
A Parallel Ring Ordering Algorithm for E�cient
One-sided Jacobi SVD Computations�

B. B. Zhou and Richard P. Brent
Computer Sciences Laboratory

The Australian National University
Canberra, ACT 0200, Australia
fbing,rpbg@cslab.anu.edu.au

Abstract
In this paper we give evidence to show that in one-sided Jacobi SVD computation the sorting

of column norms in each sweep is very important. An e�cient parallel ring Jacobi ordering for
computing singular value decomposition is described. This ordering can generate n(n � 1)=2
di�erent index pairs and sort column norms at the same time. The one-sided Jacobi SVD
algorithm using this parallel ordering converges in about the same number of sweeps as the
sequential cyclic Jacobi algorithm. The issue of equivalence of orderings for one-sided Jacobi
is also discussed. We show how an ordering which does not sort column norms into order may
still perform e�ciently as long as it can generate the same index pairs at the same step as one
which does sorting. Some experimental results on a Fujitsu AP1000 are presented.

1 Introduction

Let A be a real m � n matrix. Without loss of generality we assume that m � n. The singular
value decomposition (SVD) of A is its factorisation into a product of three matrices

A = U�V T ;

where U is an m � n matrix with orthonormal columns, V is an n � n orthogonal matrix, and �
is an n� n nonnegative diagonal matrix, say � = diag(�1; � � � ; �n).

There are various ways to compute the SVD [11]. Two of the most commonly used classes
of algorithms are QR-based and Jacobi-based. In sequential computing the QR-based algorithms
are usually preferred because they are faster than the Jacobi-based algorithms. However, the
Jacobi-based algorithms may be more accurate [6]. The Jacobi-based algorithms have recently
attracted a lot of attention as they have a higher degree of potential parallelism. There are two
varieties of Jacobi-based algorithms, one-sided and two-sided. The two-sided Jacobi algorithms
are computationally more expensive than the one-sided algorithms, and not so suitable for vector
pipeline computing. Thus, to achieve e�cient parallel SVD computation the best approach may
be to adopt the Hestenes one-sided transformation method [13] as advocated in [4, 5].

The Hestenes method generates an orthogonal matrix V such that

AV = H;

where the columns of H are orthogonal. The nonzero columns ~H of H are then normalised so that

~H = Ur�r

�To appear in J. Parallel and Distributed Computing. Received Oct 5, 1994; revised Dec 9, 1996; accepted Jan 3,
1997. Copyright c
1994-1997, the authors. rpb153 typeset using LaTEX



with UTr Ur = Ir, �r = diag(�1; � � � ; �r) and r � n is the rank of A.
The matrix V can be generated as a product of plane rotations. Consider the transformation

by a plane rotation: �
ai aj

� c �s
s c

!
=
�
ai0 aj 0

�
(1)

where c = cos �, s = sin �, and ai and aj are the i-th and j-th columns of the matrix A. We
choose � to make ai0 and aj 0 orthogonal. As in the traditional Jacobi algorithm, the rotations are
performed in a �xed sequence called a sweep, each sweep consisting of n(n � 1)=2 rotations, and
every column in the matrix is orthogonalised with every other column exactly once per sweep. The
iterative procedure terminates if one complete sweep occurs in which all columns are orthogonal
to working accuracy and no columns are interchanged. If the rotations in a sweep are chosen in
a reasonable, systematic order, the convergence rate is ultimately quadratic [9, 11]. Exceptional
cases in which cycling occurs are easily avoided by the use of a threshold strategy [24].

It can be seen from equation (1) that one Jacobi plane rotation operation only involves two
columns. Therefore, there are disjoint operations which can be executed simultaneously. In a
parallel implementation, we want to perform as many noninteracting operations as possible at each
parallel time step. Many parallel orderings have been introduced in the literature [3, 4, 5, 7, 8,
10, 15, 17, 18, 19]. These orderings were mainly designed for parallel eigenvalue decompositions.
Special care has to be taken in order to achieve high e�ciency for parallel SVD computations.

In this paper we show that sorting the column norms in each sweep of the SVD computation
is a very important issue. If a parallel ordering does not include a proper sorting procedure, it
results in too many sweeps when adopted in a one-sided Jacobi SVD algorithm. We thus introduce
a parallel ring Jacobi orderings and show that this ordering can generate n(n�1)=2 di�erent index
pairs, and also sort n elements into order at the same time, where n is the problem size. We have
implemented one-sided Jacobi SVD using this ordering on a distributed memory MIMD machine,
the Fujitsu AP1000. Our experimental results show that the new algorithm can achieve the same
e�ciency as the sequential cyclic Jacobi algorithm for SVDs, i.e. the same total number of sweeps
to convergence.

The issue of equivalence of orderings was originally discussed in [19]. By the de�nition two
orderings are equivalent if they can generate the same set of index pairs at the same step by a
relabelling of the initial indices. It is known from [19] that most existing Jacobi orderings can
be classi�ed into two equivalent groups and that the odd-even ordering [18] and the round robin
ordering [5] are good representatives for each of these two groups. However, our experimental results
show that two orderings satisfying this de�nition may not share the same convergence properties
for one-sided Jacobi since an ordering which can also sort column norms in each sweep will certainly
converge faster than the one which does not. In this paper we give an example to show that an
ordering which does not sort column norms into order may still perform e�ciently as long as it can
generate the same index pairs at the same step as one which does sorting.

The paper is organised as follows. x2 discusses sequential algorithms. Three di�erent rotation
algorithms for generating plane rotation parameters are described. In x3 we consider parallel
implementation of one-sided Jacobi SVD using index sorting and show the e�ciency obtained (in
terms of the total number of sweeps) is not as good as that of the sequential cyclic Jacobi algorithm.
Our parallel ring Jacobi ordering is then described in x4. Some experimental results on the AP1000
are presented in x5. In that section the issue of equivalence of orderings for one-sided Jacobi is also
discussed. Some conclusions are given in x6.

2



2 Sequential Algorithms

There are two important implementation details which determine the speed of convergence of the
one-sided Jacobi method for computing the SVD. The �rst is the method of ordering, i.e., how to
order the n(n�1)=2 rotations in one sweep of computation. Various orderings have been introduced
in the literature. In sequential computation, the most commonly used is the cyclic Jacobi ordering
(cyclic ordering by rows or by columns) [9, 12]. When discussing sequential Jacobi algorithms in
this paper, we assume that the cyclic ordering is applied.

The second important detail is the method for generating the plane rotation parameters c and s
in each iteration. For the one-sided Jacobi method there are three main rotation algorithms, which
we now describe.

Rotation Algorithm 1 This algorithm is derived from the standard two-sided Jacobi method
for the eigenvalue decomposition of the matrix B = ATA.

Suppose that after k sweeps we have the updated matrix A(k) =
h
a(k)

1 a(k)
2 � � � a(k)

n

i
: To

annihilate the o�-diagonal element b(k)
ij of B(k) = (A(k))TA(k) in the (k + 1)th sweep, we �rst need

to compute b(k)
ii , b(k)

ij and b(k)
jj , that is,

b(k)
ii = (a(k)

i )Ta(k)
i = ka(k)

i k2; (2)

b(k)
ij = (a(k)

i )Ta(k)
j (3)

and
b(k)
jj = (a(k)

j )Ta(k)
j = ka(k)

j k2: (4)

where kxk is the 2-norm of the vector x. Actually b(k)
ii and b(k)

jj can be updated through a very
simple computation (see (11){(12) below), so the two inner product operations in (2) and (4) need
not be performed explicitly. (Because of possible cancellation in the update formulas, it may be
desirable to perform an explicit inner product computation occasionally.)

Once b(k)
ii , b(k)

ij and b(k)
jj are obtained, the Jacobi rotation parameters c and s can be computed

as in the two-sided Jacobi method. De�ne

� = 2b(k)
ij = 2(a(k)

i )Ta(k)
j ; (5)

� = b(k)
ii � b(k)

jj = ka(k)
i k2 � ka(k)

j k2; (6)


 = (�2 + �2)1=2 (7)

and

0 = sign(�)
 (8)

where sign(x) = 1 if x � 0 and sign(x) = �1 if x < 0. We obtain

c =
�� + 
0

2
0
�1=2

(9)

and
s =

�
2
0c : (10)

>From �, � and 
0 de�ned above, we can obtain b(k+1)
ii and b(k+1)

jj as

b(k+1)
ii = b(k)

ii +
�2

2(
0+ �)
(11)

3



and
b(k+1)
jj = b(k)

jj � �2

2(
0+ �)
: (12)

Since 
0 has the same sign as �, we have b(k+1)
ii � b(k)

ii and b(k+1)
jj � b(k)

jj after the above
computation if b(k)

ii > b(k)
jj . Otherwise, b(k+1)

ii � b(k)
ii and b(k+1)

jj � b(k)
jj . Thus the larger column

norm is always further increased and the smaller one further decreased when orthogonalising two
columns using this algorithm.

Rotation Algorithm 2 The second algorithm, introduced by Hestenes [13], is the same as the
Algorithm 1 except that the columns a(k)

i and a(k)
j are to be swapped if ka(k)

i k < ka(k)
j k for i < j

before the orthogonalisation of the two columns. From (11) and (12) we always have b(k+1)
ii � b(k+1)

jj .
When the cyclic ordering is applied, therefore, the computed singular values will be sorted in a
nonincreasing order.

Rotation Algorithm 3 The third algorithm was derived by Nash [20] and implemented on the
ILLIAC IV by Luk [17]. To determine the rotation parameters c and s for orthogonalising two
columns i and j, one extra condition has to be satis�ed in this algorithm, that is,

ka(k+1)
i k2 � ka(k)

i k2 = ka(k)
j k2 � ka(k+1)

j k2 � 0: (13)

With this extra condition the rotation parameters are chosen so that ka(k+1)
i k is greater than

ka(k+1)
j k after the orthogonalisation, without explicitly exchanging the two columns. As in Algo-

rithm 2, the computed singular values will appear in a nonincreasing order if the cyclic ordering is
applied. The algorithm is described as follows:

The parameters �, � and 
 are calculated as in Algorithm 1. If � < 0, then

s =
�
 � �

2


�1=2
; (14)

c =
�

2
s
; (15)

ka(k+1)
ii k2 = ka(k)

ii k2 +

 � �

2
(16)

and
ka(k+1)

jj k2 = ka(k)
jj k2 � 
 � �

2
: (17)

Otherwise, we compute

c =
�
 + �

2


�1=2
; (18)

s =
�

2
c
; (19)

ka(k+1)
ii k2 = ka(k)

ii k2 +
�2

2(
 + �)
(20)

and
ka(k+1)

jj k2 = ka(k)
jj k2 � �2

2(
 + �)
: (21)

4



matrix size (m = n) 60 80 100 120 140 160 180 200
Algorithm 1 (sweeps) 10 11 12 11 12 12 12 12
Algorithm 2 (sweeps) 8 9 8 9 9 9 9 9
Algorithm 3 (sweeps) 8 9 8 9 9 9 9 10

Table 1: Results for the cyclic Jacobi ordering on a Sun workstation.

It is known from numerical experiments that an implementation which uses Rotation Algo-
rithm 2 or 3 is more e�cient than one using Algorithm 1 when the cyclic ordering is applied.

It is easy to verify that implicit in the cyclic ordering is a sorting procedure which can sort
the values of n elements into nonincreasing (or nondecreasing) order in n(n� 1)=2 steps. Since in
Rotation Algorithms 2 and 3 we always have b(k+1)

ii � b(k+1)
jj for i < j when orthogonalising the two

columns, the column norms tend to be sorted after each sweep of computations. Therefore, the
columns and their norms tend to be approximately determined after a few sweeps and only change
by a small amount during each sweep. Since the column norms are not sorted during each sweep
when using Rotation Algorithm 1, the norm of column i may be increased when two columns i and j
are orthogonalised in a sweep, but the norm of column j may be increased when the two columns
meet again in the next sweep. Thus there are oscillations in column norms and (empirically) it takes
more sweeps for the same problem to converge. This e�ect was also noted in [6, 21]. It is probably
the main reason why applying Rotation Algorithm 2 or 3 is more e�cient than applying Rotation
Algorithm 1. (We found that H�uper and Helmke recently proved that Jacobi methods with sorting
may achieve an optimal convergence rate for the computation of singular value decomposition as
well as symmetric eigenvalue decomposition [14].)

In order to compare the performance in terms of the total number of sweeps with parallel
implementations which are described in the following sections, we give in Table 1 some experimental
results obtained on a (sequential) Sun Sparc workstation.

To alleviate the problem caused by adopting Rotation Algorithm 1, a pivoting strategy was
proposed in [21]. Each sweep is divided into n� 1 sub-sweeps. In the kth sub-sweep a set of n� k
columns (ak; ak+1; � � � ; an) are involved. Each sub-sweep consists of two steps. First the column
with largest norm is determined and interchanged with the �rst column in the set. The �rst column,
which now is the one with largest norm in the set, is then orthogonalised with all other columns in
the set once. It is easy to prove that the �rst column still has the largest norm on the completion
of the sub-sweep.

A so called accelerated one-sided Jacobi method for symmetric positive de�nite eigenvalue prob-
lem is analysed in [6]. This algorithm (originally introduced in [23]) consists of three steps. First
the Cholesky factor L of the given matrix A is formed using diagonal pivoting. There is a permu-
tation matrix P such that P TAP = LLT . Next the singular values �i and left singular vectors
ui of L are computed using one-sided Jacobi. The eigenvalues �i = �2

i and eigenvectors vi = Pui
are then obtained. Since the e�ect of the diagonal pivoting in the initial step is to reorder or to
sort the row norms of matrix L, this tends to improve the condition number of L (according to the
analysis in [6]).

3 A Parallel Implementation Using Index Sorting

Many parallel Jacobi orderings have been introduced in the literature. Any of these orderings
may be adopted to implement the one-sided Jacobi method in parallel. However, care has to be
taken in order to achieve the desired e�ciency. In this section we give some results from our
experiments and show that optimal e�ciency may not be obtained without a proper procedure for

5



8

7

6

5

4

3

2

1
step 1:

87

32 1

64

5
step 2:

7 8

3

6

4 2 1

5
step 3:

7 8

16 4 2

5 3
step 4:

8

7 26 4

5 3 1
step 5:

8

7 6 4

1

5

3 2
step 6:

8

7 6

41 2

53
step 7:

Figure 1: The round robin ordering.

matrix size (m = n) 200 400 600 800 1000 1200 1400
Algorithm 1 time (sec.) 14.43 72.74 226.4 519.6 994.4 1811 2978

sweeps 12 13 14 15 15 16 18
Algorithm 2 time (sec.) 19.31 97.59 290.4 645.5 1255 2219 3495

sweeps 16 17 17 17 18 18 18
Algorithm 3 time (sec.) 19.11 94.45 291.6 641.9 1228 2207 3439

sweeps 16 16 17 17 17 18 18

Table 2: Results for the round robin ordering, with index sorting, on an AP1000 with 100 processors
organised as a linear array.

sorting the column norms in each sweep. For simplicity we assume from now on that n (the number
of columns of A) is even.

In our experiment the well-known round robin ordering is applied. This ordering is depicted in
Fig. 1. In the �gure the indices are placed in two rows. The indices in the same column form a
index (or Jacobi) pair. In each step n=2 index pairs are generated. The indices are then shifted
according to the arrow lines, so another n=2 di�erent index pairs are produced in the next step.
Thus the n(n� 1)=2 di�erent pairs can be generated in n� 1 steps, which complete one sweep of
ordering.

Using the round robin ordering, n=2 pairs of columns of the matrix are simultaneously orthog-
onalised in each step. When Rotation Algorithm 2 or 3 described in the x2 is applied, the problem
encountered is which column in a column pair should be considered as the column associated with
index i (or j) so that its column norm is increased (or decreased). This problem does not occur
when Rotation Algorithm 1 is applied because the algorithm never attempts to sort the norms.

If we count from left to right (between columns) and from bottom up (within each column),
the n indices in Fig. 1 are initially placed in a nondecreasing order. After n� 1 steps (or a sweep)
this order is again restored. Thus our �rst attempt is to use an index sorting procedure, that is, we
always increase the norm of a column associated with smaller index when orthogonalising a pair
of columns using Rotation Algorithm 2 or 3. Since the indices are placed in a nondecreasing order
after each sweep, the �nal results should eventually be in a nonincreasing order.

We implemented the above idea on the Fujitsu AP1000. In the experiment both singular values
and singular vectors are calculated using 100 PEs which are organised as a one-dimensional array.

6



step 1:

step 2:

step 3:

step 4:

step 5:

step 6:

step 7:

4 6 2

1 3 5

6

1 3 5

1 3

6

31

1

1

7

8

7 8 4

2

7 5

8

4

2

7685

4 2

7 563

8 4 2

7 5 38

6 4 2

1 3 5

2 4 6 8

7

63 1 8

7254

81 7

2

6

3 4 5

1 7 2 8

6 3 4 5

7 2 5 8

1 6 3 4

2 5 84

17 6 3

45 3

62

8

17

4 3 6 8

175 2

8

1

2

7 5

46

3

2

18

4

5

67

3

4

1

6

2 5

78

3

6

12

74

38

5

7

1

5

2 4

86

3

5

12

3

4

67

8

3

1

8

2 4

75

6

(c)(b)(a)

Figure 2: The ring Jacobi ordering. (a) forward sweep, (b) backward sweep, and (c) the round
robin ordering with a new initialisation of indices.

The results are given in Table 2. It can be seen from Table 2 that the results from using Rotation
Algorithm 2 or 3 are not as good as those from using Rotation Algorithm 1 in terms of both
time and the number of sweeps. This is inconsistent with the conclusion obtained in sequential
computation using the cyclic ordering. The main reason we believe is that, although the natural
order of the indices is restored, the round robin ordering cannot sort the column norms properly
in a nonincreasing (or nondecreasing) order in one sweep (or n� 1 steps). In the next two sections
we introduce a ring Jacobi ordering and show that more e�cient results may be obtained if sorting
of columns norms in each sweep is considered.

4 The Ring Jacobi Ordering

Our Jacobi ordering consists of two procedures, forward sweep and backward sweep, as illustrated
in Fig. 2. They are applied alternately during the computation.

In either forward or backward sweep the n indices are organised into two rows. Any two indices
in the same column at a step form one index pair. One index in each column is then shifted to
another column as shown by the arrows so that di�erent index pairs are generated at the next step.
The up-and-down arrow in Fig. 2, moving from the leftmost column towards the rightmost column
by one column every two steps, indicates the exchange of two indices in the column before one is

7



shifted. This arrow plays a crucial rule in both index ordering and sorting. Without it the indices
initially placed in the same row can never meet each other and the elements will not be sorted. In
the following we claim that each sweep (forward or backward), taking n � 1 steps, can generate
n(n � 1)=2 di�erent Jacobi pairs, as well as sort the values of n elements into nonincreasing (or
nondecreasing) order.

It can easily be veri�ed that the forward sweep and the backward sweep are essentially the same.
The di�erence is that, when sorting is considered, one sorts the elements into nondecreasing order
and the other sorts the elements into nonincreasing order. Thus we only prove that the forward
sweep can do both index ordering and sorting.

In the following discussion we assume that the total number of indices (or elements) n is even.
For n odd we may simply pad one additional index, which will not a�ect the �nal result. The n
indices are placed in n=2 columns. These columns are numbered from left to right, starting from
column one.

Proposition 1 One forward sweep can generate exactly n(n� 1)=2 distinct Jacobi pairs.

Proof. Since each step generates n=2 Jacobi pairs, a total number of n(n� 1)=2 Jacobi pairs can
be generated in n� 1 steps. To ensure those Jacobi pairs are all distinct, any two indices must not
meet each other more than once. Thus we need only to prove that each index can meet all other
indices exactly once in a sweep.

We �rst show that the two rows will be exchanged and the order of the indices in the same row
reversed after a sweep. In other words, if we de�ne the index initially on the top of the kth column
as tk and the one at the bottom of the kth column as bk for 1 � k � n=2, we want to prove that tk
(or bk) will be shifted to the bottom (or the top) of the (n=2�k+1)th column for 1 � k � n=2 after
n� 1 steps. An example is depicted in Fig. 2(a). In that �gure the indices are initially placed in a
decreasing order at step 1. After n� 1 steps the two rows are swapped and the order of indices in
each row becomes increasing (which is not drawn in the �gure, but can easily be worked out from
step 7).

Index bk is originally placed at the bottom of the kth column. Following the arrow lines it moves,
starting at step 1, one column each step to the right. Thus it will be shifted to the rightmost column
at the (n=2� k+ 1)th step (or arrive at the leftmost column after that step). Since it travels twice
as fast as the up-and-down arrow, it is easy to see that this index will take another n=2 � k + 1
steps to catch up with the arrow at the (n=2� k + 1)th column and then be lifted to the top and
stay there permanently.

Index tk cannot move until the up-and-down arrow comes to the kth column. Since it moves
one column every two steps, the arrow will reach that column at the (2k � 1)th step. After being
dragged down by the up-and-down arrow, tk then moves n=2 � k steps to reach the rightmost
column Since one sweep has n� 1 steps and

(n� 1)� (2k � 1)� (n=2� k) = n=2� k;
tk will continue to travel (one column per step from the rightmost column) to reach the (n=2�k)th
column at step n� 1. Therefore, after that step it is settled at the bottom of the (n=2� k + 1)th
column.

We now show that tk for 1 � k � n=2 will meet all other n� 1 indices exactly once in a sweep.
When the up-and-down arrow comes to a column, the index on the top will be dragged down and
shifted forward. Thus all the indices on the left of the kth column will come across that column.
Before it is dragged down, tk can certainly meet 2(k�1) + 1 distinct indices from its left (including
the one originally placed at the bottom of the same column), that is, those tis for 1 � i � k � 1
and bis for 1 � i � k. On the way towards the rightmost column, index tk will meet all other tis
for k + 1 � i � n=2. >From the previous discussion, bi for k + 1 � i � n=2 will be placed on the

8



top of the �rst n=2 � k columns after n � 1 steps. Since these indices arrive at their destination
earlier than tk, it is obvious that tk can meet all those indices when coming across the �rst n=2� k
columns to its �nal position, that is, the bottom of the (n=2� k + 1)th column.

Finally we show that bk will meet all other n� 1 indices exactly once in a sweep. Since we have
proved that every index originally placed on the top can meet all other n� 1 indices once in n� 1
steps, we need only to prove that bi for 1 � i � n=2 will meet each other only once in a sweep.

It is seen that all bis except b1 move in the same speed of one column per step towards the
rightmost column (starting from step 1). Thus they cannot meet each other until they come to the
leftmost column. The rightmost index bn=2 comes to the �rst column at step 2, where it catches
up with the up-and-down arrow (and meets b1 as well) and is then lifted to the top and stay there
permanently. Since all other bi for 2 � i � n=2 � 1 will follow bn=2 to come across the leftmost
column, bn=2 can certainly meet them all, but only once in a sweep. Similarly, bk will come across
the �rst n=2�k columns and meet those bis for k+1 � i � n=2 and then stay at the (n=2�k+1)th
column where it encounters all other bis for 1 � i � k�1 since the order of those indices is swapped
after n� 1 steps.

Actually our ring ordering is equivalent to the round robin ordering. To see that the two
orderings are equivalent, we �rst permute the initial positions of n indices for the round robin
ordering and then show that the orderings can generate the same index pairs at any step.

The initial positions of indices for the round robin ordering in Fig. 1 is reorganised as follows.
Divide the original index pairs (at step 1) into two almost equal parts (if the number of index pairs
is odd, the right part will contain one more pair than the left part). Next swap the two rows in
the left part. Finally fold the two parts together from the middle so that the index pairs in the
two parts are interleaved. It should be noted that the rightmost index pair in the original pattern
must also be the rightmost one after the permutation.

When we apply the round robin ordering with the above new initialisation, the same index
pairs for each step in the ring ordering can then be generated. The detailed proof of this claim is
tedious and thus omitted. An example of n = 8 is depicted in Fig. 2.

We now consider sorting. The sorting procedure using a forward sweep is described as follows:
The n elements to be sorted are initially placed in two rows. During sorting the data 
ow pattern is
also the same as that for index ordering. To sort these elements in a nondecreasing order, however,
additional compare-exchange operations in each step will be required. Each step now consists of
two sub-steps. The �rst sub-step compares the two elements in each column and places the smaller
one on the top and the larger one at the bottom except in even steps the larger element is placed
on the top if the column has a up-and-down arrow in it. The second sub-step simply shifts the
elements located at the bottom to the next column according to the arrow ring, which is the same
as that for index ordering. The n elements can be sorted in a nondecreasing order after n� 1 such
steps.

It should be noted that, since the up-and-down arrow indicates the exchange of the two elements
in the column, these arrows in even steps can be removed by letting the smaller elements be placed
at the top of the corresponding columns. Therefore, we can place smaller elements on the top and
larger ones at the bottom for all columns in both odd and even steps as long as the up-and-down
arrow appears only at odd steps. When the up-and-down arrow appears at an odd step, the two
elements in the column have to exchange their positions before the shift takes place, which is the
same as that for index ordering.

In the following we prove that the above sorting procedure works correctly. To simplify the
discussion we assume that all elements have di�erent values.

9



Proposition 2 One forward sweep can sort n elements in a nondecreasing order.

Proof. Since only the elements placed at the bottom can be shifted, it is clear that only the larger
element in a column which does not contain the up-and-down arrow can move forward. When
the up-and-down arrow appears in a column at an odd step, however, the smaller element in that
column will be placed at the bottom. Thus the up-and-down arrow drags \small" elements down
from the top and forces them to move forward. We show that during sorting no elements can fall
behind this arrow to its left and no elements can overtake this arrow to its right.

Let se denote the smaller element and le the larger element in a column which contains the
up-and-down arrow. At step 1 the up-and-down arrow appears in the leftmost column. The smaller
element se is then shifted rightward to column 2. At the next step (an even step) se is compared
with the element on the top of column 2. If se is smaller, it will be lifted to the top. Otherwise,
se (which is then not called se) is shifted. Meanwhile, le in column 1 is compared with an element
which is just moved in from the rightmost column. The larger one of these two is shifted to column 2.
The up-and-down arrow then comes to column 2 at step 3 and pushes the smaller element (the
new se which is no greater than the old se) to the next column and lifts the larger one (the new le
which is no smaller than the old le) to the top. In general, at the (2k)th step se pushes a larger
element in column k+ 1 to move rightward and le blocks a smaller one to come over column k. At
the next immediate odd step, that is, step 2k+1 the up-and-down arrow will arrive at column k+1
to lift le to the top and to push se to move rightward.

It is easy to see from the above discussion that all elements (except the one which is the larger
element in the leftmost column at the initial step) must move forward to reach the rightmost
column, back to the leftmost column and then continue to move rightward (if possible). Since
small elements is more likely to be lifted to the top, they move slower than those large ones.
However, large elements will be slowed down by the up-and-down arrow. As a consequence, large
elements and small elements will be gathered respectively at the left side and the right side of the
up-and-down arrow. As this arrow reaches the rightmost column, small elements are then placed
in the left columns and large ones are in the right columns. In the following we show that after
n� 1 steps the n elements will be placed in a perfect nondecreasing order.

Let ei denote an element with ei < ej for i < j. We �rst show that after n � 1 steps e1
and en are placed at the bottom of the leftmost column and on the top of the rightmost column,
respectively. Because e1 is the smallest element, it will stay at the top of its original column until
the up-and-down arrow arrives. Then it becomes the smallest se and moves rightward one column
every two steps with the up-and-down arrow. Since en is the largest element, it will travel without
stopping until it catches up with the up-and-down arrow and become the largest le. Then it also
moves rightward with the up-and-down arrow. At step n�1, therefore, e1, en and the up-and-down
arrow must be in the rightmost column. It is thus clear that en will be lifted to the top and e1 be
shifted to the bottom of the leftmost column after that step.

We now show that the second smallest element e2 must appear on the top of the leftmost column
after n � 1 steps. Suppose that e2 is initially placed behind the smallest element e1. It cannot
move until the up-and-down arrow arrives and then it becomes se and is pushed to move forward
by the arrow. When it reaches the column where e1 stays, certainly e2 will overtake e1 after that
step since it is greater. If e2 is initially placed in front of e1, it will be pushed to move forward
by e1. Thus no matter where e2 is initially placed, it will reach the leftmost column before e1.
After having arrived at the leftmost column, it will stay on the top of that column and can move
only when e1 comes. However, e1 comes to the leftmost column immediately after the last step!

Assume that the �rst k�1 elements ei for 1 � i � k�1 are in their proper positions after n�1
steps. If all the larger elements can move to the right side of element ek during sorting, ek must
come to its correct position after n� 1 steps. To prove this we consider the following extreme case.

In order to simplify the discussion, we assume that k is even. The case for k odd is similar. As
the elements are placed in two rows, at least k=2 of those elements ei for 1 � i � k will initially

10



be placed on the top row since no other elements are smaller. Once any of these elements is lifted
to the top, only a smaller element coming from its left can replace it, or the up-and-down arrow
arrives to drag it down. Thus we place at the initial step these k elements in the rightmost k=2
columns so that ek may be shifted as far as possible to the right after arriving at the leftmost
column. We also place ek+1 in the leftmost column to keep it as distant as possible from ek. Since
ek+1 can never overtake an element which is larger, all other large elements ei for k+2 � i � n will
be on the right side of ek if ek+1 is after n� 1 steps. An example is given in Fig. 3, where n = 10,
k = 4, ek = 4 and ek+1 = 5.

There are k=2 small elements being placed on the top row at step 1. Since there is no any
smaller element on their left, those elements can move only after the up-and-down arrow arrives. It
is obvious that ek+1 can certainly overtake them before arriving to the leftmost column. Because
there are only k=2 smaller elements moving to the leftmost column before ek+1, ek cannot be shifted
over the (k=2)th column before being caught up by ek+1.

We now count how many steps for ek+1 to move to the (k=2)th column from its initial position.
Since it is the smallest one among those ei for k + 1 � i � n, it then acts as se and move with
the up-and-down arrow until it comes at the (n� k)th step to the ((n� k)=2 + 1)th column where
it meets a smaller element �rst time. After that it will come across those smaller elements to the
rightmost column one column per step in k=2� 1 steps and then to the (k=2)th column in another
k=2 steps. Therefore, ek+1 will catch up with ek in (n � k) + (k=2 � 1) + k=2 = n � 1 steps.
Immediately after the (n� 1)th step, ek+1 is shifted to the right of ek and comes to the bottom of
the (k=2 + 1)th column, which is indeed its correct destination.

Since the sorting has the same data 
ow pattern as the index ordering, the two procedures can
be done simultaneously, that is, when the elements are placed in a nonincreasing (or nondecreasing)
order at the beginning of each sweep, a total number of n(n � 1)=2 di�erent Jacobi pairs can be
produced by a forward (or backward) sorting procedure. This can easily be seen from Fig. 2(a) (or
(b)) where the numbers are not considered as indices, but as the values of n elements. Then the el-
ements are sorted from nonincreasing (or nondecreasing) order to nondecreasing (or nonincreasing)
order and they also meet each other exactly once after n� 1 steps.

It should be noted that the required Jacobi pairs cannot be generated during sorting if the
column norms are initially placed in an arbitrary order. However, this happens only at the �rst a
few sweeps and the column norms tend to be sorted after each sweep of computations. If the two
sweeps (forward and backward) are applied alternately, therefore, both index ordering and sorting
can be done simultaneously after the �rst a few sweeps. This process is just equivalent to that in
sequential SVD computation using cyclic orderings.

5 Experimental Results and Discussions

In order to see the importance of sorting the column norms in a parallel implementation of the
one-sided Jacobi SVD, we implemented our ring ordering algorithm on the Fujitsu AP1000 at the
Australian National University. In the experiment both singular values and singular vectors are
computed on the AP1000, which is con�gured as a one-dimensional array.

An algorithm without partitioning is not very useful in practice for general-purpose parallel
computation because the system con�guration is �xed, but the size of user's problem may vary.
Our partitioning strategy is based on the method described in [22]. However, a major di�erence
is that we take sorting into consideration. Assume that the given system has p processors and 2p
divides n. We �rst divide n columns of the matrix into 2p blocks. At the beginning of a sweep,
the columns in each block are orthogonalised with each other exactly once using the cyclic-by-rows
ordering. If Rotation Algorithm 2 or 3 is applied, the norms of columns in each block should be
sorted in order. We then consider each block as a super index and follow the designed ordering

11



step 1:

step 2:

step 3:

step 4:

step 5:

step 6:

step 7:

8

4

7 6 1 2

31095

4

3

2165

10978

3

9

2154

76810

3

10

2168

9754

3

7

2184

65109

3

6

2184

51097

3

5

21084

1976

3

2

1974

10865

2

1

10864

9753

5

8 9

7

6

3

1

2

4

10

5

8

7

9

6 1 2

4310

8

4 2165

397 10

3

4

2165

978 10

3

10

2154

9768

3

9

2154

76810

3

7

2184

659 10

3

6

2184

597 10

3

5

1974

286 10

2

3

1864

975 10

initial step:

step 8:

step 9:

(a) (b)

Figure 3: An example of sorting ten integers. (a) after exchange (the �rst substep) and (b) after
shift (the second substep).

12



matrix size (m = n) 200 400 600 800 1000 1200 1400
Algorithm 1 time (sec.) 11.58 65.35 210.8 499.5 945.2 1702 2787

sweeps 12 13 14 15 15 16 17
Algorithm 2 time (sec.) 10.01 57.39 187.1 416.7 799.1 1407 2280

sweeps 10 11 12 12 12 12 13
Algorithm 3 time (sec.) 10.02 57.42 185.6 416.3 799.8 1445 2272

sweeps 10 11 12 12 12 13 13

Table 3: Results for the ring Jacobi ordering on an AP1000 with 100 processors organised as a
linear array.

so that p(p � 1)=2 super index pairs can be generated in p � 1 super steps. In the computation
of each super index pair each column in one block must be orthogonalised with each column in
the other block once only using the cyclic-by-rows ordering, but no columns in the same block are
orthogonalised. If a block in a super index pair is considered as the column associated with index i
(or index j), the norms of all columns in that block should be increased (or decreased) during the
orthogonalisation with the columns in the other block when Rotation Algorithm 2 or 3 is applied.
It is easy to show that the sorting procedure is implemented on the completion of the sweep.

Some of the experimental results from applying di�erent rotation algorithms are given in Table 3.
It is easy to see from the table that the program adopting Rotation Algorithm 1 is not as e�cient
as those adopting Rotation Algorithm 2 or 3, especially when the problem size is large. If the
total number of sweeps is counted, these results are consistent with those in Table 1 (obtained
in sequential computation using the cyclic ordering). In our experiment we also measured the
sensitivity of the performance to the di�erent number of processors used in the computation. The
results show that the total number of sweeps required for the computation of the same SVD will
not vary as the processor number is changed. Our experimental results are thus clear evidence
which shows how important it is to adopt a proper sorting procedure in each sweep.

It is known that the odd-even index ordering [18] has the same data 
ow pattern as the odd-
even transposition sort [2]. The two procedures may be combined into an e�cient algorithm for
one-sided Jacobi. Similar to the ring Jacobi ordering, to combine these sorting and index ordering
procedures also require two di�erent sweeps. One sorts the column norms from a nondecreasing
order to a nonincreasing order and the other sorts the column norms from a nonincreasing order
to a nondecreasing order. The detailed description of this ordering can be found in [25].

The odd-even ordering requires one more step to complete a sweep than the ring ordering (for
n even). However, which one is more e�cient is very much dependent upon the real machine
con�guration. If all PEs are con�gured in a linear array without a connection between the two
boundary PEs, for example, the ring ordering would be less e�cient because of the high cost for
a message to travel from one end to the other. The results given in Table 4 show that the ring
ordering will be more e�cient if the PEs are physically interconnected in a ring.

In the following we give an example to show that an ordering (the round robin ordering) which
does not sort column norms may still perform e�ciently as long as it can generate the same index
pairs at the same step as one (the ring ordering) which does sort. Since most existing Jacobi
ordering are equivalent in terms of Jacobi pairs to either the round robin (or our ring) ordering, or
the odd-even ordering, they may then e�ciently be applied for the One-sided Jacobi SVD if certain
special care is taken into consideration.

As discussed in x4, the round robin ordering is equivalent to the ring ordering in terms of the
generation of Jacobi pairs. When the round robin ordering is adopted with a proper relabelling of
initial indices, the same Jacobi pairs can be generated at the same step as the ring ordering. If the

13



matrix size (m = n) 128 156 384 512 640 768
odd-even time (sec.) 17.85 137.5 472.2 1237 2320 4018

Algorithm 2 sweeps 11 11 11 12 12 12
ring time (sec.) 15.98 130.1 456.3 1156 2298 3888

sweeps 10 11 11 11 13 12
odd-even time (sec.) 17.87 137.5 472.2 1233 2326 4027

Algorithm 3 sweeps 11 11 11 12 12 12
ring time (sec.) 15.99 130.2 456.5 1160 2242 3894

sweeps 10 11 11 11 12 12

Table 4: Comparison of odd-even and ring Jacobi orderings on the AP1000 with 8 processors
organised as a linear ring.

matrix size (m = n) 200 400 600 800 1000 1200 1400
Algorithm 2 time (sec.) 14.23 67.15 205.4 446.9 848.1 1522 2398

sweeps 11 11 12 12 12 13 13
Algorithm 3 time (sec.) 13.58 66.03 202.1 442.6 842.9 1530 2386

sweeps 11 11 12 12 12 13 13

Table 5: Experimental results 5. The round robin ordering with the consideration of sorting is
adopted and the experiment is conducted on the AP1000 with 100 processors organised as a linear
array.

same sorting procedure is applied to each Jacobi pair, the larger norm goes with column i and the
smaller one with column j if it is so when using the ring ordering. The two orderings will generate
the same intermediate results at any time. Therefore, they must perform equally well for the same
problem. With this procedure the two orderings are made equivalent also in terms of sorting even
though the column norms are not sorted in a proper order such as nonincreasing, or nondecreasing
using the round robin ordering.

We re-implemented the round robin ordering for the one-sided Jacobi SVD based on the above
method. Some of the experimental results are given in Table 5. Comparing this table with Table 2,
it is easy to see that a faster convergence rate can be achieved if a proper sorting procedure is
adopted in the computation.

6 Conclusions

In this paper we showed that parallel orderings without proper consideration of sorting may fail
to achieve high e�ciency when applied to the one-sided Jacobi SVD. We proved that our parallel
ring Jacobi ordering (and the odd-even Jacobi ordering mentioned in the paper) can do both index
ordering and sorting simultaneously in a sweep. The experimental results demonstrate that the
one-sided Jacobi SVD algorithm using these parallel orderings converge in about the same number
of sweeps as the sequential cyclic Jacobi algorithm.

The concept of equivalence of orderings can greatly simplify the work involved in analysing
convergence properties of newly introduced orderings. However, the original de�nition only con-
siders the equivalence of index ordering. Our experimental results show that this is not su�cient
to a�rm that two orderings give the same convergence properties when applied to the one-sided
Jacobi SVD. We then discussed how to e�ciently implement a Jacobi ordering algorithm which

14



does not sort, but can generate the same set of index pairs at the same step as an ordering which
does sort.

Acknowledgements

The authors wish to thank the anonymous referees for helpful comments and suggestions.

References

[1] S. G. Akl, Parallel Sorting Algorithms, Academic Press, Orlando, Florida, 1985.

[2] G. Baudet and D. Stevenson, \Optimal sorting algorithms for parallel computers", IEEE
Trans. on Computers, C{27, 1978, 84{87.

[3] C. H. Bischof, \The two-sided block Jacobi method on a hypercube", in Hypercube Multipro-
cessors, M. T. Heath, ed., SIAM, 1988, pp. 612-618.

[4] R. P. Brent, \Parallel algorithms for digital signal processing", Proceedings of the NATO
Advanced Study Institute on Numerical Linear Algebra, Digital Signal Processing and Parallel
Algorithms, Leuven, Belgium, August, 1988, pp. 93-110.

[5] R. P. Brent and F. T. Luk, \The solution of singular-value and symmetric eigenvalue problems
on multiprocessor arrays", SIAM J. Sci. and Stat. Comput., 6, 1985, pp. 69-84.

[6] J. Demmel and K. Veseli�c, \Jacobi's method is more accurate than QR", SIAM J. Sci. Stat.
Comput., 11, 1992, pp. 1204-1246.

[7] P. J. Eberlein and H. Park, \E�cient implementation of Jacobi algorithms and Jacobi sets on
distributed memory architectures", J. Par. Distrib. Comput., 8, 1990, pp. 358-366.

[8] L. M. Ewerbring and F. T. Luk, \Computing the singular value decomposition on the Con-
nection Machine", IEEE Trans. Computers, 39, 1990, pp. 152-155.

[9] G. E. Forsythe and P. Henrici, \The cyclic Jacobi method for computing the principal values
of a complex matrix", Trans. Amer. Math. Soc., 94, 1960, pp. 1-23.

[10] G. R. Gao and S. J. Thomas, \An optimal parallel Jacobi-like solution method for the singular
value decomposition", in Proc. Internat. Conf. Parallel Proc., 1988, pp. 47-53.

[11] G. H. Golub and C. F. Van Loan, Matrix Computations, The Johns Hopkins University Press,
Baltimore, MD, second ed., 1989.

[12] P. Henrici, \On the speed of convergence of cyclic and quasicyclic Jacobi methods for comput-
ing eigenvalues of Hermitian matrices", J. Soc. Indust. Appl. Math., 6, 1958, pp. 144-162.

[13] M. R. Hestenes, \Inversion of matrices by biorthogonalization and related results", J. Soc.
Indust. Appl. Math., 6, 1958, pp. 51-90.

[14] K. H�uper and U. Helmke, \Structure and convergence of Jacobi-type methods", Tech. Report,
TUM-LNS-TR-95-02, Institute of Network Theory and Circuit Design, Technical University
of Munich, Germany, 1995.

[15] T. J. Lee, F. T. Luk and D. L. Boley, Computing the SVD on a fat-tree architecture, Report
92-33, Department of Computer Science, Rensselaer Polytechnic Institute, Troy, New York,
November 1992.

15



[16] C. E. Leiserson, \Fat-trees: Universal networks for hardware-e�cient supercomputing", IEEE
Trans. Computers, C-34, 1985, pp. 892-901.

[17] F. T. Luk, \Computing the singular-value decomposition on the ILLIAC IV", ACM Trans.
Math. Softw., 6, 1980, pp. 524-539.

[18] F. T. Luk, \A triangular processor array for computing singular values", Lin. Alg. Applics.,
77, 1986, pp. 259-273.

[19] F. T. Luk and H. Park, \On parallel Jacobi orderings", SIAM J. Sci. and Stat. Comput., 10,
1989, pp. 18-26.

[20] J. C. Nash, \A one-sided transformation method for the singular value decomposition and
algebraic eigenproblem", Comput. J, 18, 1975, pp. 74-76.

[21] P. P. M. De Rijk, \A one-sided Jacobi Algorithm for computing the singular value decompo-
sition on a vector computer", SIAM J. Sci. and Stat. Comput., 10, 1989, pp. 359-371.

[22] R. Schreiber, \Solving eigenvalue and singular value problems on an undersized systolic array",
SIAM. J. Sci. Stat. Comput., 7, 1986, pp. 441-451.

[23] K. Veseli�c and V. Hari, \A note on a one-sided Jacobi algorithm", Numerische Mathematik,
56, 1990, pp. 627-633.

[24] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965, pp. 277-
278.

[25] B. B. Zhou and R. P. Brent, \On the parallel implementation of the one-sided Jacobi algo-
rithm for singular value decompositions", Proc. of 3rd Euromicro Workshop on Parallel and
Distributed Processing, San Remo, Italy, Jan, 1995, pp. 401-408.

16


