms and the average-case
complexity of deterministic algorithms.

In this talk I give examples of the uses of
randomness in computation, discuss the
contributions of Rabin, Yao and others, and
mention some open questions.

Checking out Galileo

The Galileo spacecraft is somewhere near
Jupiter, but its main radio antenna is not
working, so communication with it is very slow.
Suppose we want to check that a critical
program in Galileo’s memory is correct, and has
not been corrupted by a passing cosmic ray.
How can we do this without transmitting the
whole program to or from Galileo ?

Here is one way'. The program we want to
check (say N1) and the correct program on
Earth (say N2) can be regarded as multiple-
precision integers. Choose a random prime
number p in the interval (10%,2 x 109).
Transmit p to Galileo and ask it to compute

r1 < N1 mod p

and send it back to Earth. Only a few bits (no

more than 64 for p and r1) need be transmitted
between Earth and Galileo, so we can afford to

use good error correction/detection.

'Rabin’s “Library of Congress on Mars” problem.

On Earth we compute r9 + N mod p, and
check if 7y = r9. There are two possibilities:

e r1 # ro. We conclude that N; # Na.
Galileo’s program has been corrupted ! If
there are only a small number of errors,
they can be localised by binary search
using O(loglog N;) small messages.

e 71 = r5. We conclude that Galileo’s
program is probably correct. More
precisely, if Galileo’s program is not
correct there is only a probability of less
than 1079 that r = r9, i.e. that we have a
“false positive”. If this probability is too
large for the quality-assurance team to
accept, just repeat the process (say) ten
times with different random primes
P1,D2, - -+, D10- If N1 # Na, there is a
probability of less than

10—90

that we get 1 = ro ten times in a row.
This should be good enough.



The Structure

Our procedure has the following form. We ask a
question with a yes/no answer. The precise
question depends on a random number. If the
answer is “no”, we can assume that it is correct.
If the answer is “yes”, there is a small
probability of error, but we can reduce this
probability to a negligible level by repeating the
procedure a few times with independent random
numbers.

We call such a procedure a probabilistic
algorithm; other common names are randomised
algorithm and Monte Carlo algorithm.

Disclaimer

It would be much better to build error
correcting hardware into Galileo, and not
depend on checking from Earth.

Testing Primality

Here is another example? with the same
structure. We want an algorithm to determine
if a given odd positive integer n is prime. Write
n as 28¢ 4+ 1, where ¢ is odd and & > 0.

Algorithm P
1. Choose a random integer z in (1,n).

2. Compute y = 2% mod n. This can be done
with O(log q) operations mod n, using the
binary representation of q.

3. If y = 1 then return “yes”.
4. For j=1,2,...,k do

if y=mn — 1 then return “yes”
else if y = 1 then return “no”

else y « 3% mod n.

5. Return “no”.

2Due to M. O. Rabin, with improvements by
G. L. Miller. See Knuth, Vol. 2, §4.5.4.

Fermat’s Little Theorem

To understand the mathematical basis for
Algorithm P, recall Fermat’s little Theorem:
if » is prime and 0 < z < n, then

"1 =1 mod n.
Thus, if 2"~! # 1 mod n, we can definitely say
that n is composite.

Unfortunately, the converse of Fermat’s little
theorem is false: if z"~! = 1 mod n we can not
be sure that n is prime. There are examples
(called Carmichael numbers) of composite n for
which 2" ! is always 1 mod n when

GCD(z,n) = 1. The smallest example is

561 =3-11-17
Another example is3

n=1729=7-13-19

3Hardy’s taxi number, 1729 = 123 + 13 = 103 + 93.

An Ezxtension

A slight extension of Fermat’s little Theorem is
useful, because its converse is usually true.

If n = 2%¢ + 1 is an odd prime, then either
29 = 1 mod n, or the sequence

(ijq mod n) )

j=0,1,....,k

ends with 1, and the value just preceding the
first appearance of 1 must be n — 1.

Proof: Tf y?> = 1 mod n then n|(y — 1)(y + 1).
Since n is prime, n|(y — 1) or n|(y + 1).
Thus y = +1 mod n. a

The extension gives a necessary (but not
sufficient) condition for primality of n.
Algorithm P just checks if this condition is
satisfied for a random choice of z, and returns
“yes” if it is.



Reliability of Algorithm P

Algorithm P can not give false negatives (unless
we make an arithmetic mistake), but it can give
false positives (i.e. “yes” when n is composite).
However, the probability of a false positive is
less than 1/4. (Usually much less see Knuth,
ex. 4.5.4.22.) Thus, if we repeat the algorithm
10 times there is less than 1 in 10% chance of a
false positive, and if we repeat 100 times the
results should satisfy anyone but a pure
mathematician.

Algorithm P works fine even if the input is a
Carmichael number.

Use of Randomness

Note that in both our examples randomness was
introduced into the algorithm.

We did not make any assumption about
the distribution of inputs.

Summary of Algorithm P

Given any ¢ > 0, we can check primality of a
number n in

O((logn)? log(1/e))

bit-operations*, provided we are willing to
accept a probability of error of at most €.

By way of comparison, the best known
deterministic algorithm takes

O((log n)clogloglogn)

bit-operations, and is much more complicated.
If we assume the Generalised Riemann
Hypothesis, the exponent can be reduced to 5.
(But who believes in GRH with as much
certainty as Algorithm P gives us ?)

“We can factor n deterministically in O(logn)
arithmetic operations, but this result is useless because
the operations are on numbers as large as 2. Thus, it is
more realistic to consider bit-operations.
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Error-Free Algorithms

The probabilistic algorithms considered so far
(Monte Carlo algorithms) can give the wrong
answer with a small probability. There is
another class of probabilistic algorithms

(Las Vegas algorithms) for which the answer is
always correct; only the runtime is random?®.
An interesting example is H. W. Lenstra’s
elliptic curve method (ECM) for integer
factorisation. To avoid trivial cases, suppose we
want to find a prime factor p > 3 of an odd
composite integer N.

To motivate ECM, consider an earlier
algorithm, Pollard’s “p — 1”7 method. This
works if p — 1 is “smooth”, i.e. has only small
prime factors. p — 1 is important because it is
the order of the multiplicative group G of the
field F,. The problem is that G is fixed.

5In practical cases the expected runtime is finite. It is
possible that the algorithm does not terminate, but with
probability zero.
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Lenstra’s Idea

Lenstra had the idea of using a group G(a, b)
which depends on parameters (a,b). By
randomly selecting a and b, we get a large set of
different groups, and some of these should have
smooth order.

The group G(a,b) is the group of points on the
elliptic curve

y2:x3+az+bmodp,

and by a famous theorem® the order of G(a,b)
is an integer in the interval

(p—1-2y/p, p—1+2/pD)

The distribution in this interval is not uniform,
but it is “close enough” to uniform for our
purposes.

6The “Riemann hypothesis for finite fields”. G(a,b)
is known as the “Mordell-Weil” group. The result on its
order follows from a theorem of Hasse (1934), later gen-
eralised by A. Weil and Deligne.

12



Runtime of ECM

Under plausible assumptions ECM has expected
run time

T=0 (exp(\/clogplog log p)(log N)Z) ,

where ¢ ~ 2.

Note that T depends mainly on the size of p,
the factor found, and not very strongly on N.
In practice the run time is close to an
exponentially distributed random variable with
mean and variance about 7.
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ECM Ezample

ECM is the best known algorithm for finding
moderately large factors of very large numbers.

Consider the 617-decimal digit Fermat number
Fi1 = 92! + 1. Its factorisation is:

Fi1 = 319489 -974849 -
167988556341760475137 -
3560841906445833920513 - pse4,

where psgq is a 564-decimal digit prime.

In 1989 I found the 21-digit and 22-digit prime
factors using ECM. The factorisation required
about 360 million multiplications mod N, which
took less than 2 hours on a Fujitsu VP 100
vector processor.
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Minimal Perfect Hashing

Hashing is a common technique used to map
words into a small set of integers (which may
then be used as indices to address a table).
Thus, the computation 71 + N1 mod p used in
our “Galileo” example can be considered as a
hash function.

Formally, consider a set
W = {wo, w1, ..., wn_1}

of m words w;, each of which is a finite string of
symbols over a finite alphabet X. A hash
function is a function

h: W —1,

where I = {0,1,...,k — 1} and k is a fixed
integer (the table size).
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Collisions

A collision occurs if two words wy and wg map
to the same address, i.e. if h(w1) = h(w2).
There are various techniques for handling
collisions. However, these complicate the
algorithms and introduce inefficiencies. In
applications where W is fixed (e.g. the reserved
words in a compiler), it is worth trying to avoid
collisions.

Perfection

If there are no collisions, the hash function is
called perfect.

Minimal Perfection

For a perfect hash function, we must have
k > m. If k = m the hash function is minimal.

Problem

Given a set W, how can we compute a minimal
perfect hash function ?

16



The CHM Algorithm

Czech, Havas and Majewski (CHM) give a
probabilistic algorithm which runs in expected
time O(m) (ignoring the effect of finite
word-length). Their algorithm uses some
properties of random graphs.

Take n = 3m, and let
V={1,2,...,n}.

CHM take two independent pseudo-random
functions”

f1:W—>Vv, fg:W—)V,
and let

E = {(fi(w), fo(w)) | w € W}.

We can think of G = (V, E) as a random graph
with n vertices V and (at most) m edges E.

"How ? This is a theoretical weak point of their algo-
rithm, but in practice their solution is satisfactory.
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Acyclicity

If G has less than m edges or G has cycles,
CHM reject the choice of fi, fo and try again.
Eventually they get a graph G with m edges
and no cycles. Because n = 3m, the expected

number of trials is a constant (about v/3, or

n
n—2m?’

more generally for large m and

n > 2m).
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The Perfect Hash Function

Once an acceptable G has been found, it is easy

to compute (and store in a table) a function
g:V—-01..m-1

such that

h(w) = g(fi(w)) + g(fa(w)) mod m

is the desired minimal perfect hash function.
We can even get

h(w;) = j

for j =0,1,...,m — 1. All this requires is a
depth-first search of G.

Implementation

CHM report that on a Sun SPARCstation 2
they can generate a minimal perfect hash
function for a set of m = 2'9 words in 33
seconds. Earlier algorithms required time which
(at least in the worst case) was an exponentially
increasing function of m, so could only handle
very small m.
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Permutation Routing

A network G is a connected, undirected graph
with N vertices 0,1,...,N — 1.

The permutation routing problem on G is:
given a permutation 7 of the vertices, and a
message (called a packet) on each vertex, route
packet j from vertex j to vertex w(j). It is
assumed that at most one packet can traverse
each edge in unit time, and that we want to
minimise the time for the routing.

In practice we only want to consider oblivious
algorithms, where the route taken by packet j
depends only on (4, 7(j)).

For simplicity, assume that the G is a
d-dimensional hypercube, so N = 2¢.
Similar results apply to other networks.

20



Ezample: Leading Bit Routing

A simple algorithm for routing packets on a
hypercube chooses which edge to send a packet
along by comparing the current address and the
destination address and finding the highest
order bit position in which these addresses
differ.

For example, consider the bit-reversal
permutation 01001001 — 10010010. Each “}”
corresponds to traversal of an edge in the
hypercube.

I
1100100 1
1
10001001
!
10011001
1
100100 01
!
100100 1 1
!
10010010
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Borodin and Hopcroft’s bound

The following result says that there are no
“uniformly good” deterministic algorithms for
oblivious permutation routing:

Theorem: For any deterministic, oblivious
permutation routing algorithm, there is a
permutation 7 for which the routing takes

Q(y/N/d3) steps.
Ezample: For the leading-bit routing algorithm,
take 7 to be the bit-reversal permutation, i.e.

7(boby - . .bg_1) = bg_1 ...bibg .

Suppose d is even. Then at least 24/2 packets
are routed through vertex 0. To prove this,
consider the routing of

zx...xx00...00,

where there are at least d/2 trailing zeros.
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Valiant and Brebner’s algorithm

We can do much better with a probabilistic
algorithm. Valiant suggested:

1. Choose a random mapping o (not
necessarily a permutation).

2. Route message j from vertex j to vertex
o(j) using the leading bit algorithm (for
0<j<N).

3. Route message j from vertex o(j) to
vertex (7).

This seems crazy®, but it works | Valiant and
Brebner prove:

Theorem: With probability greater than
1 —1/N, every packet reaches its destination in
at most 14d steps.

Corollary: The expected number of steps to
route all packets is less than 15d.

81 don’t know of any manufacturer who has been per-
suaded to implement it. Probably it would be hard to
sell.
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Pseudo-deterministic Algorithms

Some probabilistic algorithms use many
independent random numbers, and because of
the “law of large numbers” their performance is
very predictable. One example is the
multiple-polynomial quadratic sieve (MPQS)
algorithm for integer factorisation.

Suppose we want to factor a large composite
number N (not a perfect power). The key idea
of MPQS is to generate a sufficiently large
number of congruences of the form

y? =pf' - ppk mod N,

where p1,...,pr are small primes in a
precomputed “factor base”, and y is close to
V/N. Many y are tried, and the “successful”
ones are found efficiently by a sieving process.

Making some plausible assumptions, the
expected run time of MPQS is

T = O(exp(y/clog N loglog N)),

where ¢ ~ 1. In practice, this estimate is good
and the variance is small.
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MPQS Example

MPQS is currently the best general-purpose
algorithm for factoring moderately large
numbers N whose factors are in the range N'1/3
to N2, For example, A. K. Lenstra and

M. S. Manasse recently found

3329411 = 22.547-16921 - 256057 -
36913801 - 177140839 -
1534179947851 - pso - Per

where the penultimate factor psg is a 50-digit
pI‘ime 24677078822840014266652779036768062918372697435241,

and the largest factor pg7 is a 67-digit prime.

The computation used a network of
workstations for “sieving”, then a super-
computer for the solution of a very large linear
system.

A “random” 129-digit number (RSA129) has
just been factored in a similar way to win a
$100 prize offered by Rivest, Shamir and
Adleman in 1977.
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Complexity Theory of Probabilistic
Algorithms

Do probabilistic algorithms have an advantage
over deterministic algorithms ? If we allow a
small probability of error, the answer is yes, as
we saw for the Galileo example. If no error is
allowed, the answer is (probably) no.

A. C. Yao considered probabilistic algorithms
(modelled as decision trees) for testing
properties P of undirected graphs (given by
their adjacency matrices) on n vertices. He also
considered deterministic algorithms which
assume a given distribution of inputs (i.e. a
distribution over the set of graphs with n
vertices).
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Definitions
Yao defines
randomized complezxity Fr(P) as an

infimum (over all possible algorithms) of a
maximum (over all graphs
with n vertices) of the
expected runtime.

and
distributional complezxity Fp(P) as a

supremum (over input distributions) of a
minimum (over all possible
deterministic algorithms) of the
average runtime.

Informally, Fr(P) is how long the best
probabilistic algorithm takes for testing P; and
Fp(P) is the average runtime we can always
guarantee with a good deterministic algorithm,
provided the distribution of inputs is known.
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Yao’s Result

Yao (1977) claims that Fp(P) = Fr(P) follows
from the minimax theorem of John von
Neumann (1928). The minimax theorem is
familiar from the theory of two-person zero-sum
games.

So What ?

Yao’s result should not discourage the use of
probabilistic algorithms we have already given
several examples where they out-perform known
deterministic algorithms, and there are many
similar examples.

Yao’s computational model is very restrictive.
Because n is fixed, table lookup is permitted,
and the maximum complexity of any problem is

O(n?).
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Adleman and Gill’s result

Less restrictive models have been considered by
Adleman and Gill. Without going into details of
the definitions, they prove:

Theorem: If a Boolean function has a
randomised, polynomial-sized circuit family,
then it has a deterministic, polynomial-sized
circuit family.

There are two problems with this result:

e The deterministic circuit may be larger
(by a factor of about n, the number of
variables) than the original circuit.

e The transformation is not “uniform” — it
can not be computed in polynomial time
by a Turing machine. The proof of the
theorem is by a counting argument
applied to a matrix with 2" rows, so it is
not constructive in a practical sense.
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The Class RP

We can formalise the notion of a probabilistic
algorithm and define a class RP of languages L
such that = € L is accepted by a probabilistic
algorithm in polynomial time with probability
p>1/2 say®, but = ¢ L is never accepted.
Clearly

PC RPCNP,

where P and NP are the well-known classes of
problems which are accepted in polynomial time
by deterministic and nondeterministic
(respectively) algorithms.

It is plausible that
PCRPCNP,

but this would imply that P # NP, so it is a
difficult question.

? Any fixed value in (0, 1) can be used in the definition.
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Perfect Parties

B. McKay (ANU) and S. Radziszowski
(Rochester) are interested in the size of the
largest “perfect party”. Because people at
parties tend to cluster in groups of five, we
consider a party to be imperfect if there are five
people who are mutual acquaintances, or five
who are mutual strangers. A perfect party is
one which is not imperfect!©.

McKay et al have performed a probabilistic
computation which shows that, with high
probability, the largest perfect party has 42
people.

Ramsey Numpbers

R(s,t) is the smallest n such that each graph on
n or more vertices has a clique of size s or an
independent set of size t.

Examples: R(3,3) =6, R(4,4) = 18,
R(4,5) = 25, and 43 < R(5,5) < 49.

Perfect party organisers would like
to know R(5,5) — 1.

0Thanks to John Slaney for motivating this definition.
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The Computation

A (5,5,n)-graph is a graph with n vertices, no
clique of size 5, and no independent set of

size 5. There are 328 known (5,5, 42)-graphs,
not counting complements as different. McKay
et al generated 5812 (5, 5,42)-graphs using
simulated annealing, starting at random graphs.
All 5812 turned out to be known.

If there were any more (5,5,42)-graphs, and if
the simulated annealing process is about equally
likely to find any (5,5,42)-graph!!, then
another such graph would have been found with
probability greater than

0.99999998

Thus, there is convincing evidence that all
(5,5,42)-graphs are known. None of these
graphs can be extended to (5,5, 43)-graphs.
Thus, it is very unlikely that such a graph
exists, and it is very likely that

R(5,5) — 1 =42

"'There is no obvious way to prove this.
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A Rigorous Proof ?

A rigorous proof that R(5,5) — 1 = 42 would
take thousands of years of computer time!2,

so the probabilistic argument is the best that is
feasible at present, unless we can get time on

Deep Thought.

'2Based on the fact that it took seven years of Sparc-
station time to show that R(4,5) = 25.
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Omissions

We did not have time to mention applications of
randomness to serial or parallel algorithms for:

e sorting and selection,

e computer security,

e cryptography,

e computational geometry,
e load-balancing,

e collision avoidance,

e online algorithms,

e optimisation,

e numerical integration,

e graphics and virtual reality,
e avoiding degeneracy,

e and many other problems.
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Another Omission

We did not discuss algorithms for
generating pseudo-random numbers —
that would require another talk.

Anyone who considers arithmetical
methods of producing random digits
is, of course, in a state of sin.

John von Neumann, 1951
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Conclusion

e Probabilistic algorithms are useful.

e They are often simpler and use less space
than deterministic algorithms.

e They can also be faster, if we are willing
to live with a minute probability of error.
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Some Open Problems

e Give good lower bounds for the

complexity of probabilistic algorithms
(with and without error) for interesting
problems.

e Show how to generate independent

random samples from interesting
structures (e.g. finite groups defined by
relations, various classes of graphs, ...) to
provide a foundation for probabilistic
algorithms on these structures.

e Consider the effect of using

pseudo-random numbers instead of
genuinely random numbers.

o Extend Yao’s results to a more realistic

model of computation.

e Give a uniform variant of the

Adleman-Gill theorem.

e Show that P # RP (hard).

37
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