Area 4 Working Note 16: Implementation and Performance of
Scalable Scientific Library Subroutines on Fujitsu’s VPP500
Parallel-Vector Supercomputer

R. Brent, A. Cleary, M. Dow,
M. Hegland, J. Jenkinson, Z. Leyk,
M. Osborne, 5. Roberts, D. Singleton

Australian National University
Canberra, ACT 2602

Australia

Abstract

We report progress to date on our project to im-
plement high-impact scientific subroutines on Fujitsu’s
parallel-vector VPP500. Areas covered in the project
are generally between the level of basic building blocks
and complete applications, including such things as
random number generators, fast Fourier transforms,
various linear equation solvers, and eigenvalue solvers.
Highlights so far include a suite of fast Fourier trans-
form methods with extensive functionality and per-
formance of approximately one third of peak; a par-
allel random number generator guaranteed to not re-
peat sequences on different processors, yet reproducible
over separate runs, that produces randoms in 2.2 ma-
chine cycles; and a Gaussian elimination code that has
achieved over a Gflop per processor for 32 processors
of the VPP500, and 124.5 Gflops total on the Fujitsu-
built Numerical Wind Tunnel, a machine very similar
architecturally to the VPP500.

1 Introduction

The Australian National University has forged an
impressive partnership with the Fujitsu Corporation
on a number of scientific computing topics. One of
the most recent of these is the Fujitsu-ANU Paral-
lel Scientific Subroutine Library project. This project
is concerned with the implementation of high-impact
scientific subroutines for inclusion in Fujitsu’s parallel
version of their SSL-II Scientific Subroutine Library
for the new generation VPP500 parallel-vector ma-
chine. The ANU’s role in this partnership is to apply
their expertise in state-of-the-art parallel algorithms

M. Nakanishi

Fujitsu Limited
Numazu-shi, Shizuoka 410-03
Japan

to computations of particular importance to Fujitsu’s
users. Similar parallel libraries are being pursued com-
mercially for other architectures by companies such as
Thinking Machines, Cray, and IBM, and in public do-
main projects such as ScaLAPACK [4].

The VPP500 is Fujitsu’s new entry into the high
end of supercomputers. It consists of up to 222 highly
powerful vector processors connected by a proprietary
crossbar switch. FEach processor is a multiple-pipe
vector computer with a peak theoretical speed of 1.6
Gflops, giving a fully configured machine a peak of
over 320 Gflops. The pipes are “fat” in the sense that
they produce four add-multiply results per clock cycle.
This increases the peak speed, but at the same time
increases the length of vectors needed to achieve this
speed by the same amount, making it difficult though
not impossible to fully utilize its capabilities. The Nu-
merical Wind Tunnel Machine of National Aerospace
Laboratory in Japan, which is architecturally similar
to the VPP500, reported the highest Linpack bench-
mark results as of the end of 1993 [10], 124.5 sustained
Gflops for 140 processors. The programming model of
the VPP500 is that of a single address space, though
references to global memory are expensive and best
used only for communication. Access to parallel fa-
cilities are given through VPP Fortran, a Fortran-77
based language with compiler directives to handle the
parallel programming aspects (High Performance For-
tran is planned for the future, and there are hopes
that standard-interface message passing capabilities
may be added as well). Recent indications are that
the majority of the first wave of customers will be
purchasing machines in the 20 to 40 processor range.
The combination of a moderate number of processors,

each of which requires very long vectors to achieve
high efficiency, means that the VPP500 offers a differ-
ent flavor to algorithm designers in terms of scalabil-
ity. For example, if vector lengths of 500 are required
to achieve an acceptable efficiency on each processor
(which is approximately correct), then to issue a sep-
arate vector instruction of this length to each of 40
processors (normally considered fairly small in parallel
computing circles) in parallel requires an algorithmic
parallelism of 20,000 independent operations, which is
a challenge to achieve for many scientific calculations.

Instead of attempting to provide an exhaustive li-
brary, we have concentrated on providing important
user and application groups with routines that impact
the most on their calculations. The technical areas of
interest so far and some of their application areas are:
fast fourier transforms for signal processing, random
number generators for Monte Carlo simulations, itera-
tive methods for symmetric and nonsymmetric linear
systems for PDE solutions, least squares problems use-
ful in statistics, sparse linear system solution used in
structures calculations and circuit design, dense and
banded linear system solution for boundary element
methods and ODEs, and both symmetric and unsym-
metric eigenvalue problems for chemistry and control
problems. We note that to a large extent other ven-
dors have followed the same sort of pattern, concen-
trating on certain key areas and applications.

The VPP500 has only been accessible to us for
a short period of time, and runs have been limited
mostly to four processors. However, development has
been aided by the use of two other Fujitsu computers
residing at the ANU: the VP2200 is a vector computer
with the same vectorizing compiler as that used on the
VPP500 and has allowed us to experiment with vector-
ization aspects; and the AP1000 is a 128 node MIMD
parallel computer that has a VPP Fortran compiler
(actually a translater into node Fortran and message
passing library calls) that has allowed us to debug par-
allel programs and test scalability in lieu of access to a
larger VPP500. At this point our results are a mixture
of results from the VPP500 and the AP1000.

We briefly describe our efforts for some of the spe-
cific technical areas listed above in the remainder of
this paper, along with some more general comments
concerning the implementation of library subroutines

on the VPP500.

2 Random Number Generators

Brent [3] considered several popular classes of ran-
dom number generators, including linear congruen-

tial generators, and concluded that the requirements
of a parallel vector random number generator could
best be met by a vectorized implementation of gen-
eralized Fibonacci generators. The same conclusion
appears to have been reached independently by oth-
ers [1, 21]. A single vector processor version, RANUA4,
was completed as part of this project for the Fujitsu
VP 2200/10 vector processor in 1992.

The generalized Fibonacci generators are based on
the recurrence

Ty = Tp—p + £,_s mod 2%

where w is related to the wordlength of the machine
and is usually considerably larger than 1. In his re-
cent paper [19] Marsaglia recommends a new class of
generators, termed “very long period” (VLP) genera-
tors. These are similar to generalized Fibonacci gener-
ators but can achieve periods close to 2", whereas the
generalized Fibonacci generators can “only” achieve
period O(27t%).
we implemented one of Marsaglia’s VLP generators
(RANUS5) on the VP 2200.

Tests on the VP 2200 indicate that RANUS5 is about
3 times slower than RANU4. This is quite satisfac-
tory, considering the complexity of the algorithm and
the high speed of RANU4. Some improvements in
the speed of RANU5 may be possible. Note that
our implementation of RANUS does not include a
combination with another generator (as suggested by

Thus, for comparison purposes,

Marsaglia) — this would obviously slow it down.

We have implemented a multiprocessor version of
RANU4 on the VPP500. We have developed theory
that ensures that sequences of pseudo-random num-
bers returned for different initial seeds are separated
by a distance greater than 10'® in the full periodic
sequence. Thus, for all practical purposes, different
initial seeds ensure different subsequences of pseudo-
random numbers. The requirement that each proces-
sor generate disjoint subsequences is thus equivalent to
the requirement that they use different initial seeds. In
our implementation on the VPP500, then, each pro-
cessor uses a different seed (based on the processor
number), thus ensuring that there is no overlap be-
tween the sequences used on different processors.

Extensive statistical testing has been performed us-
ing a variety of testing methodologies. RANU4 has
been shown to pass these at least as well as previ-
ous random number generators, and in some cases
(i.e. linear congruential generators) the results are
orders of magnitude better. Testing for performance
was also done. On each processor, 1.6 x 10° pseudo-
random numbers were generated in batches of 800,000.

With these settings, each processor generated random
numbers at a rate of 0.581 cycles per random, or one
random per 2.2 cycles. The rate of 0.581 cycles per
random can also be expressed as 0.17x10° randoms
per second per processor and this can be compared
with the rate of 0.14x10° randoms per second for the
VP2200 implementation.

3 Parallel fast Fourier transforms

We have implemented a suite of fast Fourier trans-
form algorithms, including real and complex one-, two-
and three-dimensional data. These were written in
VPP Fortran and extensively tested on the AP1000
and the VPP500. In addition, to get a more realis-
tic idea of parallel performance on the AP1000, com-
munication steps as translated by the VPP Fortran
compiler were replaced with much faster calls to the
native AP1000 communication library, and the code
was retested.

For the complex to complex transform we used the
“4-step” or transpose algorithm [23]. A new algo-
rithm based on the 4-step algorithm was developed
for the real transforms [14]. The 4-step algorithm is
well adapted to systems with a moderate number of
processors like the Fujitsu VPP 500 and the AP1000.

One-dimensional data is stored in a
two-dimensional array which is then partitioned over
the first dimension. Two- and three-dimensional data
is stored in two- and three-dimensional arrays which
are partitioned over the first dimension as well. We
chose blocked partioning, however, the algorithms do
not depend on the partitioning.

The building blocks of the 4-step algorithms are
completely local complex one-dimensional (multiple)
Fourier transforms, and communication intensive ma-
trix transpositions. The local complex transforms im-
plement a new mixed-radix in-place and self-sorting al-
gorithm with radices 2,3,4,5,8 and 16, see [15, 12, 13].

The performance on an 11 processor VPP 500 is
5.8 Gflop/s, about a third of peak performance, for
a problem size n = 222, For the same sized prob-
lem on a 128 processor AP1000 we get about a sixth
of peak performance. This compares favorably with
other parallel FFT routines which in our tests achieve
approximately 10% of peak speed. It also shows
that the nodes of the VPP500 can sustainable high
performance. This problem points to another ma-
jor strength of the VPP500 architecture: the cross-
bar switch. The algorithms are organized so that all
communication is done at one step, in a personalized

2
10 T
n>=8192*p
N
ES
+ X X n=4096*p
X
¢}
1 ° o n=2048"
10") % n p
*
% *
a0 M * n=1024*p
k5 H
[T *
Tl
10“;
1
10 ‘ ‘
10° 10" 10° 10°

number of processors p

Figure 1: Performance of FFT algorithm on AP1000

all-to-all communication operation. This operation is
done with large chunks of memory, which is typically
more efficient for message passing machines (which at
the bottom levels the VPP500 essentially is). But
the fact that all processors are simultaneously send-
ing and receiving data is a real test of the crossbar
switch technology. Measurements of this communica-
tion phase show that with large blocks this operation
can approach (to within a factor of 2/3) the theoreti-
cal maximum bandwidth of 400 Mbytes/second for a
write operation (200 Mbytes/second for a read opera-
tion) even with all processors simultaneously sending
messages. Testing this operation on a larger VPP500
should prove very interesting.

Theoretical analysis and practical tests [15] demon-
strate the scalability of the algorithm. Thus on a
fully equipped VPP 500 we would expect around
100 Gflop/s for large enough problem sizes.

4 Least Squares Problems
The linear least squares problem [20] is

H%(il’lI‘TI‘; r=Ax—b, (1)
where A : RF — R", p < n, and the solution is unique
if rank(A) = p. If rank(A) < p then the solution
is not unique, but it can be made so by seeking the
solution closest to the origin in RP. Typically, the
computational cost in solving (1) is O(np?) flops. Even
for rather large data fitting problems — say n = 100000
and p = 100 — the processing load is of the order of a
gigaflop and insufficient on its own to tax the VPP500.

It becomes more significant when it has to be called
iteratively in performing a large nonlinear least squres
analysis. However, the linear least squares problem
does lend itself to parallel and vector implementation.
We use the so called Modified Gram-Schmidt
(MGS) tableau-based algorithm, which computes

U-TAT — QT x=u"1qQfb. (2)
MGS proceeds by orthogonalizing the current col-
umn A; to A;j4q1,---, A, followed by a normalising
step, for : = 1,2,---,p — 1. Consider the tableau
AT T
The MGS orthogonalisation steps are applied to W in
a sequence of p sweeps denoted by @ This gives
Qf v
W_= 7 T - 4)
(p) r x

This is verified readily. Orthogonalising b to each of
the columns of A in step with the MGS orthogonal-
isations necessarily produces rT in the first n places
of the last row of W. It follows from (2) that the or-
thogonalisation process must introduce U/ =7 into the
tableau replacing the unit matrix. But from (1) r T is
given also by [XT 1]W. Thus the remaining elements

in the last row of W are just the components of xT.

This results in a very simple program, yet one that
can be both parallelized and vectorized. Our parallel
algorithm for the VPP500 divides the tableau verti-
cally. The bulk of the computations can be performed
without communication. The only sources of commu-
nication are global sums across all processors at each
step. VPP Fortran provides an intrinsic construct for
performing such a sum; however, at present this rou-
tine seems to be somewhat unoptimized. For this rou-
tine as well as several others, efficient implementation
of this small-grained communication operation is very
important.

5 Tridiagonal eigenvalue problem

We assume that the tridiagonal matrix can be
stored on each processor, since each processor has ei-
ther 128 or 256 Mbytes of storage. With this assump-
tion, we attack this problem on the VPP500 in the
following way:

1. Parallelism is sought in the separate eigenvalue
calculations in order to spread the computation
across the processors; and

2. Techniques for vectorizing the calculation of the
distinct eigenvalues are applied on each processor.

This way there is no interprocessor communication
once the tridiagonal matrix has been distributed to
each processor until the results are collected. The scal-
ability relation for this approach has the form
c (5)

Ney

TC =S+
np

where T'C' is the total cost of the computation, S is
the start—up overhead (essentially broadcast time), C'
is the cost of a single eigenvalue computation on a
single processor, n., is the number of eigenvalues re-
quired, and n, is the number of processors. A key
parameter here is n.,. Typically what is required is
a (small) subset of the eigenvalues (and certainly of
the eigenvectors) of a tridiagonal matrix of a size that
would justify sensible computation on a machine of
the capability of the VPP500. For this reason meth-
ods which seek all the eigenvalues, such as the Cuppen
algorithm [8], would seem a priori unattractive even
if the problems of interprocessor communication could
be solved as effectively.

The Sturm sequence property of the principal mi-
nors of T'— AT provides a suitable method for isolating
the eigenvalues of interest on each processor provided
these are specified by order information. It is known
[24] that a multisection technique in which the Sturm
sequence is evaluated at k distinct values of A in each
pass in order to isolate each distinct eigenvalue is ap-
propriate. The optimal value of k satisfies

k(loghk —1) = nys, (6)

where n/; refers to the vectorization over j, the index
of the multisection points, of the recurrence for the
ratio of the principal minors. That is, vectorization is
over the different points at which the Sturm sequence
is to be evaluated.

9(7) = (Tii = Tig-1Tu-1i/9(3) — AG). (7)

o It follows from 6 that k increases only marginally
more slowly than nj;; which is typically large
(O(10%) or more) on the Japanese supercomput-
ers. In this case there is no great advantage in
attempting to accelerate the convergence of the
eigenvalues by using a higher ordered scheme once
these have been isolated. Thus it suffices to ap-
ply the multisection procedure a fixed number of
times to achieve full machine accuracy.

e The bracketing of the eigenvalues by counting the
changes in sign in the sequence of Sturm polyno-
mials from 7 can use a result of Kahan [9] that the

of points | elapsed time (s.)
40 .0597
80 .0536
85 .0540
90 .0541
95 .0506
100 .0522
105 .0548
110 .0551
120 .0570
160 .0595

Table 1: Execution time on VPP500 vs. multisection
points per processor for n=1000

sign count is monotonic in A in IEEE arithmetic
provided the bracketed order of computation is
imposed.

The technique used for vectorizing the multisection
computation over j is described by us in [7].

Table 1 shows the effect of varying the number
of multisection points per processor on total elapsed
time. The times given are for a tridiagonal matrix T,
Tii-1y = Tii41y = 1, Toi = 0, of order n = 1000.
The computations were carried out on 4 processors of
the VPP500, with each processor finding 4 eigenval-
ues. There is a tradeoff between vectorization and con-
vergence in deciding how many multisection points to
use per processor, as can be see from the table. With
more points, vectorization increases, but more Sturm
sequences must be evaluated to achieve the same ac-
curacy as compared to using less points.

Allowance is made for pathologically close eigen-
values which can be identified as numerically repeated
eigenvalues. The first eigenvector associated with such
a cluster is found by inverse iteration using the sign
structure of the Sturm sequence to set an initial eigen-
vector. For each subsequent eigenvector computation
associated with the cluster a starting vector is found
by generating a vector with random elements and then
orthogonalising this to the vectors already computed
and rescaling. This has proved satisfactory for gen-
erating an independent basis for the eigenspace, but
there can be very noticable loss of orthogonality. For
example, the routine when applied to find the 6 largest
eigenvalues of Was [25] locates three numerically re-
peated pairs. The corresponding eigenvectors for each
pair are found in one step of inverse iteration, but are
orthogonal only to within 1%.

6 TIterative Methods

For the solution of sparse, symmetric linear sys-
tems, we are investigating a variety of preconditioned
Conjugate Gradient methods. The methods imple-
mented so far are Neumann, Block Neumann and
block Incomplete Cholesky (IC). The block size is cho-
sen so that there is no interprocessor communication.
Thus if a matrix A is partitioned so that a proces-
sor has rows from nl to n2, the preconditioning ma-
trix M is set to zero outside that column range. This
is just a block Jacobi, but with a large block size.
Such preconditioners trade off better parallel proper-
ties against slower convergence, since information is
not propagated from processor to processor in the pre-
conditioning stage. This structure has the advantage
for IC that the preprocessing steps, such as determi-
nation of a “wavefront” ordering and any re-ordering
of equations, as well as the factorizations themselves,
may all be done on each processor in parallel [22].

The sparse matrix storage format chosen was the
“Purdue” format, which has long vector lengths (down
each row) and partitions naturally, each processor hav-
ing n/nprocs rows. This format gives compatibility
with other conjugate gradient packages as well as with
our unsymmetric iterative solvers.

Results for a simple test problem, the 2D Laplace’s
equation on a square domain, are as follows:

n=512000 nprocs=4

Precond. Iterations Mflops Time (s.)
none 2956 1737 15.7
Neumann 1479 1517 12.9
Block Neumann 1637 1541 14.1
" (order 3) 1223 1424 18.5
Block IC 991 713 20.6

These results are very encouraging, except for the
Block IC. An examination of the time of each stage
reveals, as expected, that it is the preconditioner solve
that is slow:

Times in seconds

Prec. None Neumann IC IC

Stage Mflops
factor - .006 .5

wave - .6 .17

init .003 4.4 .02

send p 1.3 .6 .4

Ap 8.9 .9 3.0 1358
p’Ap 1.3 .6 .4 2342
2 Saxpy’s 1.9 .9 .6 3121

r’z 1.2 .6 .5 2018
1 saxpy .9 .5 .3 3169
send prec 0 .6 0

solve prec. 0 4.5 14.6 348

The slow solve step is due to too many levels of indirect
addressing in the following code.

do k = 2, numwav
do L = ist(k), ist(k+1) - 1
i = ip_L
y(i) = y(i) - A(4,j) * y(COL(4,3j))

The remedy here is to re-order the equations using
the permutation vector ip, which has not yet been
implemented.

Another problem on the VPP is to implement the
indirect addressing in the matrix vector product A x z:

vi=yi + A j x2(COL; ;)

The matrix A is partitioned row-wise between pro-
cessors, which causes no problems, but the vector x is
partitioned in the same way, and since we know noth-
ing about the structure of the matrix A we cannot de-
termine what communication pattern will be needed
to implement x(COL; ;). Thus, there is no way of effi-
ciently moving data between processors based on such
indirect addressing. Under investigation are more so-
phisticated techniques for this operation which may
require a different mapping of the matrix A to the
processors; see e.g. [17].

Unsymmetric Problems:

As a preliminary part of this project, we have devel-
oped a variant of conjugate-gradient type methods for
nonsymmetric systems of equations called the MGCR,
method [18]. MGCR is always faster than GMRES,
i.e. at each iterative step MGCR performs one scalar-
by-vector multiplication and one vector-to-vector ad-
dition less than GMRES, and it is as robust as GM-
RES. MGCR cannot break down unless it has already
converged or the exact solution is found. As with the
symmetric iterative methods, the matrix A is repre-
sented in Purdue format but preliminary computa-
tions indicate that the product A*x is slow. Achieving
good performance on both of these problems will de-
pend on finding an efficient implementation of parallel
sparse matrix-vector multiplication.

7 Banded and Dense Linear Systems

The solution of dense and banded linear systems
with no interior sparsity is a standard functionality
for scientific subroutine libraries. On the VPP500,
we have chosen to use the so-called torus wrap map-
ping [2, 16] which was first described for banded ma-
trices by Fox [11], as our main data mapping for im-
plementing these programs. The torus wrap mapping
assumes that the processors are configured into a two-
dimensional grid of size NPCOL x NPROW and
that each processor is labelled by its coordinates in
this grid (starting with zero). The mapping is deter-
mined in terms of the processor grid by the following
rule: element 7,5 of the matrix is assigned to proces-
sor (i mod NPCOL,jmod NPROW). In effect this
scatters both the rows and columns of the matrix.
This is a good match with the ability in VPP Fortran
to declare data to be distributed with the CYCLIC
characteristic.

The torus wrap mapping provides a theoretical sav-
ings in volume of communication and an improvement
in scalability of a factor of /P over row and column
methods [2], and has been shown in practice to pro-
vide highly scalable and efficient programs for a va-
riety of architectures. Thus, it has been selected as
the primary mapping for the ScaLAPACK project [4].
Though the VPP500 currently in use commercially do
not yet have enough processors to make this theoreti-
cal savings applicable, we chose the torus wrap map-
ping both because we anticipate that Fujitsu’s succes-
sors to the VPP500 will emphasize more parallelism
than the current generation, as well as to maintain
consistency with other projects using the torus wrap
mapping like ScaLAPACK.

For current users with machines in the low to mid-
dle number of processors, an efficient LU factorization
code has been written by Mr. Makoto Nakanishi. This
code divides the matrix into column strips which are
each assigned to a single processor. Computation and
communication are done in block portions of these
strips, allowing both the overlapping of communica-
tion and computation by configuring the processors
logically in a ring, as well as efficient matrix-matrix
single processor kernels. For the LINPACK bench-
mark problem, results for this code include 1.26 Gflops
on a single processor and 32.93 Gflops on 32 proces-
sors, a parallel efficiency of 77%. See Table 7.

We have chosen to use the same basic algorithm for
the banded matrices as for the dense systems. The as-
sumption here is of medium to large bandwidths, such
that vectorization/parallelization within the band is
reasonably efficient. At the other end of the band-

P N | Gflops | Efficiency
1] 1000 1.26 1.00
2| 2000 2.09 0.83
4 | 5200 4.46 0.88
8 | 7600 9.22 0.90
16 | 9984 16.89 0.84
32 | 14720 32.93 0.77

Table 2: Linpack Benchmark performance on VPP500

width spectrum, there are plans to implement spe-
cial cyclic reduction type algorithms for tridiagonal
and pentadiagonal matrices, and perhaps block bidi-
agonal matrices. In the middle of the spectrum are
small to medium bandwidths for which the best op-
tion seems to be partitioning methods (of which cyclic
reduction is a special example). Cleary [5] showed that
for symmetric positive definite matrices, any partition-
ing method will have an operation count of at least
four times that of the sequential method. Thus, unless
the partitioning algorithm allows a computational rate
(including parallelism) that is four times the sequen-
tial method, it cannot be superior. Matrices with such
a small bandwidth are extremely sparse, and thus are
better dealt with in the context of sparse matrices. A
continuing area of this project is the solution of sparse
linear systems. To handle narrowly banded matrices,
we need only provide a special reordering module for
these matrices and the sparse matrix programs will
affect the partitioned factorization automatically.

First versions of our Gaussian elimination and
Cholesky factorization codes haves shown that the
computational kernels on each processor vectorize well
and are completely load-balanced across processors, as
expected. For N = 4000, 8 = 1000, the computational
kernel for Gaussian elimination runs at 1.2 Gflops on a
single processor. This is consistent with a peak speed
of 1.6 Gflops, ny/2 & 450, and an average vector length
of (2/3)N. However, whereas a sequential code has
essentially no overheads, the parallel code running on
a single processor has overheads that slow the code
down to an average .8 Gflops. These overheads are
accurate reflections of the cost of communication and
synchronization in VPP Fortran, as the compiler does
not recognize at compile time that only one processor
is being used and thus generates full communication
and synchronization calls even though they are not
needed.

Naturally it is impossible to show near optimal
speedups with such overheads in the parallel code.
However, our code does show speedup on 2 and 4 pro-

cessors when compared to the parallel code running
on a single processor. The problem is centered around
VPP Fortran and implementing message-passing type
operations. VPP Fortran was originally designed to be
a data-parallel type language, but for library software
in which the number of processors is not known at
compile time, most of the data-parallel facilities are
unusable. Thus, programming practice degenerates
into a message-passing type structure, but without
the full support of message passing instructions. The
result is that some operations are difficult to imple-
ment. In particular, the notion of sending a nonblock-
ing message to another processor is particularly cum-
bersome, involving substantial handshaking and thus
stripping asynchronicity out of the algorithm. While
we are working on solutions and improvements within
the confines of VPP Fortran, we also have hope that
continuing efforts by Fujitsu may lead at least to HPF
and possibly to a standard message passing function-
ality.

8 Summary

We have described our efforts at providing high im-
pact scientific subroutines in the form of library soft-
ware for Fujitsu’s VPP500 parallel-vector supercom-
puter. The choice of target problem areas is deter-
mined both by users both directly via their input and
indirectly by comparison with other parallel libraries.
Several areas have been largely completed including
random number generators, fast fourier transforms,
and dense least squares problems, while many others
are in various stages of completion. Though time with
the VPP500 has been limited and even then mainly
to a four processor machine, results to date have been
encouraging. The excellent performance of the node
processors, rated at 1.6 Gflop/s, allows very large
and complex problems to be attacked, while the un-
matched bandwidth of the communications crossbar
switch (800 Mbyte/s/processor) prevents large blocks
of communication from becoming a bottleneck. We
need more experience with the machine to make con-
clusions about the communication of small chunks of
data as well as synchronization mechanisms useful in
smaller grained applications. Likewise, besides for
analyses and the parameters we have calculated so far,
we cannot comment on the possible performance of the
VPP500 with large numbers of processors.

In addition to the areas we have mentioned already,
we currently have preliminary efforts underway in
other areas. A large effort at providing direct solvers

for sparse matrices has just recently started but is ba-
sically still in the investigation stages. As part of the
preliminary research in this project, a new mapping
for sparse matrix factorization was developed that of-
fer attractive communication advantages for massively
parallel machines [6], but there are still questions as
to whether this mapping is appropriate for the smaller
number of processors on the VPP500 since communi-
cation 1s not such a dominant concern. Further ef-
forts at various eigenvalue problems have been made,
including the implementation of Jacobi methods for
symmetric and unsymmetric problems and develop-
ment of localization methods for small subsets of the
eigenvalues of unsymmetric matrices, but these codes
are not yet complete.

References

[1] S. L. Anderson, “Random number generators on
vector supercomputers and other advanced archi-

tectures”. STAM Review 32 (1990), 221-251.

[2] C. Ashcraft. The distributed solution of lin-
ear systems using the torus wrap data map-
ping. Technical Report ECA-TR-147, Boeing
Computer Services, October 1990.

[3] R. P. Brent, Uniform random number generators
for supercomputers. Proc. Fifth Australian Su-
percomputer Conference, Melbourne, December

1992, 95-104.

[4] J. Choi, J. Dongarra, R. Pozo, and D. Walker.
ScaLAPACK: A scalable linear algebra library for
distributed memory concurrent computers. Tech-

nical Report 53, LAPACK Working Note, 1993.

[5] A. Cleary. Parallelism and fill-in in the Cholesky
factorization of reordered banded matrices. Tech-
nical Report SAND90-2757, Sandia National
Labs’ MPCRL, 1990.

[6] A. Cleary. A new torus-like mapping of sparse
matrices for parallel matrix factorization. In Pro-
ceedings of the 6th SIAM Conference on Parallel
Processing for Scientific Computing, 1993.

[7] A. Cleary and M. Osborne. Eigenvalue solvers
for large problems. In Proceedings of the Compu-
tational Techniques and Applications Conference,
July 1993. Canberra, Australia.

[8] J.J.M. Cuppen. A divide and conquer method
for the symmetric eigenproblem. Numer. Math.,

36:177-195, 1981.

[9] J. Demmel and W. Kahan. Accurate singular val-
ues of bidiagonal matrices. STAM J. Sci. Stat.
Comput., 11(5):873-912, 1990.

[10] J. Dongarra. Performance of various computers
using standard linear equations software. July
1993.

[11] G. Fox. Square matrix decomposition — Sym-
metric, local, scattered. CalTech Publication Hm-
97, California Institute of Technology, Pasadena,
CA, 1985.

[12] Markus Hegland. An implementation of multi-
ple and multi-variate Fourier transforms on vec-
tor processors. SIAM J. Sci. Comput., 1993. ac-
cepted.

[13] Markus Hegland. On some block algorithms for
fast Fourier transforms. Technical Report CMA-
MR51-93, CMA, Australian National University,
1993.

[14] Markus Hegland. Parallel FFTs for real and com-
plex sequences. Technical report, CMA, Aus-
tralian National University, 1994.

[15] Markus Hegland. A self-sorting in-place fast
Fourier transform algorithm suitable for vector
and parallel processing. Numerische Mathematik,
1994. accepted.

[16] B. Hendrickson and D. Womble. The torus-wrap
mapping for dense matrix calculations on mas-
sively parallel computers. SAND Report SAND
92-0792, Sandia National Laboratories, Albu-
querque, NM, 1992,

[17] J. Lewis and R. van de Geijn. Distributed mem-
ory matrix-vector multiplication and conjugate

gradient algorithms. In Proceedings of Supercom-
puting ’93, pages 484-492. ACM, 1993.

[18] Z. Leyk. Modified generalized conjugate residuals
method for nonsymmetric systems of linear equa-
tions, ANU Centre for Mathematics and its Ap-
plications Research Report no. CMA-MR33-93.
1993.

[19] G. Marsaglia and A. Zaman. A new class of ran-
dom number generators. The Annals of Applied
Probability, 1:462-480, 1991.

[20] M. R. Osborne, Gram-Schmidt for Least Squares
Regression Problems, Rep. SMS-015-90, School of
Mathematical Sciences, Australian National Uni-
versity, 1990.

[21] W. P. Petersen. Lagged Fibonacci Series Ran-
dom Number Generators for the NEC SX-3. IPS
Research Report No. 92-08, IPS, ETH-Zentrum,
Zurich, April 1992.

[22] M. Seager. Parallelizing the conjugate gradi-
ent for the CRAY X-MP. Parallel computing 3
(1986), p35.

[23] Charles Van Loan. Computational Frameworks
for the Fast Fourier Transform. STAM, 1992.

[24] H. Simon. Bisection is not optimal on vector pro-
cessors. SIAM J. Sci. Stat. Comput., 10(1):205—
209, 1989.

[25] J.H. Wilkinson. The Algebraic Eigenvalue Prob-
lem. Claredon Press, Oxford, England, 1965.

